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Abstract. This paper presents our results in the formal verification of
kLIBC, a minimalistic C library, using the Frama-C/WP tool. We report
how we were able to completely verify a significant number of func-
tions from <string.h> and <stdio.h>. We discuss difficulties encoun-
tered and describe in detail a problem in the implementation of common
<string.h> functions, for which we suggest alternative implementations.
Our work shows that it is presently already viable to verify low-level C
code, with heavy usage of pointers. Although the properties proved tend
to be shallower as the code becomes of a lower-level nature, it is our view
that this is an important direction towards real-world software verifica-
tion, which cannot be attained by focusing on deep properties of cleaner
code, written specifically to be verified.

1 Introduction

The state-of-the-art in program verification tools based on deduction has seen
great advances in recent years. This has been motivated in part by the popularity
of the Design-by-Contract [1] principles, according to which program units are
annotated with behavior specifications called contracts, that provide appropri-
ate interfaces for compositional verification. On the other hand, developments in
Satisfiability Modulo Theories (SMT) solvers have complemented these advances
with sophisticated tools for automated theorem proving, which have made pos-
sible the automatic verification of intricate algorithms that previously required
very demanding interactive proofs.

The Frama-C deductive verification plug-in WP is a tool for compositional
verification of C code based on contracts. It starts with C programs annotated
with behavior specifications written in a language called ACSL, and then gen-
erates a collection of verification conditions (VCs): proof obligations that must
be valid in order for each program unit to meet its specification. A variety of
back-end provers can then be used to attempt to discharge these VCs. If all
VCs are shown to be valid, then the program is correct (given that the contract
specified correctly covers the functional properties of the program).

An ACSL-annotated program is shown in the straightforward example of
Listing 1: the swap C function is annotated with a precondition requiring the
two pointers to be valid (in the sense that it can be safely accessed), which is

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55635576?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


/*@
requires \valid(a) && \valid(b);
ensures A: *a == \old(*b);
ensures B: *b == \old(*a);
assigns *a,*b;

@*/
void swap(int *a,int *b){
int tmp = *a;
*a = *b;
*b = tmp;
return;

}

Listing 1. Swap basic example

necessary for the safe execution of the operations involving dereferencing. The
postconditions on the other hand ensure the functional behavior expected of
swap, and the frame condition states which elements of the global state are
assigned during its execution.

With the development of tools such as Frama-C it is to be expected that
where one would previously resort to extensive testing of code, one will now
increasingly use tools to statically verify it. Initial applications have focused on
algorithmically complex examples that are rich in ‘deep’ properties, but there is
a clear absence in the literature of work on the verification of real-world code
(initial steps in this direction with WP are reported in [2]). One class of code
that could largely benefit from static verification is the code in the standard
libraries of various programming languages, since more and more people depend
on many widely used applications based on them.

In this paper we present our results in the formal verification of kLIBC, a
minimalistic C library, using the WP plug-in of Frama-C. With this kind of
verification we are treading new ground: the tools are very recent and under
continued development. As such, our results should be seen as a snapshot of the
state-of-the art in program verification and its applicability to real-world code.

Organization of the paper. Section 2 describes the verification and proof tools
(including the underlying memory models) used in our experiments, as well as
the subset of kLIBC considered. Sections 3 and 4 are the core sections of the pa-
per, where the results obtained in the verification of functions from <string.h>
and <stdio.h> are respectively reported. The verification was done bottom-up,
starting with the leaf functions and then working our way up to the callers.
The human effort consisted essentially in finding appropriate annotations, after
that the VCs were automatically discharged. Where problems are detected, we
also provide suggested corrections to the implementation of the relevant library
functions. Section 5 summarizes our results and discusses the difficulties faced,
and Section 6 concludes the paper. A full list of the functions analyzed can be
found in Appendix A.



2 Experimental Environment

ACSL. ANSI/ISO C Specification Language (ACSL) [3] is a Behavioral Interface
Specification Language (BISL) [4] for C programs, which adds a layer of first-
order logic constructs on top of the well-known C syntax. As with other BISLs,
such as JML [5], building on top of the programming language’s syntax for
boolean expressions makes it possible for programmers to easily start adding
specification annotations to their programs.

All annotations are written as comments, using one of the notations //@ ...
or /*@ ... @*/, for single- and multi-line annotations, respectively. The pre- and
postconditions of functions are written as \requires and \ensures clauses, re-
spectively. The memory locations that can be modified within a function call can
be specified with an \assigns annotation (usually known as frame condition).
Loop annotations include loop invariant, loop variant and loop assigns.
The return value of a function can be accessed (in particular in the function’s
postcondition) with the \result clause.

All of the above annotations are fairly standard in BISLs used for deductive
verification; ACSL also includes many other annotations that specifically target
aspects of the C programming language. A particularly important one is the
\valid predicate, which takes a memory location or region as argument. The
intended meaning is that the content of that memory regions has been properly
allocated and can thus be safely accessed. This predicate is crucial for verifying
(statically) the absence of runtime memory safety violations.

Finally, the \at operator can be used for accessing the value of an expression
at a given program state, identified by a label. As an example, the expression
\at(p, Pre) denotes the value of the variable p in the pre-state of the current
function. The special label Pre is predefined, and this expression can in fact be
written equivalently as \old(p). The operator can however be used with any C
program label present in the program.

Frama-C and WP. Frama-C [6] is a platform dedicated to the static analysis of
C source code. It has a collaborative and extensible approach that allows plug-
ins to interact with each other. The most common use of Frama-C is probably
as a bug-finding tool that alerts the user about dangerous code and highlights
locations where errors could occur during runtime. The kind of bug-finding im-
plemented by Frama-C aims at being correct: if there is a location in the code
where an error could be generated, it should be properly reported. Users pro-
vide functional specifications written in ACSL, and Frama-C then aids them in
proving that the source code is in accordance with these specifications.

Frama-C plug-ins include among others tools for calculating common source
code metrics; value analysis based on abstract interpretation; program slicing;
and of course deductive verification. In fact Frama-C has two plug-ins for deduc-
tive verification: Jessie [7] and WP [8,9]. Both plug-ins function in the same way:
they convert the annotated code to a set of VCs, which are then submitted to
a choice of external tools, comprising both automatic and interactive theorem
provers.



int *p = ... ;
char *q1 = (char *)p;
char *q2 = (char *)p;
if(q1 == q2){ ... } // CORRECT
if(*q1 == *q2){ ... } // CORRECT
q1[2] = 0xFF; // STILL CORRECT BUT ...
if(*p == ...) // INCORRECT, because q1 is aliased to internal representation of p

Listing 2. Unsafe casts usage

In this paper we focus on the WP plug-in, since Jessie is clearly not targeted
at the verification of properties of low-level code such as the code found in library
functions. Moreover, WP is very actively maintained, with new versions being
regularly released (for the work reported in this paper several major versions of
Frama-C were used, including Oxygen and Fluorine 1, 2 and 3). We will see that
a feature that has been included in the latest releases (to cope with unsafe casts)
was crucial in the verification of <stdio.h> functions.

WP Memory models. A memory model consists of a set of data types, op-
erations and properties that are used to construct an abstract representation of
the values stored in the heap during execution of a program. The WP plug-in
of Frama-C makes available to the user a number of different memory models,
the simplest of which, present in every release of the plug-in, is the Hoare model,
based on the weakest precondition calculus. This is a very simple model that
does not support pointer operations, and is thus not suitable for our aim in this
paper. The Store model was available in the Oxygen release but is not included in
the more recent Fluorine releases. The heap values were stored as logical values
in a global array. Support for pointer operations was fairly limited, and there-
fore heterogeneous type casts were not supported. Integers, floats, and pointers
had to be ‘boxed’ into the global array and then ‘unboxed’ from it in order to
implement read and write operations. All this boxing-unboxing was preventing
automatic provers from making maximal usage of their native array theories.
The Runtime model was the most powerful model included in Oxygen; it has
equally been discontinued in the Fluorine release. This model was intended to
be used for low-level operations, representing the heap as a wide array of bits.
It was a very precise model but the price to pay for using it was high, since it
generated huge VCs.

In the Fluorine releases a new model, called Typed, was introduced to replace
both Store and Runtime. It makes better usage of the theories built into auto-
mated provers. The heap is represented by three memory variables, respectively
holding arrays of integers, floats and addresses. This data is now indexed directly
by addresses, which avoids all boxing-unboxing operations.

Very importantly, the “unsupported casts” feature of this model allows for
the usage of unsafe casts, as long as they are never used to store data through
a modification of the aliased memory data layout, as illustrated in Listing 2.

RTE Plug-in. This runtime error plug-in of Frama-C automatically generates
annotations that can later be discharged by more powerful plug-ins such as Jessie



or WP, even though it can also be used on its own to just guard against runtime
errors [10]. It is worth noting that the generated annotations may not be easily
discharged, even if they can be easily generated. RTE generates annotations for:

– common runtime errors, such as division by zero, signed integer overflow or
invalid memory accesses;

– unsigned integer overflows, which are considered well-defined behaviors in
the C language;

– function contracts at call sites (for functions with an ACSL specification).

RTE assumes that all signed integers have a two’s complement representation
since it is a common implementation choice. The annotations generated are
dependent of the machine where Frama-C is being executed.

Theorem Provers. The VCs generated by WP can be submitted to an inter-
active or automatic theorem prover. Frama-C natively supports two provers: the
Alt-Ergo automatic prover and the Coq proof assistant. Other provers are sup-
ported through the Why platform1. In the experiments reported in this paper
the following provers were used:

– Alt-ergo 0.95.1
– CVC3 2.4.1 (through the Why platform)
– Z3 4.3.1 (through the Why platform)

kLIBC kLIBC is intended to be a minimalist subset of libc, to be used with the
initramfs file system. It is mainly used during the Linux kernel startup because
at that point there is no access to the standard glibc library. It is designed for
small size, minimal confusion and portability. The experiments reported in this
paper focus on string-related functions from <string.h> and on the file API
present in <stdio.h>. The version of kLIBC used was 2.0.2, which was released
on October 5, 2012.

3 Verification of <string.h>

The <string.h> header file defines several functions to manipulate C strings
and arrays. It also includes various memory handling functions. Most of these
functions follow the same formula: they iterate on the string, using pointer arith-
metics or an integer variable, for n bytes or until ’\0’ is found, performing some
operation on each position.

For the functions that iterate until the end of the string is found, having
access to the actual length of the string at the logical level is useful. For this
we define a predicate Length_of_str_is as shown in Listing 3. The formula
Length_of_str_is{L}(s,n) is true in the state identified by L, for nonnegative
n, when all memory positions from 0 to n are valid; the final character is the null
1 http://why3.lri.fr
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/*@
predicate Length_of_str_is{L}(char *s, integer n) =

n >= 0 && \valid(s+(0..n)) && s[n] == 0 &&
\forall integer k ; (0 <= k < n) ==> (s[k] != 0) ;

axiomatic Length{
logic integer Length{L}(char *s) reads s[..];

axiom string_length{L}:
\forall integer n, char *s ; Length_of_str_is(s, n) ==> Length(s) == n ;

}
@*/

Listing 3. Valid string predicate and length axiom

/*@
requires \exists integer i; Length_of_str_is(s,i);
assigns \nothing;
ensures \result == Length(s);

@*/
int strlen(const char *s) {

const char *ss = s;

/*@
loop invariant BASE: \base_addr(s) == \base_addr(ss);
loop invariant RANGE: s <= ss <= s+Length(s);
loop invariant ZERO:

\forall integer i; 0 <= i < (ss-s) ==> s[i] != 0;
loop assigns ss;
loop variant Length(s) - (ss-s);

@*/
while (*ss) ss++;

//@ assert END: Length_of_str_is(s,ss-s);
return ss - s;

}

Listing 4. strlen implementation and annotations

terminator ’\0’ (note that this character is present even when n is zero); and
no other character in the string is the null terminator. Observe that the formula
\exists integer i; Length_of_str_is{L}(s,i) holds exactly when s is a
valid string in state L. With this definition, we can quickly verify the function
that calculates the length of a string. Note that a logical function Length is also
introduced, as well as an axiom linking its result to the values of n that satisfy
the Length_of_str_is predicate for a given string (this enforces the existence
of a single such value).

strlen. kLIBC’s implementation of strlen and its annotations are shown in
Listing 4. The contract is quite straightforward. The precondition states that
only valid strings are expected by this function (this precondition is present in
almost all functions from <string.h>). The postcondition guarantees that the
result of the function is equal to the length of the string.



int memcmp(const void *s1, const void *s2, size_t n){
const unsigned char *c1 = s1, *c2 = s2;
int d = 0;

while (n--) {
d = (int)*c1++ - (int)*c2++;
if (d) break;

}
return d;

}

Listing 5. Original memcmp implementation

The implementation is not the triviality one could expect. Instead, pointer
arithmetic is used for loop control, where ss-s is the number of iterations ex-
ecuted. Because of this we need to define the loop invariant RANGE in order to
guarantee that the pointer ss never goes out of bounds. Also, WP requires that
pointers that are used in a comparison have the same base pointer, which is
stated by the loop invariant BASE. Finally, The loop invariant ZERO is the one
that actually allows for the contract to be proved. It states that whenever the
loop condition holds, all memory positions of the array previously visited by the
loop must be different from the null terminator.

The loop assigns and variant clauses are straightforward. The final assertion
END is necessary in the Fluorine release of Frama-C: without it the contract could
not be proven. What this assertion states is that, after the loop, the length of
string s is the difference between the pointers ss and s. The resulting annotated
function is fully verified with both Alt-Ergo and CVC3.

memcmp. This function compares two byte strings with at least n bytes of
length. The implementation is shown in Listing 5 (the original implementation
includes in-line assembly, which is ignored here). Just verifying the run-time
execution guards uncovered an underflow in the variable n. This error is in fact
present in multiple functions from <string.h>; we will now explain in detail its
particular occurrence in memcmp.

The parameter variable n is declared as having type size_t, which is a
typedef for an unsigned long, meaning the value of n is always larger than or
equal to 0. However, in the loop’s final iteration, when n is zero, the condition
is evaluated to false but the variable is still decremented, causing an underflow.
Even though this underflow does not affect the execution of the function, it is
still an error, not allowing the assertion generated by WP -rte to be proven.

A proposed correction of the implementation, with the appropriate annota-
tions, is shown in listing 6. By moving the decrement operation inside the loop,
we avoid the underflow in the final iteration. The resulting annotated function
is fully verified with both Alt-Ergo and CVC3.

The specification of this function requires that the memory areas pointed
by s1 and s2 must not overlap, as otherwise the behavior would be undefined.
ACSL provides the \separated clause for this purpose, which is here included



/*@
requires n >= 0;
requires \valid(((char*)s1)+(0..n-1));
requires \valid(((char*)s2)+(0..n-1));
requires \separated(((char*)s1)+(0..n-1), ((char*)s2)+(0..n-1));

assigns \nothing;
behavior eq:

assumes n >= 0;
assumes \forall integer i;

0 <= i < n ==> ((unsigned char*)s1)[i] == ((unsigned char*)s2)[i];
ensures \result == 0;

behavior not_eq:
assumes n > 0;
assumes \exists integer i;

0 <= i < n && ((unsigned char*)s1)[i] != ((unsigned char*)s2)[i];
ensures \result != 0;

complete behaviors; // at least one behavior applies
disjoint behaviors; // at most one behavior applies

@*/
int memcmp(const void *s1, const void *s2, size_t n)
{

const unsigned char *c1 = s1, *c2 = s2;
int d = 0;
/*@

loop invariant N_RANGE: 0 <= n <= \at(n, Pre);
loop invariant C1_RANGE: c1 == (unsigned char*)s1+(\at(n,Pre) - n);
loop invariant C2_RANGE: c2 == (unsigned char*)s2+(\at(n,Pre) - n);
loop invariant COMPARE: \forall integer i;

0 <= i < (\at(n, Pre) - n) ==> ((unsigned char*)s1)[i] == ((unsigned char*)s2)[i];
loop invariant D_ZERO: d == 0;
loop assigns n, d, c1, c2;
loop variant n;

@*/
while (n){

d = (int)*c1++ - (int)*c2++;
if (d) break;
n--; //inserted code

}
return d;

}

Listing 6. Corrected memcmp implementation and annotations

in the precondition. Furthermore both memory areas must be valid (with length
n bytes). Observe that, depending on the contents of the two byte strings, the
result may or may not be zero. By encoding this as two different ACSL behaviors
we can cover both executions.

Similarly to strlen, the loop invariants N_RANGE, C1_RANGE and C2_RANGE
guarantee that the pointers never go out of bounds. The difference here is that we
can specifically assert the values of the pointers c1 and c2 by using n. The loop
invariants COMPARE and D_ZERO are the crucial ones for our contract, specifying
that all previously iterated positions contain pairwise equal values. This implic-
itly means that d==0 must always hold (otherwise the strings are not equal).

4 Verification of <stdio.h>

The <stdio.h> header file provides many functions to handle I/O operations.
We aim here at verifying file functions such as fopen, fclose, and fgetc, i.e.



struct _IO_file {
int _IO_fileno; /* Underlying file descriptor */
_Bool _IO_eof; /* End of file flag */
_Bool _IO_error; /* Error flag */

};
typedef struct _IO_file FILE;

/*@
predicate valid_FILE(FILE *f) = \valid(f) && f->_IO_fileno >= 0;

@*/

Listing 7. FILE structure definition

struct _IO_file_pvt {
struct _IO_file pub; /* Data exported to inlines */
struct _IO_file_pvt *prev, *next;
char *buf; /* Buffer */
char *data; /* Location of input data in buffer */
unsigned int ibytes; /* Input data bytes in buffer */
unsigned int obytes; /* Output data bytes in buffer */
unsigned int bufsiz; /* Total size of buffer */
enum _IO_bufmode bufmode; /* Type of buffering */

};

#define offsetof(t,m) ((size_t)&((t *)0)->m)
#define container_of(p, c, m) ((c *)((char *)(p) - offsetof(c,m)))
#define stdio_pvt(x) container_of(x, struct _IO_file_pvt, pub)

Listing 8. Encapsulating FILE structure and stdio_pvt macro

the file API. Almost all functions in this API resort to system calls, which act
like black boxes, and it is thus difficult or impossible to specify what the output
will be on a given input. Due to this fact, contracts tend to be quite weak. Note
that even though the properties that can be verified are shallower than those
considered in the previous section, they can still be extremely important – in
particular, we have been able to prove various memory safety properties.

Since we will be working with the file API, it makes sense to start by defining
a predicate that establishes the validity of a FILE structure. kLIBC’s definition
of this structure and the corresponding validity predicate are shown in Listing 7.
A FILE structure is considered valid when both the area pointed by the pointer
and the file descriptor are valid.

In reality a slightly more complex encapsulating FILE structure is used, see
Listing 8. The FILE structure is kept in the field pub of the _IO_file_pvt
structure. The set of all _IO_file_pvt structs is organized as a circular linked
list. The buf pointer points to an area of fixed size, and data points to somewhere
in this area, representing the current input data location in the buffer. The
function fdopen allocates the memory necessary for this structure: memory for
the structure itself, the buffer, and some extra bytes for the input buffer, as in f
= zalloc(bufoffs + BUFSIZ + _IO_UNGET_SLOP) (kLIBC defines BUFSIZE as
16384 and _IO_UNGET_SLOP as 32).

The valid_IO_file_pvt predicate is defined in Listing 9. In addition to the
expected safety conditions, it is stated that the values of both ibytes and obytes



/*@
predicate valid_IO_file_pvt(struct _IO_file_pvt *f) =

\valid(f) && f->bufsiz == 16384 && 0 <= f->ibytes < f->bufsiz
&& 0 <= f->obytes < f->bufsiz
&& valid_FILE(&(f->pub))
&& stdio_pvt(&(f->pub)) == f
&& \separated(f, f->next, f->prev, f->buf+(0..(f->bufsiz+32-1)))
&& \valid(f->buf+(0..(f->bufsiz+32-1)))

&& f->buf <= f->data < f->buf + f->bufsiz + 32
&& \base_addr(f->data) == \base_addr(f->buf)

&& valid_IO_file_pvt_norec(f->next)
&& f->next->prev == f
&& valid_IO_file_pvt_norec(f->prev)
&& f->prev->next == f;

@*/

Listing 9. valid IO_file_pvt predicate

cannot exceed the actual buffer size. The separated clause guarantees that no
memory overlapping exists between the actual file structure and its fields. This
is essential to ensure that the buffer is separated from the field structure. Since
they are used in a comparison operation, data and buf must have the same
base address, to guarantee that the data pointer always points somewhere in
the allocated area, as mentioned in Section 3. In order to guarantee that the
circular linked list is correctly constructed, we can specify that “the next node of
the previous node”, and “the previous node of the next node” are both the node
itself. We could use the valid_IO_file_pvt predicate to check the validity of the
neighboring nodes. This however, would recursively check each neighboring node
and WP does not support recursive predicates. Instead, we define an auxiliary
predicate, similar to valid_IO_file_pvt, but that does not check its neighboring
nodes. This way, whenever we check the validity of a _IO_file_pvt structure,
its immediate neighbors are also checked. This is sufficient because all functions
that require access to the linked list, only access the direct neighbors of a given
_IO_file_pvt structure.

Functions that receive a FILE structure, but need to access the encapsu-
lating _IO_file_pvt structure, may obtain it by resorting to the stdio_pvt
macro, also shown in Listing 8 (the -pp-annot flag instructs Frama-C to pro-
cess the define macros). This macro was the source of various problems when
using Frama-C releases prior to Fluorine. The cast from FILE* to char* was
not supported in those versions. However, the new unsafe casts option seems
to handle this very well. This was crucial for the success of our efforts, since
in our verification of functions from <stdio.h>, the valid_IO_file_pvt predi-
cate was commonly used in ACSL annotations with the stdio_pvt macro, as in
valid_IO_file_pvt(stdio_pvt(file)), since almost every function in the file
API receives a FILE* pointer as argument, instead of the encapsulating struc-
ture, which is what is actually needed.

We will now consider in detail the verification of two functions from this API.



/*@
requires valid_IO_file_pvt(stdio_pvt(file));
requires -128 <= c <= 127;

behavior fail:
assumes stdio_pvt(file)->obytes || stdio_pvt(file)->data <= stdio_pvt(file)->buf;
assigns \nothing;
ensures \result == EOF;

behavior success:
assumes stdio_pvt(file)->obytes == 0 && !(stdio_pvt(file)->data <=

stdio_pvt(file)->buf);
assigns stdio_pvt(file)->ibytes, stdio_pvt(file)->data, *(\at(stdio_pvt(file)->data,

Pre)-1);
ensures stdio_pvt(file)->ibytes == \at(stdio_pvt(file)->ibytes, Pre) + 1;
ensures stdio_pvt(file)->data == \at(stdio_pvt(file)->data, Pre) -1;
ensures *(stdio_pvt(file)->data) == c == \result;

complete behaviors; disjoint behaviors;
@*/
int ungetc(int c, FILE *file) {

struct _IO_file_pvt *f = stdio_pvt(file);

if (f->obytes || f->data <= f->buf) return EOF;

*(--f->data) = c;
f->ibytes++;

return c;
}

Listing 10. ungetc implementation and specification

ungetc. This is a very simple function: it accesses some fields of the file struc-
ture, and then assigns a character back to the buffer, properly updating the
ibytes counter. A detailed contract can be specified, because the function does
not resort to system calls. The annotated function and its implementation are
shown in Listing 10. Since the output of the function depends on the outcome of
the conditional clause, it is adequate to define two behaviors fail and success.
This function is easily verifiable in the Fluorine release with Z3, but it requires
the unsafe casts option to be activated.

__fflush. Many functions in the file API rely on the __flush function for
actually modifying (and then flushing) a file structure. Its annotated implemen-
tation is shown in Listing 11. The instruction inserted before the while loop was
necessary in order to be able to specify an interval for the variable rv in the
loop invariant. From the point of view of verification this function is very prob-
lematic, because of its dependencies. If the input buffer contains some bytes the
function fseek is called, which in turn invokes either the system call lseek or
__fflush again. On the other hand, if the output buffer is not empty its contents
are written to disk with the write system call. Writing a deep contract for this
function is thus at this point not possible, because both cases will depend on the
outcome of system calls. Nevertheless we were able to specify some functional
and memory safety properties. Using Z3 we were able to discharge most (but



/*@
requires valid_IO_file_pvt(f);
assigns f->ibytes, f->pub._IO_eof, f->pub._IO_error, f->obytes, errno;
ensures \result >= -1;

@*/
int __fflush(struct _IO_file_pvt *f){

ssize_t rv;
char *p;

if (__unlikely(f->ibytes)) return fseek(&f->pub, 0, SEEK_CUR);

p = f->buf;
rv = -1; // inserted code
/*@

loop invariant 0 <= f->obytes;
loop invariant \base_addr(p) == \base_addr(f->buf);
loop invariant -1 <= rv <= f->obytes;
loop invariant \base_addr(f->buf) == \base_addr(f->data) == \base_addr(p);
loop invariant f->buf <= p <= f->buf + f->bufsiz + 32;
loop invariant \valid(p+(0..f->obytes-1));
loop assigns f->obytes, p, f->pub._IO_eof, f->pub._IO_error, rv;
loop variant f->obytes;

@*/
while (f->obytes) {

rv = write(f->pub._IO_fileno, p, f->obytes);
if (rv == -1){

if (errno == EINTR || errno == EAGAIN) continue;
f->pub._IO_error = true;
return EOF;

} else if (rv == 0){
f->pub._IO_eof = true;
return EOF;

}

p += rv;
f->obytes -= rv;

}

return 0;
}

Listing 11. __fflush implementation and contract

not all) of the VCs. This partial verification is due to reasons explained above
and not to the choice of prover.

5 Evaluation of Results and Difficulties

As a general remark, we note that a standard C library contains inherently low-
level code, which makes it hard to verify formally, due to the presence of system
calls. Verification tools of the class employed here are only capable of verifying
source-level code, and of course the implementation of the system calls is in
machine language – there is no way to prove their correctness. It is possible
to write a basic contract for a system call, but the verification of the calling
functions will always be dependent on its assumed conformance to this contract.

The Fluorine release of the WP plug-in represents a major step as the verifica-
tion of properties of low-level code is concerned. In fact, in the previous Oxygen



release of WP only a few type casts were supported, such as unsigned char* to
char*. In order to avoid the problems raised by this limitation we were forced
to modify the code being verified, which is hardly a recommendable approach.
Also, in our attempt to approach the verification of the file API with the Oxy-
gen release we were forced to use the complex Runtime memory model, and we
were unable to verify even the simplest properties of functions from <stdio.h>.
These difficulties were eliminated in the Fluorine release, which made possible
the work reported in Section 4.

A recurring problem detected in various functions from <string.h> is an
underflow error present in the while loops (this is detected by all the WP releases
used in our experiments). Basically, the problem is that an unsigned variable is
decremented when its value is zero. Because of this, the RTE assertions cannot
be proved. We have produced modified versions of these functions to make sure
that no decrement is performed when the variable reaches zero.

In the verification of mutually recursive functions that share pointers between
them we noticed that it is necessary to include in both functions’ contracts the
assigns clauses corresponding to the side effects produced by the code of both
functions. This actually makes sense, but perhaps it would be more productive if
functions could inherit assigns clauses from called functions whenever a pointer is
shared (in the same way that some ‘continuous’ loop invariants are automatically
present, such as assertions regarding variables not assigned in the loop body).

A present limitation of the WP plug-in is the lack of support for dynamic
memory allocation. Even though ACSL defines clauses to deal with dynamic
allocation (such as fresh, allocable, or freeable) these are not yet supported
in the Fluorine release. According to the developers, support will be included in
the next major release of the tool.

We also noted that using some provers required a heavy consumption of
resources. For instance with CVC3 many threads are created but not killed in
the end. We do not know if this problem is created by the prover itself, by Frama-
C, or by the Why platform. Since CVC3 requires a large amount of memory very
rapidly, this bug often results in forced reboots.

6 Concluding Remarks

The main goal of our experiments was to see how far one could go with verifying
a low level library with Frama-C and WP. Due to the limitations described previ-
ously we ended up with partial verifications for some of the functions. Neverthe-
less, we were able to completely verify 14 functions out of 34 from <string.h>,
and 13 out of 23 from the <stdio.h> file API. A full list of the approached func-
tions and the present verification status (including, in the unsuccessful cases, the
number of VCs left undischarged with each prover) can be found in Appendix A.
The corresponding library with all the annotations is publicly available2.

Regarding the performance of the different automated provers employed,
Alt-Ergo and CVC3 seemed to be better at handling string-related functions and
2 https://github.com/Beatgodes/klibc_framac_wp

https://github.com/Beatgodes/klibc_framac_wp


behaviors, while Z3 was much more powerful dealing with the unsupported casts
required to verify the file API. Within the string-related functions, Alt-Ergo was
able to discharge less VCs when compared to CVC3; however, for those that were
successfully discharged the computational cost was lower, and the huge amount
of memory consumed by CVC3 was avoided. Since Alt-Ergo is natively supported
by Frama-C, WP is able to take advantage of its built-in theories, making it a
competitive option as an SMT solver.

Regardless of the partial verification results obtained for some functions, we
believe we have shown without doubt that it is now viable to verify low level C
code. Whatever the gravity of the problems identified in practice may be, their
detection reinforces the interest of formally verifying code even when it has been
widely validated by large numbers of users, as is the case of library code.

During the experiments we have identified limitations and bugs in Frama-
C/WP that were properly reported to the developers. The Frama-C team is well
aware of its users’ needs, as evidenced by the release of the new memory model
and the optional feature to support unsafe casts. The forthcoming release includ-
ing support for dynamic memory allocation will very likely be another landmark
in the practical applicability of deductive program verification tools.
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A List of functions

A.1 <string.h> Functions
Function Alt-Ergo CVC3 Z3 Combined Unsafe Depen- Obs

provers casts dencies
bzero 3 3 3 7 memset

memccpy 7(15/21) 7(18/21) 7(13/21) 7(18/21) 7 Problems with PosOfChar axiom

memchr 7(16/18) 7(16/18) 7(14/18) 7(16/18) 7 Behavior not proved, see strchr

memcmp 3 3 7(15/19) 3
memcpy 7(13/14) 3 3 7
memmem 7(37/42) 7(37/42) 7(36/42) 7(37/42) 3 memcmp Behavior not proved

memmove 3 3 3 7
memrchr 7(12/14) 7(12/14) 7(12/14) 3 7
memset 7(13/14) 3 3 7
memswap 7(17/19) 3 3 7

strcasecmp Bugged, does not schedule all VCs
strcat Dependency strchr and strcpy not verified
strchr 7(14/17) 7(14/17) 7(13/17) 7(15/17) 7 Behavior not proved, see memchr

strcmp 3 3 7(14/22) 7
strcpy 7(16/23) 7(16/23) 7(15/23) 7(16/23) 7
strcspn 3 3 7(4/5) 7 strxspn
strdup Suffers from dynamic allocation problem
strlcat 7(15/27) 7(15/27) 7(13/27) 7(15/27) 7 Has no post-conditions

strlcpy Bugged, does not schedule all VCs
strlen 3 3 7(7/9) 7

strncasecmp 7(17/23) 7(17/23) 7(17/23) 7(17/23) 3 toUpper
strncat 7(12/23) 7(12/23) 7(9/23) 7(12/23) 7 strchr
strncmp 7(31/35) 7(31/35) 7(19/35) 7(31/35) 7 Behaviors not proved

strncpy 7(12/16) 7(13/16) 7(13/16) 7(13/16) 7 Has no post-conditions

strndup Suffers from dynamic allocation problem
strnlen 3 3 7(13/15) 7
strpbrk 3 3 7(7/14) 7 strxspn
strrchr 7(17/22) 7(17/22) 7(14/22) 7(17/22) 7 Behaviors not proved

strsep 3 3 7(19/20) 7 strpbrk
strspn 3 3 7(4/5) 7 strxspn
strstr Dependency memmem not proved
strtok Dependency strxspn not proved

strtok_r Dependency strxspn not proved
strxspn 7(32/40) 7(33/40) 7(31/40) 7(34/40) 7 memset Proved under assumption

A.2 <stdio.h> Functions
Function Z3 Unsafe casts Dependencies
clearerr 3 7
fclose 3 3 fflush
fdopen 7(19/25) 3

__init_stdio 7(5/10) 3 fdopen
feof 3 7

ferror 3 7
__fflush 7(20/23) 3 fseek
fflush 3 3 __fflush
fgetc 3 3
fgets n/a 7 fgetc
fileno 3 7

__parse_open_mode 3 7
fopen 3 __parse_open_mode, fdopen
fputc Dependency _fwrite not proved
fputs Dependency _fwrite not proved
_fread 7(18/37) 3 __fflush
fseek 3 3 __fflush, lseek
ftell 7(10/11) 3 lseek

fwrite_noflush 7(26/39) 3 __fflush
_fwrite 7(29/34) 3
lseek 3 7 __llseek
rewind 3 3 fseek
ungetc 3 3
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