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ABSTRACT 
 
Polyglutamine disorders are a class of nine inherited neurodegenerative disorders caused by expansion of 

a CAG repeat within otherwise unrelated genes. Polyglutamine expansion causes aberrant protein 

misfolding that leads to formation of protein aggregation and neuronal loss. Machado-Joseph disease 

(MJD) is included in this group of disorders, being caused by expansion of a CAG tract in the C-terminal 

region of the protein Ataxin-3 (ATXN3). MJD is characterized by the formation of intranuclear neuronal 

inclusions (NIs) and nervous system dysfunction, but the mechanism of this ATXN3- mediated dysfunction 

is still unsolved. So far, some symptoms can be controlled with specific treatments, but there is no 

effective therapy for MJD. 

Our team previously established a new MJD mouse model expressing human ATXN3 with 135 glutamines 

– CMVMJD135 – that presents phenotypic, pathologic and genetic similarities with the human disorder, 

namely several reliable and quantifiable phenotypic markers that can be used in therapeutic trials.  The 

NFIs are a pathological hallmark of this disease and have been found in this mouse model, as happens in 

human patients. Many studies related with therapeutic targets in polyQ diseases reveal phenotype 

amelioration without mention to neuropathology, namely inclusion load. Immunohistochemistry was 

performed to evaluate the relevance of inclusion load assessment in pre-clinical trials using a mouse model 

of MJD. We evaluated the utility of using this biomarker in therapeutic trials using three pharmacological 

compounds: creatine, 17-DMAG and valproic acid. We have found a significant reduction in inclusion load 

in the lateral reticular nucleus (LRT) region and a tendency towards a reduction of neuronal inclusions in 

the facial nuclei (7N) region of CMVMJD135 mice treated with creatine. The chronic treatment with 

creatine also lead to an amelioration of the motor phenotype observed in these animals, namely an 

increase in muscle strength and a better motor performance in the motor swimming test. 

Another compound, 17-DMAG did not show any differences between treated and non-treated transgenic 

mice group regarding NIs in the LRT and 7N brain regions, although a phenotype amelioration was 

observed in several behavioral paradigms. CMVMJD135 mice treated with Valproic acid exhibit a tendency 

towards a reduction of neuronal inclusions load in the LRt but no reduction in inclusion load in the 7N 

brain region. Globally our results suggest that there is no direct correlation between the aggregate load in 

these brain regions of the CMVMJD135 mice and the phenotypic effect observed upon chronic treatment 

with different compounds. 
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RESUMO 
 
As doenças de poliglutaminas são um conjunto de doenças neurodegenerativas hereditárias causadas pela 

expansão de um tripleto de CAG nas regiões codificantes dos respetivos genes causadores. A expansão do 

tripleto CAG leva à formação de proteínas que possuem uma expansão anormal de uma sequência de 

poliglutamina, causando o seu desarranjo conformacional, podendo estas proteínas agregar e conduzir à 

morte neuronal num estadio mais avançado da doença. A doença de Machado-Joseph (DMJ) inclui-se 

neste grupo de doenças, sendo caracterizada por uma expansão de glutaminas localizada na região C-

terminal da proteína envolvida na DMJ, a ataxina-3 (ATXN3). São características comuns a todas as 

doenças de poliglutaminas a presença de inclusões proteicas intranucleares nos neurónios (IINs) e a 

disfunção neuronal. No entanto, permanece por esclarecer a relevância das IINsna patogénese da DMJ. 

Até à data, embora seja possível controlar alguma da sintomatologia observada nos doentes, não existe 

um tratamento eficaz para a DMJ.  

No presente estudo, utilizou-se um modelo de ratinho para a DMJ que foi previamente gerado no nosso 

laboratório, e que apresenta várias características semelhantes às da doença humana, quer a nível 

genético e fenotípico, quer a nível neuropatológico. Este modelo apresenta características passíveis de 

quantificação, permitindo o seu uso em ensaios pre-clínicos. As IINs são uma característica chave da DMJ 

e foram detetadas nos cérebros deste modelo. Vários ensaios pré-clínicos recorrendo a várias estratégias 

terapêuticas e a diferentes modelos de ratinho, demonstram uma melhoria do fenótipo observado em 

cada modelo, no entanto, a referência ao efeito dos compostos utilizados na quantidade de agregados 

proteicos não é clara. Numa tentativa de esclarecer a relação entre a melhoria no fenótipo e a quantidade 

de IINs nos cérebros dos ratinhos CMVMJD135, foi efetuado um estudo de quantificação das IINs em 

algumas regiões do cérebro relevantes na DMJ, após o tratamento crónico dos ratinhos com três 

compostos: creatina, 17-DMAG e ácido valpróico. Foi possível observar uma redução significativa da 

densidade de IINs no LRT e uma tendência para o mesmo resultado no 7N nos animais tratados com 

creatina, quando comparados com animais veículo.  Assim, e tendo em conta que a creatina apresentou 

um efeito benéfico nos sintomas motores e também melhorou a perda de força muscular dos animais 

transgénicos, pode dizer-se que existe uma correlação direta entre densidade de IINs positivos para a 

ATXN3 e o efeito positivo no fenótipo destes animais. Em contraste, apesar de o 17-DMAG ter tido um 

efeito positivo no fenótipo dos animais, não foi observada uma redução da densidade de IINs nos núcleos 

LRT e 7N. Por fim, o ácido valpróico demonstrou ter um efeito muito ligeiro e tardio no fenótipo dos 

animais, não tendo sido observada uma redução significativa da densidade dasIINs nas áreas acima 

referidas. Globalmente, estes resultados demonstram que não existe uma relação direta entre densidade 

de IINs nestas regiões e a melhoria a nível fenotípico dos animais transgénicos para a DMJ. 
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1. INTRODUCTION 
 

1.1. Polyglutamine (PolyQ) diseases 

Polyglutamine diseases are genetic disorders caused by an expansion of a trinucleotide (CAG) within the 

coding region of the corresponding genes. The first disease described was spinal bulbar muscular atrophy 

(SBMA) (1). Eight other disorders including HD, dentatorubropallidoluysian atrophy (DRPLA), and six types 

of spinocerebellar ataxia (SCA1, 2, 3, 6, 7, and 17) (2) have since been identified as associated with polyQ 

expansions (Table-1). With the exception of SBMA, polyQ disorders are autosomal dominant, completely 

penetrant and progressive. To date, the normal function of many of the genes causing polyQ disorders 

remains unclear and apart from the polyQ tract, these proteins share no homologies, are unrelated to each 

other, vary in size and contain the glutamine segment at distinct locations within the protein sequence.  

Commonly these proteins are expressed in central nervous system and peripheral tissues. In addition, 

PolyQ repeats can expand or  contract , but expanded polyQ repeats show an inverse correlation between 

the number of CAG repeats and age of the disease onset (3-5), and a correlation was observed between 

the length of the CAG repeats and the number of inclusions in disease brain (6, 7). 

Table-1: Molecular features of Polyglutamine disease (adapted from reference # 8) 

Disease 
Mutated 
gene 

Gene 
product 

Protein function Protein localization 
Normal 
(CAG)n 

Expanded 
(CAG)n 

 
Huntington Disease 

 
HD 

 
Huntingtin 

Signaling transport, 
transcription 

 
Cytoplasmic 

 
6-35 

 
36-121 

Spinocerebellar ataxia type 1 
(SCA1) 

ATXN1 Ataxin-1 Transcription Nuclear in neurons 6-39 39-83 

Spinocerebellar ataxia type 2 
(SCA2) 

ATXN2 Ataxin-2 RNA metabolism Cytoplasmic 14-31 32-200 

Spinocerebellar ataxia type 3 
(SCA3, Machado joseph 
disease) 

ATXN3 Ataxin-3 De-ubiquitlating activity Cytoplasmic and nuclear 12-40 54-86 

Spinocerebellar ataxia type 6 
(SCA6) 

CACNA1A CACNA1A 
Voltage-dependent 
calcium channel subunit 
alpha-1A 

Cell membrane 4-20 20-30 

Spinocerebellar ataxia type 7 
(SCA7) 

ATXN7 Ataxin-7 Transcription Nuclear 4-35 37-306 

Spinocerebellar ataxia type 
17 (SCA17) 

TBP TBP Transcription factor Nuclear 25-42 47-63 

Dentatorubral-pallidoluysian 
atrophy (DRPLA) 

DRPLA Atrophin-1 Transcriptional regulator Cytoplasmic 3-35 49-88 

spinal and bulbar muscular 
atrophy (SBMA, Kenedy 
disease) 

AR 
Androgen 
receptor 

Steroid hormone 
receptor 

Nuclear, cytoplasmic 9-36 38-62 
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1.2 Polyglutamine pathogenic mechanisms 

Several cellular and molecular mechanisms have been implicated in polyglutamine toxicity, most of which 

suggest that the expanded polyQ tract confers a toxic gain-of-function to the mutant proteins. Rarely, it has 

also been associated with loss-of-function mechanisms of the disease-specific proteins, which is the case of 

the silenced or knock out ataxin-3. The pathogenic mechanism for all polyQ diseases is believed to involve 

the  protein folding machinery and aggregation process  Transcriptional deregulation, mitochondrial 

dysfunction, altered calcium homeostasis, cytoskeletal abnormalities, defects in axonal transport and 

synaptic transmission  have also been associated to pathogenesis. In the pre-clinical trials included in this 

thesis, we focus on three of these hypotheses: i) Protein aggregation and misfolded proteins affect 

proteostasis, ii) Transcriptional deregulation, iii) Mitochondrial impairment. 

 

Figure 1. Mechanisms of polyglutamine pathogenesis (adapted from reference# 9) The pathogenic process (red arrows) begins with the synthesis of expanded 

polyQ tract mutant protein. The expanded polyQ tract alters the native conformation of the protein, which can be modulated by the presence of molecular 

chaperones and co-chaperones. Usually some part of abnormally folded protein is ubiquitylated (Ub) and degraded via the proteasome and another portion is 

exposed to lysosomal-dependent proteolysis. In the pathogenic condition, cleavage of the abnormally folded mutant protein produces polyQ-containing fragments 

that favor the aggregation process. The mutant proteins shift from a monomeric random coil or β-sheet into oligomeric β-sheets and eventually into insoluble 

aggregates. Some of these species might contribute to pathology through ubiquitin-proteasome system (UPS) impairment, mitochondrial dysfunction and/or 

dysregulation of calcium homeostasis and transcriptional deregulation. Mutant proteins located in cytoplasm and nucleus. Presence in the nucleus seems to be 

key for pathogenesis. To control pathogenesis, several efforts have been made to reestablish cellular proteostasis (green arrows) such as mutant gene silencing 

and transcriptional modulation with HDAC inhibitors, blocking cleavage and aggregation, restoration of the quality control machinery and improving neuronal 

function and survival (neuroprotection). 
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1.2.1 Protein aggregation and misfolded proteins affect proteostasis 

Although protein aggregation is thought to be a main hallmark of many neurodegenerative diseases, the 

role of aggregates in neurodegeneration is not well elucidated. Formation of highly stable β-sheet structures 

and their subsequent stabilization by intermolecular interactions underlies the formation of oligomers and 

protein aggregates (10, 11). These aggregates were initially found in patients’ post-mortem brains and in 

the late 1990s they were also found in the brain of a HD mouse model (12). Even after two decades from 

their discovery in animal models, it is still controversial whether these aggregates are toxic or protective. 

Arrasate and colleagues suggested that in HD, Nuclear Inclusions (NI) or aggregates could provide 

protection to the neuronal cells, by stacking the toxic mutant proteins (13). On the contrary, protein 

aggregates have also been referred to harm neurons by affecting their proteostasis (8). Once misfolded, the 

mutant proteins are converted into insoluble aggregates which are resistant to proteolysis and they 

accumulate in the cell. In fact, soluble aggregates are shown to be efficiently cleared by the proteasomes 

(14). The mutated aggregated proteins interact with other cellular components, such as ubiquitin, ubiquitin-

like proteins, proteasome subunits, molecular chaperones and other polyQ-containing proteins and disturb 

cellular homeostasis, causing a decline in proteostasis (8, 15-17). As a consequence, variety of normal 

cellular functions such as, mitochondrial dysfunction, oxidative stress, transcriptional abnormalities, 

clearance machinery impairment, excitotoxicity, or apoptotic pathways are affected (18, 19). The polyQ 

aggregates are thought to impair the function of the proteasome and interfere with the degradation of other 

proteins (20, 21). Proteasome inhibition might increase the intracellular load of misfolded, oxidized, or 

otherwise damaged proteins, thereby causing neuronal toxicity. So, activation of molecular chaperones or 

autophagy induction are attractive therapeutic strategies to increase clearance, overcoming the chaperone 

machinery and/or the ubiquitin proteasome system impairment (22). These two pathways are involved in 

misfolded protein degradation, and accelerating the degradation of the mutated protein aggregates is 

proven to produce beneficial effects in MJD and other polyQ diseases. 

 

1.2.2 Transcriptional deregulation 

Another unifying feature of polyQ disorders is transcriptional dysregulation (23-25).  More than 20 reported 

interactors of polyglutamine disease associated-proteins are known to be involved in transcriptional 

regulation (24), affecting DNA methylation, histone acetylation and RNA modification. (26) The 

transcriptional co-activator CBP possesses HAT (histone acetyltransferase) activity and interacts with 

numerous transcription factors. Inhibition of HAT activity of CBP could lead to hypo-acetylation of histone 
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and suppress gene expression. Normally, the equilibrium of histone acetylation/deacetylation is controlled 

by histone acetyltransferases and deacetyltransferases (HDACs). Acetylation of histones relaxes the DNA 

structure and promote transcription, whereas hypoacetylation represses gene activity (27). PolyQ proteins 

by interacting with transcription regulators inhibit their acetyltransferase activity and diminish gene 

expression. In fact, Drosophila and mouse models of HD, treated with HDAC inhibitors showed 

amelioration in the disease phenotype with increased histone acetylation and consequent transcription 

activation and decrease cell degeneration (28-30). 

The mutant ataxin-3 protein abnormally interacts with transcription factors (TFs) such as TATA-Binding 

Protein (TBP), CREB (cyclic AMP responsive element binding protein) Binding Protein (CBP), Specificity 

Protein 1 (SP1) and TAFII130 (which encodes a TBP-Associated Factor) (24, 31). Overexpression of some 

of these transcription regulator proteins was shown to overcome polyQ toxicity, both in vitro for MJD, 

SBMA, and HD cellular models (32, 33) and in vivo in a Drosophila polyQ model (25), suggesting the 

transcriptional deregulation role of ataxin-3 in polyQ disease pathogenesis. 

 

1.2.3 Mitochondrial impairment/oxidative stress 

Numerous studies and observation of post-mortem brain of HD led to the proposal that mitochondrial 

impairment may contribute to the pathogenesis of polyQ diseases. The mitochondrial respiratory chain is 

one of the major sources of free radicals in human and these free radicals destroy cellular 

macromolecules, including DNA, lipids and proteins (34). Mitochondrial dysfunction in polyQ diseases 

could impair respiration; produce stress-induced mitochondrial depolarization, increase ROS production 

there by causing oxidative damage and abnormal energy metabolism that leads to decreased ATP 

production and increased apoptosis (35, 36). Mitochondrial dysfunction is directly or indirectly linked with 

other mechanisms, like transcriptional deregulation of nuclear-encoded mitochondrial proteins, Ca2+ 

handling impairment and trafficking deficits (22). A gradual or dramatic decline in the energy supply due to 

mitochondrial impairment leads to the release of proapoptotic factors, particularly cytochrome c and initiate 

an apoptotic cascade, contributing to necrotic cell death. Furthermore, while the intracellular Ca2+ 

concentration and Ca2+ signaling are necessary to maintain the normal cellular function of astrocytes and 

microglia cells (37), excessive Ca2+ accumulation also trigger apoptotic cascade in the cell. 
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1.3 Machado-Joseph disease (MJD) 

1.3.1 History 

MJD was initially described in 1972 in a Portuguese ancestor from the Azores Islands named William 

Machado, by Nakano and collaborators, as an autosomal dominant ataxia and they named it as Machado 

disease (38). In the same year, through his study of the Thomas family, Woods and Schaumburg entitiled 

this disease as Nigro-spino-dentatal degeneration with nuclear ophthalmoplegia (39). Later, Antone 

Joseph’s family (Portuguese ethnic background, various Azores Islands) was reported to have a particular 

type of autosomal dominant hereditary ataxia in 1975, by Rosenberg and colleagues, and they designated 

it as Joseph disease (40). In 1978, Andrade and Coutinho undertook extensive studies in a large number 

of families in the Azores islands, and in the 1980 Coutinho research team concluded Machado and Joseph 

disease were same disorder, with a high clinical variability, and named it as Machado-Joseph disease or 

MJD (41-43). Finally, in the years 1983-84, the disease unification was achieved by Rosenberg and 

Barbeau who examined several patients and found siblings presenting different types of MJD. MJD has 

since then been described in non-Azorean families from various countries (44, 45). At present, MJD, also 

called spinocerebellar ataxia type 3 (SCA3) can be defined as a late onset, autosomal dominant, 

progressive neurodegenerative disorder (46, 47). The disease prevalence in Portugal is of 3.1:100.000 

habitants, including a total of 108 MJD families (48). 

 

1.3.2 MJD clinical symptoms and sub-types 

This progressive neurodegenerative disorder is characterized by ataxia, weakness in the arms and legs, 

spasticity, speech and swallowing difficulty, impaired involuntary eye movements and dystonia. Motor 

function is highly affected in MJD. Some patients have twitching of the face or tongue, or bulging eyes (42, 

45, 49, 50). Even though it is very difficult to identify the MJD types, they could be partially justified by the 

phenotypic variability of MJD, organization of the disease sub-types, onset of age and major disorder 

symptoms. MJD type I is early age at onset (10-30 years of age), faster progression and more severe 

pyramidal and extra-pyramidal signs. MJD type II is the most frequent, and is characterized by intermediate 

age at onset (20-50 years of age) and a moderate progression rate, with patients exhibiting mainly ataxia 

and ophthalmoplegia. MJD type III presents slow disease progression and more peripheral signs, latest age 

at onset (40-70 years of age). In1983, Rosenberg added a fourth type, which is the rarest and includes 

MJD patients exhibiting Parkinsonic symptoms associated with the most representative symptoms of MJD. 
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MJD type V is also a rare form of ataxia and includes MJD patients resembling Hereditary Spastic 

Paraplegia, slow progression, onset of age vary from 10 to 70 with the average age of 30 (44, 46). 

 

1.3.3 MJD pathology 

Post-mortem brains from MJD patients revealed that neuronal degeneration of specific brain regions, such 

as the cerebellar dentate nucleus, pallidum, substantia nigra, subthalamic, red and pontine nuclei, select 

cranial nerve nuclei and the anterior horn and Clarke’s column of the spinal cord (51-53). Accordingly, the 

majority of MJD patients’ brains with more than 15 years of disease presented reduced brain weight 

compared to the brain of individuals without medical histories of neurological or psychiatric diseases (51). 

 
Figure -2. Brain region affected in MJD (red colour) STN: subtalamic nucleus, GP: globus pallidus, RN: red nucleus, SN: substantia nigra, PN: pontine nucleus, 

DN: dentate nucleus, LCN: lateral cuneate nucleus, CB: cerebellar cortex. 

 

Similar results were found in histopathological analysis of MJD transgenic mice brains, that revealed cell 

loss and/or atrophy in the lateral dentate (LD), vestibular (Ve) and pontine (Pn) nuclei, thalamus (Th) and 

substantia nigra (SN) as happened in MJD patient’s brains (54). MJD transgenic mice brains also showed 

astrogliosis in the Ve, SN and Th. Ataxin-3 aggregates were also found in the cytoplasm (perinuclear region) 

of several MJD affected brain regions, namely the LD, SN and Pn.  

Later on, pathoanatomical analysis of MJD brain demonstrated a widespread damage in neural cells of the 

cerebellum, thalamus, midbrain, pons, medulla oblongata and spinal cord. Systematic 

immunohistochemical study of serial thick brain section of MJD patients revealed axonal ATXN3 aggregates 

in fiber tracts which are known to undergo neurodegeneration in MJD (52-58).  A well-known pathological 

sign of MJD is intranuclear neuronal inclusions that consist of ATXN3 misfolded aggregated protein, 

ubiquitin, molecular chaperones and proteasomal components (59, 60). 

 

 

http://en.wikipedia.org/wiki/Hereditary_Spastic_Paraplegia
http://en.wikipedia.org/wiki/Hereditary_Spastic_Paraplegia
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1.3.4 MJD genetics 

Using genetic linkage analysis, MJD was mapped to the long arm of chromosome 14 (14q24.3-q32) in 

1993 (61). One year later, Kawaguchi and collaborators cloned the MJD1/ATXN3 gene (8). This gene was 

described as containing 11 exons, spanning a genomic region of about 48 kb, the (CAG)n tract being 

located at exon 10 (62). Normal CAG repeat ranges in the WT alleles between 12- 44; mutated alleles, with 

full penetrance, range between 52-86 repeats (63). Individuals carrying Intermediate CAG repeats, with the 

length of 45-51, may or may not manifest the disease. As expected, the presence of CAG tract expansion 

(mutation) was verified only in patients (64). 

 

1.3.5 MJD protein: Ataxin-3 (ATXN3) 

The ATXN3 gene encodes ataxin-3, a 42 KDa protein. ATXN3 is evolutionarily conserved in mice (65), rat 

(66), chicken (67), C. elegans (68), plants and other organisms. However, the long polyQ (CAG) tract is 

specific to humans, since it is nearly absent in other species such as mouse (6 Q) and C. elegans (1 Q). 

The human ATXN3 protein has a conserved N-terminal region, named Josephin domain (1-198 aa) that 

contains the catalytic triad of aminoacids: cysteine (C14), histidine (H119) and asparagine (N134). This 

domain is followed by two or three (in isoforms 1 and 4) ubiquitin-interacting motifs (UIMs), depending on 

the protein isoform. ATXN3 also contains a conserved nuclear-localization signal (NLS) (69). The polyQ 

stretch of variable length that is associated with different protein isoforms is located at the C-terminus of 

the protein (70, 71), whose expansion is intrinsically related with MJD. So far, four different variants of 

isoforms of ataxin-3 have been described: isoform 1 (NP_004984) has 361 aa, with a hydrophilic C-

terminal region and corresponds to the clones MJD1-1 and MJD5-1. Isoform 1 (3 UIMs) is the most 

abundant ATXN3 isoform in the brains of patients and transgenic mice. The second isoform (P54252) is 

formed by additional 4 a.a from isoform 1 and has a distinct C-terminal region compared with the first 

isoform, it is hydrophobic in nature and resembles to the clone MJD2-1 (72). Isoform 3 matches to the 

MJD1a variant (S50830), containing 349 a.a. The third variant particularly lacks 16 a.a due to a premature 

stop codon, compared with the second isoform (8). At last, isoform 4 (NP_1093376) contains less 55 a.a 

than isoforms 1 due to the lack of exon 2 in the H2 clone (62). This final variant lacks the catalytic amino 

acid (Cys14) which is essential for the deubiquitylating activity of ATXN3 against polyubiquitin chains. It 

remains to be defined which one of these variants is more relevant in the disease context. 
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Ataxin-3 is detected in the cytoplasm as well as nucleus and it is associated with the nuclear matrix, 

endoplasmic reticulum (ER) and mitochondria (60, 69, 73). Both the normal and pathogenic ATXN3 

proteins were expressed throughout the body and in all regions of the brain, including areas generally 

spared by the disease. Since embryonic life stages, the homologous of human ataxin-3 proteins are widely 

expressed in C. elegans and mouse (65, 68).  

 

A well-known function of ATXN3 is its deubiquitylating (DUB) activity which was described under in vitro 

conditions (71). The primary role of ATXN3 was proposed to be to deubiquitylate the substrate in order to 

facilitate proteasome degradation (74). Ataxin-3 also interacts with other proteins involved in (i) 

transcriptional regulation, (ii) cell structure and motility, and (iii) in the ubiquitin-proteasome pathway (UPP) 

and molecular chaperones. Moreover, histone ubiquitylation results in heterochromatin relaxation and 

assembly of transcription complexes on the promoter, and ubiquitylation of TF enhances their 

transcriptional activation function (75). Therefore, deubiquitylating enzymes like ataxin-3 can also modify 

transcriptional regulation through the removal of ubiquitin from histones. However, the biological 

consequence of this function has not been extensively characterized and the cellular substrates of ataxin-3 

remain unknown. 

1.4 Animal models (mouse) of MJD 

Since 1996, eight mouse animal models have been generated to understand the molecular mechanisms 

underlying MJD and to develop therapies (76-83), but so far, there is no treatment to delay the onset or 

cure the disease. Besides mouse, rat, C. elegans, cell culture and Drosophila models have also been used 

in MJD research. Apart from being a mammal, mouse models also have the greatest advantage of being 

close to humans at the genomic, anatomical, and physiological levels (84). A brief description of the mouse 

models generated so far is provided below (Table 2).  

Table -2: Mouse models of MJD. 

Transgene Promoter CAG 
repeat 
size 

Expression 
pattern 

Aggre
gates 

Neurodegener
ation 

Onset of 
illness 

 Phenotype  
Reference 

MJD1a cDNA 
total and C-
terminal 

L7 (Purkinje 
Cells) 

79 Purkinje 
Cells 

No Yes 4 weeks ataxia; gait disturbance; 
absence of elevation of the 
front paws. 

Ikeda et al., 
1997 

yeast artificial 
chromosome 
(YAC) with 
ATXN3 

ATXN3 64, 67, 72, 
76e, 84 

ubiquitous Yes Yes 4 weeks weight loss; hypotonia;  
tremor; inability to correct 
geotaxis. 

Cemal et al., 
2002 

cDNA MJD1a mouse prion 
protein 

71 ubiquitous Yes decreased TH-
positive neurons 
in substantia 
nigra 

 
8 weeks 

weight loss, premature 
death, incoordination; loss 
of strength in the limbs 

 
Goti et al., 
2004 

cDNA MJD1-1 murine prion 
protein 

15, 70, or 
148 

ubiquitous Yes ND 6 weeks tremor, wide-based 
hindlimbs, weight loss, 
reduced activity; 

Bichelmeier U 
et al.,2007 
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MJD1a CDNA 
total and C-
terminal 

murine prion 
protein 

79 ubiquitous Yes No 5 weeks incoordination; hypoactivity;  
ataxia; weight loss; 
reduction in the pelvic 
elevation  

Chou et al., 
2007 

cDNA MJD1-1 murine prion 
protein /Tet-
Off 

77 ubiquitous Yes Purkinje Cells 9 weeks reduced anxiety, 
hyperactivity,  
incoordination, smaller 
increase in weight 

Boy J et al., 
2009 

cDNA MJD1-1 huntingtin 
mouse 

148 ubiquitous No Purkinje Cells 48 weeks hyperactivity in early stages 
of  
disease, motor 
incoordination and 
amendment in motor 
learning in advanced 
disease 

Boy et al., 
2010 

cDNA MJD1-1 CMV 
(cytomegalov
irus) 

83 and 94 ubiquitous Yes astrogliosis and 
neuronal atrophy 

16 weeks incoordination Silva-Fernandes 
et al., 2010 

cDNA MJD1-1 CMV 
(cytomegalov
irus) 

135 biquitous Yes    loss of strength in the 
limbs, incoordination, 
weight loss, tremor, loss of 
hindlimb tonus, 
spontaneous locomotor and 
exploratory  activity 
decrease 
 

Silva-Fernandes 
et al., 2013 

 

In our lab, Silva-Fernandes and colleagues generated a novel transgenic mouse model for MJD, carrying 

the repeat tract coding for 83 polyglutamines, using a human cDNA (isoform 1, MJD1-1 clone) under the 

control of the pCMV (cytomegalovirus) promoter. Recently in 2013, Silva-Fernandes, et, al. generated a 

novel mouse model to study MJD pathogenesis and for pre-clinical trials, using a human cDNA, under 

regulation of the CMV promoter, carrying a 135Q repeat in coding region of ataxin-3.This new model 

recapitulates the disease by mimicking disease-like features such as ubiquitious expression, protein 

aggregation, loss of strength in limbs from 6 weeks, balance deficit from 8 weeks, swimming 

incoordination and shorter step length  from 12 weeks, body weight loss, tremors, limb clasping, loss of 

hind limb tonus, spontaneous locomotor and exploratory  activity decrease from 14 weeks. This model 

could be used for dissecting the cellular and molecular events in the pathogenesis of MJD as well as to test 

therapeutic strategies for this disorder.  

 

1.5 Rationale of pre-clinical trial drug targets 

1.5.1 Mitochondrial stabilization and reduction of oxidative stress 

Reduced concentrations of creatine, phosphocreatine (85) and mitochondrial electron transport enzymes 

(cytochrome C oxydase I) (86), and elevation in mtDNA deletion (87) have been observed in the basal 

ganglia and leucocytes of HD patients and in HD postmortem tissues, reinforcing the idea that oxidative 
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stress and mitochondrial dysfunction could be implicated in polyQ pathogenesis. Moreover, it was recently 

shown that mtDNA damage can be an early biomarker for HD. Interestingly, observations from the 

transgenic MJD mouse models  and MJD patient samples also showed a decrease in mtDNA copy number 

(89) and accumulation of mtDNA 3867bp deletions (88) in the initial stages of this disease. Downregulated 

PGC-1α (mediator of mitochondrial biogenesis), lower lymphocyte mitochondrial membrane potential and 

calcium loads have also been observed in HD patients and in HD animal models (90, 91). Isolated 

mitochondria from striatum cells expressing mutant htt showed induced mPTP opening and disruption of 

mitochondrial calcium homeostasis (92, 93). Comparing mitochondrial respiratory function between R6/2 

mice with 12 weeks of age and transgenic animals with 12 months, the latest showed higher respiratory 

control ratios and exhibited increased resistance to calcium loading; however when challenged with energy-

demanding stimuli, the neurons from this old mice are more vulnerable to calcium deregulation (94).  All 

together, these studies indicate that mitochondrial impairment and energy dysfunction might play a role in 

polyQ disorders, and that any treatment that might serve to buffer intracellular energy stores may delay the 

onset and/or progression of poly Q pathogenesis. 

Increased levels of 8-hydroxydeoxyguanosine (8- OHdG), an oxidized DNA marker, (95), lipid peroxidation 

markers (96) and decreased levels of antioxidant enzymes SOD (97), oxidized form of glutathione, Zn/Cu-

superoxide dismutase (Cu/Zn-SOD) (98) are found in HD patients’ brains and mouse model of HD. 

Likewise, a study in MJD also showed a significant reduction in the ratio of GSH/GSSG and total 

glutathione content (GSH + 2x GSSG) in mutant MJD cells expressing full length Ataxin-3 with 78Q (89). 

Another study from HD cellular model suggested that oxidative stress could promote aggregation and cell 

death by impairing proteasomal function and by overexpressing HSP27, has anti apoptotic properties; they 

were able to suppress the toxicity of mutant htt (99).  All these evidences suggest that increased oxidative 

stress, metabolic deficits and mitochondrial abnormalities likely play a role in polyQ diseases. Therefore, 

therapeutic agents targeting these pathways could be beneficial to the patients.  

Treatment with creatine, a bioenergetics supplement, stabilized the MPT, prevented ATP depletion and 

increased protein synthesis in HD mouse model. Creatine treatment also ameliorated brain pathology and 

motor symptoms, lessened brain atrophy and the formation of intranuclear inclusions in mouse models of 

HD. A Phase II clinical trial of creatine was performed in HD patients in which biomarkers were assessed in 

serum of these patients. Creatine supplementation reduced the levels of 8OH2’dG. Moreover, the dosage 

of creatine used (8g/day) was demonstrated to be tolerable and safe to patients (100). Based on these 

results, a phase III clinical trial has been approved and is currently ongoing in several centers. These 

results strongly support the effectiveness of creatine as a neuroprotector. 

 



13 

 

1.5.2 Clearance machinery: Chaperone related protein turnover 

Molecular chaperones are so important to maintain the native protein conformation and most of the 

chaperons belong to the family of Heat Shock Proteins (HSPs) that have the ability to correct abnormal 

folding of expanded polyQ proteins and have a protective effect on polyQ aggregation and 

neurodegeneration (101, 102). It was recently shown that overexpressing HSC70 in cells and in a 

Drosophila model prevents polyQ toxicity by decreasing the amount of soluble oligomers and aggregate 

formation (103, 104) In a cellular model of SCA1, overexpression of the chaperone HDJ2/HSDJ was able 

to decrease ataxin-1 aggregation and overexpression of Hsp70 in a SCA1 mouse model was shown to 

suppress neuropathology and improve motor function (105, 106). On the other hand, genetically reducing 

the level of co-chaperone and ubiquitin ligase CHIP (C-terminus of Hsp70-interacting protein) in transgenic 

mouse models increased ataxin-3 microaggregation and MJD progression. So, increasing CHIP activity 

could be a possible therapy for MJD and other polyQ diseases (107). 

Hsp90-containing HSF-1 (regulator of the heat-shock response (HSR)) complexes present in the unstressed 

cells are dissociated during stressed conditions, allowing the dislocation of this TF to the nucleus where it 

initiates the expression of several molecular chaperones. This includes Hsp90, which through classic 

negative feedback loop mechanisms, contributes to terminate the stress response (108). Therefore, Hsp90 

by itself and/or associated with multichaperone complexes, is a major repressor of HSF-1. In that sense, 

pharmacologic inactivation of Hsp90 leads to overexpression of several molecular chaperones by activating 

the HSR via HSF-1 (108-109). Hsp90 is also ATP-dependent molecular chaperone and Hsp90 inhibitors 

mimic the unusual ATP structure that is adopted in the chaperone's N-terminal nucleotide-binding pocket, 

causing potent and selective blockade of ATP binding/hydrolysis and inhibit its chaperone function (110). 

The modification of neurodegeneration by HSF-1 has been shown in cells, Drosophila, C. elegans, mouse 

brain and slice culture models.  Moreover, Hsp90 inhibitors, such as 17-AAG or 17-DMAG, significantly 

reduced aggregate load and toxicity.  Despite its high potency, 17-AAG has been proved to have moderate 

toxicity and it also showed poor bioavailability and stability in several clinical trials (111). In contrast, 17-

DMAG, a more effective analog of 17-AAG (112), is more water soluble than 17-AAG, a feature that is 

advantageous for clinical purposes, and it can be administered orally (113). These studies provide good 

evidence of the beneficial role of increasing chaperone levels in polyQ diseases. 

 

1.5.3 Transcriptional regulation 

Histone deacetylases (HDACs) regulate fundamental cellular activities such as transcription and play a 

crucial role in homeostasis of protein acetylation in histones and other proteins. Both acetylation and 



14 

 

deacetylation of histone proteins plays a pivotal role in the epigenetic regulation of transcription and other 

functions in cells, including neurons (114). Acetylation and deacetylation of histone proteins is catalyzed by 

histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively, at Lys (K) residues. 

Changes between HATs and HDACs interaction alters the balance of histone acetylation levels, resulting 

remodeling chromatin structure. In general, increased levels of protein acetylation facilitate transcription 

factor interaction with specific gene promoters and activate gene expression through relaxed chromatin 

conformation.  HDACs often work as transcriptional repressors to silence gene expression and induce 

chromatin compaction through histone protein deacetylation. Consequently, inhibition of HDAC shifts the 

equilibrium towards enriched histone acetylation, chromatin relaxation and gene expression. A 

disproportion of HAT and HDAC activities could lead to disease states (115). 

 

Several studies demonstrated the presence of transcriptional co-activators such as CREB-binding protein 

(CBP), p300/CBP-associated factor (PCAF), sperm-specific basic nuclear protein 1 (Sp1), and TBP-

associated factor 4 (TAFII130) in inclusion bodies and their co-localization with polyglutamine proteins 

(116). Mutant proteins that contain the polyQ-rich domain inhibit histone acetylase activity of CBP/p300 

though protein-protein interactions, and lead to cellular toxicity (117). Counteracting hypoacetylation by 

deacetylase inhibitors or CBP overexpression reduces neurodegeneration (118). Histone deacetylase 

inhibitors such as suberoylanilide hydroxamic acid (SAHA) (119), sodium butyrate (SB) (120) and 

phenylbutyrate (121) have been shown to ameliorate motor phenotype in mouse models of HD, DRPLA 

and SBMA. Further, inhibition of histone H3 methylation by mithramycin presented increased lifespan, 

improved motor performance and striatal pathology in R6/2 mice (122). Rolipram also alleviated 

transcriptional dysregulation by increasing the phosphorylation and thus activity of CREB (123), and slower 

progression of neurological phenotype, increase in lifespan, and improve neuropathology in R6/2 HD mice 

treated with rolipram (124). All of the above evidence supports the hypothesis that an imbalance in histone 

acetylation may be a key process leading to transcriptional dysregulation in polyQ diseases. 

Valproic acid (VPA) has been used for epilepsy and bipolar disorder and it is one of the HDAC inhibitors. It 

was demonstrated that VPA has the potential to regulate gene transcription and to mediate neuronal 

protection by inducing the apoptosis-inhibiting gene bcl-2 (124) and by inhibiting the activity of glycogen 

synthase kinase-3 (125). Jiping and collaborators very recently showed that VPA could increase both 

histone H3 and histone H4 acetylation level and reduce the early apoptotic rates of cells without inhibiting 

the aggregation of mutant ataxin-3 proteins in MJDtr-Q68- expressing cells (126). Based on this, we 

expected that VPA could serve as a new treatment strategy for SCA3 and other polyQ diseases. 

 



15 

 

 

Table- 3: Therapeutic rationale of our pre-clinical trials  

Compound Target Pre -clinical trial phenotype 
effect 

Drug effect in other 
polyQ disease 

Therapeutic 
strategy 

 
 
Creatine 

 
 
Energy supplier 
 

 
Improvements in muscular strength 
parameter, motor coordination. 

Improves survival and 
motor performance and 
delays neuronal atrophy, 
reduced NI (HD). (127) 

Mitochondrial 
dysfunction/energy 
metabolism 
 

 
 
 
17-DMAG 

 
 
 
Hsp-90 inhibitor 

 
 
 
Improvements in motor coordination 
and balance 
 

Improved motor phenotype, 
Alleviated nuclear 
localization of mutant AR; 
reduced muscle atrophy, 
body weight loss rate; 
prolonged life span. (SBMA) 
(128) 

 
Clearance machinery: 
Chaperone related 
protein turnover, 
Autophagy  
 

 
Valproic acid 
 

 
HDAC inhibitor, GABA 
transaminase inhibitor 
 

 
At late stage 
 

Prolonged life span; 
improved open field activity 
(HD)(129) 
NI not discussed. 

 
Transcription regulation 

 

1.6 Aim of the thesis 

This project aims to evaluate the utility of using ATXN3 inclusions as biomarkers in preclinical trials using a 

mouse model of MJD, by correlating the effect of three pharmacological compounds - creatine, 17-DMAG, 

and valproic acid, at the behavioral and molecular molecular level. 

This will be achieved by (i) quantifying the nuclear inclusion load in facial nuclei (7N) and lateral reticular 

nucleus (LRT) of MJD treated vs. untreated mouse brains and (ii) correlating their effect at the level of 

motor phenotype (observed in preclinical trials previously performed by others from our mice team) with 

the effect on inclusions of the mutant protein.  

To evaluate the effect of the drug at molecular level 

Our team has previously developed a new MJD mouse model expressing human ataxin-3 with 135 

glutamines under the regulation of the CMV promoter – CMVMJD135 – that presents phenotypic, 

pathologic and genetic similarities with the human disorder, namely several reliable and quantifiable 

phenotypic markers that can be used in therapeutic trials (Silva-Fernandes et al, 2014). For this study, we 

used mouse brains removed after treatment with three pharmacological compounds: creatine, 17-DMAG, 

and valproic acid, and with the respective vehicle solutions (control groups). We analyzed the abundance of 

ATXN3-positive nuclear inclusions in two specific brain regions known to be affected in MJD patients and in 

the CMVMJD135 mice - facial nuclei (7N) and lateral reticular nucleus (LRT) – by immunohistochemistry 

(IHC) and quantified the inclusion load by stereological microscopy approaches. 
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2. MATERIALS AND METHODS 
 
 

2.1. Animals 

Animals from the creatine group had been treated with 2% of supplemented creatine diet (by Sara Duarte-

Silva), and sacrificed at 24 weeks of age. The second group of transgenic animals had been 

intraperitoneally injected with 25mg 17 DMAG /kg body weight three times per week (by Sara Duarte-Silva) 

and sacrificed at the age of 30 weeks. The third group CMVMJD 135 mice had been treated with valproic 

acid 200mg/kg (by Sofia Esteves) and sacrificed at 30 weeks of age. All control animals were fed with a 

normal diet or treated saline (0.9% NaCl). 

Table -4:  Illustration of experimental animal 

Compound No. Animals 
Tg- non 
Rx Tg+Rx 

creatine 8 3 5 

valproic acid 8 4 4 

17DMAG 8 4 4 

 

 

2.2. Mouse genotyping 

DNA was isolated from tail biopsy using the Puregene DNA isolation kit (Gentra Systems, Minneapolis, 

MN). After DNA isolation, a single PCR was performed using the following primers for the human ataxin-3 

cDNA (size of the product: 454 bp): TR6 (5’TAC ATC AAT GGG CGT GGA T 3’) and TR7 (5’ GAG GTC AAA 

ACA GCG TGG A 3’). As an internal PCR control, the mouse homologous Atxn3 gene (size of the product: 

800 bp) was amplified using the following primers: mmMJD54 (5’ GAC TCC AGA GAG CAC CTG 3’) and 

mmMJD89 (5’ GCT AGC TAG AGC TAC TTA TTG 3’). 

 

2.3. IMMUNOHISTOCHEMISTRY 

Preparation of paraffin brain sections 

Transgenic mice CMVMJD135 were anaesthetized and transcardially perfused with PBS followed by 4% 

paraformaldehyde (PFA). Brains were immersed and embedded in paraffin block; the paraffin-embedded 

blocks were cut at 4µm thickness on a microtome then the sections were transferred onto glass slides 

https://plus.google.com/u/0/108098743782734478751?prsrc=4
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suitable for immunohistochemistry (IHC). Slides were selected to perform IHC based on the evaluation of 

sagittal section of brain morphology by cresyl violet staining (mouse brain Paxinos 2nd edition). 

Immunostaining with anti-ataxin-3 antibody 

Slides were pre-warmed at 700C and deparaffinized or hydrated in the staining apparatus. Sections were 

incubated 20 minutes in pre boiled and cooled citrate buffer 1x in the microwave at low temperature and in 

3% H2O2 solution (panreac) to block endogenous peroxidase activity. After PBS 1X washing, the sections 

were immersed in to UV block (ultravision large volume detection system-thermo scientific). Slides were 

incubated with primary antibody 1H9 anti ataxin-3(1:1000 milipore) overnight at 4OC and then incubated 

with HRP conjugated anti-mouse secondary antibody (thermo scientific) and then streptavidin reagent 

((thermo scientific)). Followed by PBS T, PBS, Tris-HCL 0.05M wash, slides were incubated with DAB 

(sigma lifescience) substrate solution and counter stained by hematoxylin according to standard 

procedures and the section dehydrated; coverslip were mounted by mounting solution after wash with xilol 

solution. The mounted slides were observed the color of the antibody staining in the tissue sections under 

microscopy (17).  

Quantification of ATXN3-positive intranuclear inclusions 

Ataxin-3-positive inclusions in the facial nuclei and LRT either vehicle- or compound-treated animal brain 

(Creatine: n=3-4 for each condition, LRT- 6 to 9 slides per animal, 7N- 6-10 slides per animal),(17-DMAG: 

n=4- 4 for each condition, LRT- 4 to 7 slides per animal, 7N- 4 to10 slides per animal) (VPA: n=4 - 6 for 

each condition, LRT- 2 to 7 slides per animal, 7N- 2 to 7 slides per animal) were quantified and normalized 

for the total area assessed using the Olympus BX 51 stereological microscope and the Visiopharma 

integrator system software. 
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3. RESULTS 
 
 

3.1 CMVMJD 135 mice treated with creatine exhibit reduced abundance of intranuclear ataxin-3 inclusion 

in the lateral reticular nuclei and facial nuclei of the brain 

In order to analyze the ATXN3 inclusion load in the CNS, CMVMJD135 female mice treated with creatine 

were sacrificed at 24 weeks of age, and 4µm thickness brain section were prepared onto glass slides 

suitable for immunohistochemistry. By observing the presence of ataxin-3 inclusion in the facial nuclei (7N) 

and lateral reticular nuclei (LRT) of the brain under the microscope, brain section treated with 2% creatine 

transgenic mice exhibited less inclusion in the nucleus of cells when compared with transgenic littermates 

treated with normal diet (Figure 3A). To confirm this, inclusion load was quantified by stereological 

microscopy. CMVMJD135 mice treated with 2% Creatine exhibited significantly less inclusions (P=0.012) in 

the LRT region when compared with CMVMJD135 mice treated with normal diet (control). The facial Nuclei 

also showed a tendency for reduction of inclusion load (P =0.232) in neurons and massive Standard 

Deviation was observed in unsupplemented creatine group. (Figure 3B).  This result suggests that dietary 

creatine supplementation is effective in decreasing aggregation of mutant human ataxin-3 in the LRT and 

7N region of CMVMJD 135 mice. 
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Figure 3- : Intranuclear ATXN3 inclusion load in CMVMJD 135 mice treated with a normal diet and 2% creatine supplementation. A) ATXN3 inclusion positive 

cells in LRT and 7N at 24 weeks of age mice brain. The control group displayed a higher median number of inclusions than the creatine treated group in both 

regions. B) Stereological analysis: quantification of ATXN3 inclusions in the LRT region shows a significant (P<0.05) increase in inclusion load in the 

unsupplemented group (vehicle) compared with creatine supplemented group. The 7N region shows a trend for reduction in inclusion load when compared to 

the control group.  (*  P<0.05) 

 

 3.2. CMVMJD 135 mice treated with 17-DMAG did not exhibit a reduction in intranuclear ataxin-3 

inclusions in the lateral reticular nuclei or facial nuclei of the brain  

CMVMJD135 male mice were (previously) treated with 17-DMAG from 5 to 30 weeks of age and animals 

were sacrificed at 30 weeks. Brain sections were prepared for IHC in 4µm thickness and observed 

aggregation in 7N and LRT region under the microscope. The qualitative assessment did not reveal marked 

differences in ATXN3 aggregation in these two regions upon 17-DMAG treatment (Figure 4A). Consistently, 

the quantification of inclusion density revealed no difference between control and 17-DMAG treated 

transgenic mice in both regions (P=0.340 for LRT, P= 0.476 for 7N) (Figure 4B).  
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Figure 4- : Intranuclear inclusion load in CMVMJD 135 mice treated with vehicle (saline), 17-DMAG. A) ATXN3 inclusion positive cells in LRT and 7N at 30 weeks 

of age. Differences were not seen between the control group and treatment group in both regions. B) By stereological analysis, quantification of ATXN3 inclusion 

in the LRT and 7N region did not show significant differences in inclusion load in the 17-DMAG treated group compared with the saline group.  
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3.3. Transgenic mice treated with Valproic acid (VPA) showed a trend towards less inclusion load than the 

saline-treated group. 

CMVMJD135 male mice were (previously) treated with VPA since 5 to 30 weeks of age and animals were 

sacrificed at 30 weeks. Brain sections were fixed with PFA and cut into 4µm thickness for IHC. Observation 

of inclusion in the 7N and LRT regions under the microscope did not reveal marked differences between 

groups (Figure 5A). Quantification of inclusion by stereological microscopy revealed a tendency for 

reduction of inclusion load between vehicle and VPA treated transgenic mice in the LRT region (P=0.060) 

and no differences in the 7N region (P=0.511) (Figure 5B). 
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Figure 5- : ATXN3 intranuclear inclusion load in CMVMJD 135 mice treated with vehicle and VPA. A) ATXN3 inclusion positive cells in the LRT and 7N at 30 

weeks of age. Marked differences were not seen by visual observation between the control and treatment group. B) Quantification of ATXN3 inclusion load 

showed a trens towards reduction in inclusion density in CMVMJD 135 mice treated with VPA compared to the saline treated group, but only in the LRT region.  

 

Table -5: A brief summary of the results obtained for the three compounds  

Treatment LRT 
 

7N 

Creatine p=0.012 
n=3-4 animal/group 
slides=6-9/animal 

 

p=0.232 
n=3-4 animal/group 
slides=6-10/animal 

 
17-DMAG p=0.340 

n=4 animal/group 
slides=4-7/animal 

 

p=0.476 
n=4 animal/group 

slides=4-10/ animal 
 

VPA p=0.06 
n=4-6 animal/group 
slides=2-7/animal 

 

p=0.511 
n=4-6 animal/group 
slides=2-7/animal 
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4. DISCUSSION 
 
 

In this study, we have devised strategies for efficiently assessing therapeutic efficacy of compounds in 

molecular level in MJD mouse models. For this study we used a new mouse model expressing human 

ATXN3 with an increased number of glutamine residues -135Q (78). This novel model mimics several 

features of the human disease quite well at the behavioral and molecular level.  

 

Since the discovery of NIs, it was thought that NI formation could be important to both pathogenesis and 

differential neuronal vulnerability in each polyQ disease. Sometimes, however, the connection between NIs 

and vulnerability is not clear, as they are not always associated with each other. For example, transgenic 

mice expressing a fragment of mutant htt showed very large numbers of NIs but with less 

neurodegeneration than mice expressing full-length mutant htt which undergo significant striatal 

degeneration without many NIs (54). 

 

Our first target of pre- clinical trial compound is creatine. Generally, the mitochondrial isoform of creatine 

kinase and its substrates, creatine and phosphocreatine, organize a system and regulate energy 

homeostasis in the brain (130). The proposed role of creatine supplementation for neuroprotection is 

buffering intracellular energy by increasing phosphocreatine levels and inhibiting activation of mitochondrial 

permeability transition (MPT), thus leading to inhibition of necrotic and apoptotic cell death (131). Brdiczka 

and colleagues suggested that mitochondrial creatine kinase involved in a functional interaction between 

the inner membrane adenylate translocator, and outer membrane voltage dependent anion channel, which 

are thought to be components of the MPT (132). Mitochondrial creatine kinase becomes stable in an 

octomeric form upon creatine administration, which then inhibits activation of the MPT (133). Creatine 

administration also results in increased ADP concentrations, which inhibit the activation of the MPT (131).  

Involved in a functional interaction 

 

The hypothesis of impairment of energy metabolism due to the mitochondrial dysfunction in polyQ 

diseases (34) provided the rationale for testing the therapeutic effects of creatine in CMVMJD135 mouse. 

Treatment of CMVMJD135 mice with creatine markedly improved limb strength at 6 weeks of age tested 
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by hanging wire test. Creatine treatment also had positive effects in the balance beam performance.  At 22 

and 24 weeks of age creatine-treated CMVMJD135 mice had better motor co-ordination, assed by motor 

swimming test. Moreover, creatine treatment was able to delay the onset of foot-dragging phenotype than 

unsupplemented creatine group, also delayed the disease progression by 12 weeks. (Sara Duarte-Silva, 

unpublished data). At the molecular level analysis, our IHC analysis showed a reduction in the nuclear 

aggregate load in the facial nuclei and LRT (39% less) comparable to CMVMJD135 mice fed with a normal 

diet. So in our pre-clinical trial with creatine, there was a direct correlation between the amelioration of the 

motor phenotype with the effect on the amount of inclusions of the mutant protein.  

Interestingly, it has been also shown in the R6/2 HD mouse model that oral administration of creatine 

inhibits huntingtin aggregation in brain slice culture (134) and increases survival and ameliorates motor 

deficit in HD mice (127). Creatine also enhanced Purkinje cell survival in a transgenic mouse model of 

spinocerebellar ataxia type 1 (135). Furthermore, the efficacy of creatine in phase II clinical trials with HD 

patient strongly supports the effectiveness of creatine as a neuroprotector. Therefore, a phase III trial is 

currently ongoing in various centers. Creatine administration may therefore be useful in therapy of polyQ 

disease. So far the mechanism of action of creatine upon protein aggregation is not clear. We hypothesize 

that creatine may enhance the misfolded and aggregated protein clearance via increasing the efficiency of 

the proteasome and protein degradation pathways, perhaps through increased availability of energy to 

maintain these processes.  

The second compound tested by our group in a pre-clinical trial, 17-DMAG, is proposed to reduce protein 

aggregation via elevated chaperone expression and proteasome activity. Chronic 17-DMAG treatment 

showed positive effects in the motor swimming test, rotarod and balance beam test and delayed the onset 

and progression of the foot-dragging phenotype CMVMJD135 mice, delaying the onset of key symptoms by 

approximately 8 weeks, which represents approximately 9% of the median C57Bl/6 normal lifespan 600 

days), and to a lesser extent the foot-dragging (6 weeks, 7% of the lifespan) (136). 

In contrast to these previous findings (136), our recent results revealed no reduction in the nuclear 

aggregate load in the 7N and LRT regions. . Overall, for 17-DMAG treatment in CMVMJD135 mice we did 

not observe a direct correlation between the amelioration of motor phenotype and intranuclear inclusions 

as a molecular biomarker, at least in these in these brain regions. However, administration of 17-DMAG 

was described to reduce the number of monomeric and nuclear-accumulated mutant AR and to improve 

motor performance without detectable toxicity in a SBMA mouse model (137).  It has been demonstrated 

in vitro in SBMA that 17-DMAG significantly increases the HSP70 and HSP40 expression level and 

decreased mutant AR, even when induction of HSP70 was blocked. This result strongly suggests that 17-
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DMAG contributes to mutant AR degradation through the inhibition of Hsp 90, with or without induction of 

Hsp 70 (137). Currently, phase I clinical trials with 17-DMAG are ongoing for some types of solid tumour, 

to test dosage, toxicity, pharmacokinetics and pharmacodynamics, therefore this compound has some 

possibility of entering the market soon for these indications. Further clinical studies will be need for 

neurodegenerative diseases, among which MJD. 

 

Deregulation of transcription due to the alteration of histone acetylation and deacetylation provided the 

rational for testing therapeutic effects of Valproic acid (VPA) in CMVMJD135 mouse. Results from our IHC 

analysis show that administration of VPA (200mg/kg) does not inhibit the nuclear accumulation of 

insoluble mutant Ataxin-3 in the LRT region. This is consistent with a previous publication in which it is 

described that administration of VPA increased H3 and H4 acetylation levels and reduced the early cell 

apoptotic rate without inhibiting the aggregation of mutant ATXN3 protein in vitro (138). CMVMJD135 mice 

treated with VPA showed minor phenotypic effects at late stages of the disease. No analysis was made 

beyond age of 24 weeks, which precludes more clear conclusions on the efficacy of the compound. 

Although it has been demonstrated in a SCA3 Drosophila model that VPA rescued polyQ-induced 

phenotypic abnormalities, no mention is made to effects on aggregation (126). However, histone 

acetylation and deacetylation can also regulate expression of heat shock proteins (HSPs) including HSP70. 

As an HDAC inhibitor, VPA could promote the expression of HSP70, that suppresses neuropathology and 

improve motor function in SCA1 mice, and extends the life of wild-type flies (139, 141). Based on this data 

and on the evidence we have for effects in aggregation, we suggest that VPA is a potential therapeutic 

agent for MJD, requiring further study. 

 

As mentioned above, CMVMJD mice treated with creatine had amelioration since early disease stages; our 

IHC results also suggest that creatine treatment reduces the neuronal inclusion density in the LRT and 7N 

region, which is directly correlated with the motor phenotype amelioration. So, creatine is a potential 

therapeutic compound at molecular and behavioral level in MJD. Another compound, 17-DMAG, showed 

amelioration since an inter mediate disease stage. Molecular level analysis did not show any differences 

between treated and non-treated transgenic mice group regarding neuronal inclusions in the LRT and 7N 

brain regions, although reduction in inclusion load in the PN and a phenotypic amelioration had previously 

observed by our team, in several behavioral paradigms.  Thus for this compound there was no direct 

correlation of phenotype amelioration effect with intra-nuclear inclusion load in the LRT and 7N regions.  
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CMVMJD135 mice treated with Valproic acid showed a tendency towards reduction of inclusion load in the 

LRT and no reduction in inclusion load in the 7N brain regions; phenotype amelioration was observed only 

at a late stage. So, this compound showed good effects on a molecular readout even though it exhibited a 

very mild phenotype amelioration only at late stages.  

Globally, our results suggest that there is no direct correlation between the aggregate load in these regions 

of the brain of the CMVMJD135 mice and the amelioration of the phenotype observed with the chronic 

treatment with different compounds. 

 

  

 

4.1. Future Perspectives 

Regarding the identification of potential effects of the candidate therapeutic compounds at the molecular 

level in the CMVMJD135 mouse model, we need to further validate our hypothesis about creatine, 17-

DMAG and VPA in other brain regions. It would be interesting to perform a similar study in another brain 

region, such as the dentate or pontine nuclei, for creatine and VPA. Moreover, other pre-clinical trials with 

additional compounds such as lithium and novel Hsp90 inhibitors provided by a pharmaceutical company 

are still ongoing in our lab, for which studies at molecular level will also be required.  

Inclusion in non-CNS tissues were also observed in HD models. So, it would also be interesting to study 

inclusion in non-CNS tissues of CMVMJD135, particularly in tissues we have identified as affected, such as 

the skeletal muscle. 

Finally, since the intranuclear inclusions we observe in the brain of patients and mouse models are thought 

to be a final product of a complex aggregation pathway, it would be essential to study as potential 

biomarkers ATXN3 aggregation species situated more upstream in this pathway, such as soluble 

oligomers, which may be more relvant in terms of pathogenesis. 
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5. CONCLUSIONS 
 

 

Several studies implicates impaired energy metabolism due to the mitochondrial dysfunction in the 

pathogenesis of neurodegenerative diseases. Our results suggest that dietary creatine supplementation is 

effective in decreasing aggregation of ataxin-3 in the LRT and 7N regions of the brain of CMVMJD135 mice. 

Although creatine is an energy supplier it lessened the inclusion load in affected brain region. Therefore, for 

creatine supplementation we observed treatment efficacy at the molecular as well as behavioral level. As 

for other polyQ diseases, supplementation of creatine is thus a promising strategy for MJD therapy.  

17-DMAG treated mice did not show marked reduction of neuronal inclusions in the LRT and 7N region of 

the CMVMJD135 mouse model. However, this molecule has been previously shown to have positive 

beneficial effects for MJD treatment at the behavioral and molecular level. So, 17-DMAG is also a 

promising therapeutic compound for MJD but its effects on ATXN3 aggregation don’t seem to extend to all 

brain regions.  

CMVMJD mice treated with VPA showed mild phenotype amelioration at late stages of the disease, but only 

a trend towards reduction in the inclusion density was observed, restricted to the LRT region.  

Overall, our results suggest that there is no direct correlation between the aggregate load in the LRT and 

7N regions of the brain of the CMVMJD135 mice and the phenotypic effects observed with the chronic 

treatment with different compounds. 
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