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ABSTRACT  

Depression is a multidimensional psychiatric disorder that affects millions of people 

worldwide. In order to unveil the pathophysiology of this disorder, increasing significance is being 

given to the study of the abnormal neurotransmission in brain areas affected in depression. 

Particularly, glutamatergic excitotoxicity has been suggested as one of the possible process 

underlying the installation of the disease. Previous studies have suggested that glutamate release 

is increased in depressed subjects. Additionally, the β-lactamic antibiotic ceftriaxone (CEF) was 

described to increase glutamate uptake by the glutamate transporter GLT-1 (expressed mainly in 

astrocytes), preventing cellular damage.  

Taking these findings into account, the main goal of this work was to understand whether 

CEF-triggered enhancement of glutamate uptake might be used to prevent or reverse the 

deleterious effects of glutamatergic excitotoxicity in an animal model of depression, the 

unpredictable chronic mild stress (uCMS). For this, animals were subdivided in two different main 

sets - Prevention and Treatment. Different groups of animals were administered either with CEF 

and/or two antidepressants (ADs; fluoxetine and imipramine). 

CEF administration, at an early stage, prevented the installation of depressive-like behavior, 

yet it failed to reverse the installed depressive phenotype induced by uCMS exposure. CEF seems 

to reverse partially the cognitive deficits caused by uCMS exposure. Analysis of the collected 

brain tissue revealed that the prevention of the depressive-like behavior was correlated with an 

increased GLT-1 gene expression in the ventral hippocampus and with an increased expression 

of GLT-1 transporter in the dorsal dentate gyrus (DG) of the hippocampus. Morphological 

analyses disclosed neuronal atrophy of the DG granule neurons in the dorsal DG after uCMS 

exposure, which was prevented by CEF administration.  

These results suggest that CEF administration promotes GLT-1 transporter up-regulation, 

which may prevent excitotoxicity processes at glutamatergic synapses in the hippocampus, thus 

preventing the installation of the depressive-like behaviors triggered by uCMS. These observations 

elucidate the potential use of CEF, or similar drugs, in the prevention of depressive behavior, 

paving the way for the development of new therapeutic strategies. 
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RESUMO 

A depressão é uma doença psiquiátrica que afeta milhões de pessoas em todo o mundo. Na 

tentativa de compreender os mecanismos fisiopatológicos da doença, a comunidade científica 

tem-se dedicado ao estudo de defeitos na neurotransmissão em áreas cerebrais afetadas na 

doença. Em particular, a excitotoxicidade glutamatérgica tem sido sugerida como um processo 

subjacente à instalação da doença. Estudos anteriores verificaram que a libertação de glutamato 

está aumentada em indivíduos deprimidos. Neste contexto, foi também descrito que o antibiótico 

β-lactâmico ceftriaxona (CEF) aumenta a captação de glutamato pelo transportador GLT-1 

(expresso principalmente em astrócitos), prevenindo os danos celulares.  

Considerando estas observações, o objetivo deste trabalho foi compreender se o aumento da 

captação de glutamato desencadeado pela CEF poderá prevenir ou reverter os efeitos deletérios 

da excitotoxicidade glutamatérgica num modelo animal de depressão, de exposição crónica ao 

stress (uCMS). De acordo com o objectivo, os animais foram divididos em dois grupos principais 

– Prevenção e Tratamento. A diferentes subgrupos de animais foram administrados CEF e/ou 

dois antidepressivos (fluoxetina e imipramina).  

A administração de CEF preveniu o desenvolvimento do comportamento depressivo, no 

entanto foi ineficaz na reversão deste fenótipo já instalado após exposição crónica a stress. 

Adicionalmente, a CEF parece reverter parcialmente os défices de cognição induzidos pelo 

uCMS. Análises do tecido cerebral dos animais revelaram uma correlação entre a prevenção do 

comportamento depressivo e a expressão do gene GLT-1 no hipocampo ventral e do 

transportador GLT-1 no girus denteado (GD) dorsal. A avaliação da morfologia dos neurónios 

granulares do GD revelou que a CEF foi capaz de prevenir a atrofia dendrítica no GD dorsal 

provocada pela exposição ao stress.  

Estes resultados sugerem que a administração de CEF estimula a expressão de GLT-1, 

prevenindo os eventos excitotóxicos nas sinapses glutamatérgicas no hipocampo e o 

consequente desenvolvimento do comportamento depressivo causado pela exposição ao stress 

crónico. Estas observações indicam um potencial efeito da CEF ou de outros fármacos que 

promovam a expressão do GLT-1, na prevenção do desenvolvimento de comportamento 

depressivo, abrindo caminho para o desenvolvimento de novas possibilidades terapêuticas.  
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1. INTRODUCTION 

Major depressive disorder (MDD) is one of the world leading causes of morbidity, often 

associated to suicidal attempts. Despite of the importance of this disease in modern societies 

and the large investment of resources in its study, the processes underlying its pathophysiology 

remain poorly understood. The importance of glial cells, namely astrocytes in brain processes 

has been rising in the past years. Astrocytic actions may confer protection to vicinal neurons and 

may be used in the context of brain disorders as well. The use of astrocytic protective functions in 

the context of depression urges to be addressed. 

1.1 DEPRESSION  

 

1.1.1 State of the art 

 

Depression is a highly prevalent mood disorder affecting more than 120 millions of people 

and is projected to be one of the major causes of worldwide burden by 2030 (Belmaker and 

Agam, 2008; WHO, 2008; Willner et al., 2013). Patients suffering from this disorder usually 

present loss of interest for experiencing pleasurable activities (anhedonia), changes in sleep and 

appetite, sadness, suicidal ideation and anergia. Furthermore, rather than low self-esteem, 

depressive patients present a deeply negative view of the world and the future, and display 

deficits of attention, interpretation and memory (Mathews and MacLeod, 2005). Evaluation 

reports on cognitive responses state a decreased control for processing negative information, 

which contributed to high levels of negative automatic thoughts and pathological rumination in 

these patients (Gotlib et al., 2008). Together with the observed inability to anticipate aversive 

events or rewards (Chase et al., 2010; McFarland and Klein, 2009; Pizzagalli et al., 2008), these 

facts provide a cognitive explanation for the core symptom of depression, namely anhedonia 

(Willner et al., 2013). 

Depression and anxiety disorders are often comorbid with each other, since its symptoms are 

related. In fact, mood disorders such as depression and anxiety are frequently associated to 

patients suffering from other disorders such as chronic pain (Holley et al., 2013), inflammation 

(Slavich and Irwin, 2014), cardiovascular disorders (Van der Kooy et al., 2007), stroke 
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(Ramasubbu and Patten, 2003), Alzheimer’s disease (AD) (Green et al., 2003), epilepsy 

(Hesdorffer et al., 2000), diabetes (Mezuk et al., 2008) and cancer (Rooney et al., 2013). 

Furthermore, the emotional disruption presented in depression happens in parallel to cognitive 

impairments, namely in memory processes, which can be the cause of the onset and recurrence 

of depressive episodes. For all these reasons, depression is further characterized as a 

multidisciplinary disorder that affects three different behavioral dimensions: mood, anxiety and 

cognition (Bessa et al., 2009a). Even though there is no knowledge of a real cause for the 

precipitation of MDD, vulnerability or predisposition to become depressed may occur in several 

ways and throughout different life stages. It is accepted that early life experiences, particularly 

inadequate familial relations, increase the risk for precipitating depression (Slavich and Irwin, 

2014; Willner et al., 2013). Also, it was previously identified some genetic predisposition to 

inherit this disorder in a range of 31 to 42% (Kendler et al., 2002, 2006; Sullivan et al., 2000). It 

is believed that there are “stress-provoking” genes passing on through generations and providing 

a stressful family environment (Slavich and Irwin, 2014). On the majority of the population only 

the interaction between multiple risk genes and environmental factors (e.g. stress-related factors 

or parental negligence) are sufficient to cause depression, specially at early childhood (Kendler et 

al., 2001; Widom et al., 2007). Personality characteristics intervening in social interaction and 

autonomy may also contribute to the vulnerability of oneself to express depressive symptoms. 

Actually, two types of depression named as “endogenous” or “reactive” are described to 

characterize autonomous or social-dependent people, respectively. Endogenous depression is 

associated with an interpersonal distance, feelings of failure, anhedonia, hopelessness, and 

blame, which minimize possible environmental precipitants (Willner et al., 2013). Interestingly, 

people suffering from a reactive depression tend to be socially dependent, relying on the 

satisfaction for approval of others. On the other hand, endogenous depressed people present an 

interpersonal sensitivity, guilt, anxiety and rumination, with temporary mood improvements but a 

constant need for attention within an exacerbated depressive state (Willner et al., 2013).  

 

1.1.2 Pathophysiology and animal models 

 

Although the neurobiological causes of this disorder are yet to be fully understood, depressive 

subjects present cell atrophy and loss in the brain (neurons and glial cells) which can be reverted 

by antidepressant (AD) treatment (Banasr et al., 2011; Bessa et al., 2009b; Martin et al., 2013).  
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Pathological changes in size of specific brain regions and alterations in neuronal morphology, 

neurochemical and signaling molecules; plus alterations in gene expression and epigenetic 

regulation are factors known to be affected in depression (Mateus-Pinheiro et al., 2011; Tsankova 

et al., 2007). Contributing to the etiopathological knowledge of depression are studies employing 

animal models of this disorder. The validity of an animal model for formulation of hypotheses and 

for the development of novel therapeutic strategies encompasses: use known etiological factors 

(etiological validity) to mimic the behavioral and neurological symptoms observed in human 

disease (face validity) and importantly, responsiveness to clinically effective treatments (predicted 

validity) (Berton et al., 2012; Bessa et al., 2009a; Patrício et al., 2013). There are several animal 

models of depression described in the literature: chronic unpredictable stress (CUS), chronic mild 

stress (CMS), social stress, early life stress, learned helplessness, fear conditioning and olfactory 

bulbectomy (Duman, 2010; Nestler et al., 2002). Nonetheless, these models do not mimic and 

recapitulate completely the complexity and heterogeneity of the human disease. The 

unpredictable Chronic Mild Stress (uCMS) protocol, based in the principles of the CMS and CUS 

protocols was proven to be a robust approach to study the human depression at our lab. In this 

model, it was observed that after the exposure to stress animals presented depressive-like 

symptoms such as anhedonia, anxiety and cognitive deficits (Bessa et al., 2009a; Mateus-

Pinheiro et al., 2013a), showing therefore alterations in the three behavioral domains known to 

be affected in humans with depression (Figure 1.1). Additionally, a variety of behavioral tests 

were designed not only for validation of the depressive-like phenotype in animal models of 

depression, but also to validate ADs efficacies (Bessa et al., 2009b). Regarding the emerging 

knowledge given by the use of animal models and from post-mortem studies of depressive 

patients, the neurobiological causes of depression remains not fully understood. 

Currently, several theories have been proposed to explain the causes of depression at a 

neuronal and molecular level. One of the classical theories of depression is the monoamine 

hypothesis, which is based on altered neurotransmitter pathways related to serotonin and 

norepinephrine (Hirschfeld, 2000). Giving the low availability of these two neurotransmitters in a 

context of depression, classical treatment with antidepressants (ADs) was developed to increase 

the serotonin and norepinephrine levels. Within the clinics, different classes of ADs are used, 

namely the serotonine-selective reuptake inhibitors (SSRIs; e.g.fluoxetine), norepinephrine-

selective reuptake inhibitors, the tricyclic agents (e.g. imipramine) and other atypical (e.g. 

tianeptine and agomelatine). Despite its effectiveness for reverting impairments caused by 
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depressive episodes, around 50% of patients do not present total remission after ADs treatment 

(Nestler et al., 2002). Besides, the conventional ADs present undesired side effects such as 

sedation, increase of weight and sexual dysfunction, which may promote a low commitment to 

treatment, resulting in a break-up and further recurrence of depression (Keller et al., 2002; Lang 

and Borgwardt, 2013). Therefore, the urging need to prevent the depressive episodes by focusing 

on different possible physiological mechanisms and the treatment with alternative strategies 

beyond the monoamine hypothesis might help to obtain more effective therapies regarding this 

problem. 

 

 

Other relevant hypotheses have been proposed to explain the etiology of depression: the 

hypothalamic-pituitary-adrenal (HPA) axis dysfunction hypothesis that is based on hyperactivity 

and/or disruption of the axis leading to increased levels of glucocorticoids (Pariante and 

Lightman, 2008); the neurogenic hypothesis that encompasses decreased neurogenesis in the 

 

Figure 1.1 The effects of stress as a trigger factor of depression. In animal models of 

depression stress exposure leads to neuroplastic alterations such as neuronal dendritic atrophy of 

hippocampal and pre-frontal cortex and impaired cytogenesis. These alterations correlate to behavioral 

deficits in mood, anxiety and cognitive dimensions. Antidepressant’s (AD’s) treatment restore the 

deleterious effects produced by unpredictable Chronic Mild Stress in emotional and cognitive profile, and 

reestablish neuronal dendritic morphology and cytogenesis in the hippocampal dentate gyrus (DG) which 

is associated to remission from depressive-like behavior and sustained long-term recovery (adapted from 

(Mateus-Pinheiro et al., 2013b).  
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hippocampus (Jacobs et al., 2000); the cytokines theory, that postulates an altered cytokine 

profile associated to depression (Miller et al., 2009; Schiepers et al., 2005); and the 

neurotrophin hypothesis, which is based on growth and trophic factors deficiencies, such as 

brain-derived neurotrophic factor (BDNF) reduction seen in the context of depression, that might 

contribute to neuroplastic and neurogenic alterations that enhance individuals vulnerability to 

depression (Duman, 2009; Hayley and Anisman, 2013). Many of these changes were also 

verified in animal models of depression, such as the uCMS model (Farooq et al., 2012; Gumuslu 

et al., 2014; Mateus-Pinheiro et al., 2013a). 

Other urging theory is the glial hypothesis of depression. According to this hypothesis there 

are a series of molecular dysfunctions associated to glial neuroprotective functions, such as 

decreased flux through the glutamate/glutamine shuttle and consequently reduced glutamate 

reuptake at the synapse (Sanacora and Banasr, 2013). Additionally it was described that there is 

an impairment of the NMDA-receptor function, a disturbed neuronal metabolism for disruption of 

energy supply and reduced GABA synthesis (Choudary et al., 2005; Duman and Li, 2012). 

Glutamatergic dysfunctions in a context of mood disorders have already been described (Jun et 

al., 2014; Plitman et al., 2014). Moreover, blockage of glial glutamate uptake was able to induce 

behavioral alterations consistent with symptoms of mood disorders (Bechtholt-Gompf et al., 

2010; John et al., 2012; Lee et al., 2007). 

Although many theories have been put forward, none of these are mutually exclusive and may 

probably contribute together to the vast spectrum of depressive disorders. 

1.2 NEUROPLASTICITY IN DEPRESSION 

 

1.2.1 Remodeling of neuronal circuits 

 

Since the first studies of Ramón y Cajal the brain is known to consist of neural cells (neurons 

and glia) and a fixed system of neuronal circuits (Ramón y Cajal, 1928). However, contrarily to 

what was then believed, in the recent years it is accepted that neuronal circuits and connections 

are dynamic and suffer modifications and reorganizations throughout life. This process of 

reorganization named neuroplasticity produces the generation of new cells and dendritic 

morphology changes in response to external and internal stimuli. Environmental alterations act as 

signals upon neuronal systems, brain nuclei, synapses and receptors promoting structural and 
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functional neuronal adaptation (Zilles, 1992). Basically, this process is responsible for 

development of new synapses and consequent retrograde of pre-existing ones due to continuous 

modifications such as axonal growth and collateral sprouting that will also change dendritic 

arborization and spines density, and therefore the number of post-synaptic sites (Carvalho et al., 

2010; Serafini, 2012). Previous studies state that promoting the specific and multifaceted 

changes at the synapse may be the mossy fibers and hippocampal pyramidal neurons (Popov 

and Bocharova, 1992); also, chronic stress induced by corticosterone induced Cornus Ammonis 

(CA)3 pyramidal neurons dendritic shrinkage (Magariños et al., 1996; Sousa et al., 2000; 

Woolley et al., 1990) and reorganization of dendritic arbors in the medial prefrontal-cortex 

(Wellman, 2001).  

Generally, neuroplasticity is a process of resiliency, meaning that encompasses the ability to 

adapt and react to environmental alterations that can also hold stressful life events. Several brain 

areas that are related to cognition or emotional responses can be involved in this process: pre-

frontal cortex, hippocampus and amygdala. In fact, reduced hippocampal volume is commonly 

found in depressive patients and can be correlated to prolongation of the depressive episode 

(Lorenzetti et al., 2009; Sheline et al., 2003). This reduction is often associated to neural cell 

loss or compromised cytogenesis processes that involve somatodendritic, axonal and synaptic 

changes (Serafini, 2012). In animal models, this abnormal reduced hippocampal size was 

already related to: loss of dendritic spines, decreased number of synapses, loss of glia and 

impairment of neurogenesis (D’Sa and Duman, 2002; Duman, 2010; Pittenger and Duman, 

2008). Loss in dendritic complexity and synaptic sites, which determine a reduction in 

connectivity, as well as loss in glial cells that have neuroprotective roles, and consequent 

reduction of neurotransmission are all putative changes contributing to neurogenesis 

impairments (Licznerski and Duman, 2013; Serafini, 2012). Furthermore, chronic stress is 

described to promote morphological alteration in the prefrontal cortex (PFC) of rats, namely 

dendritic retraction, loss of spines and decreased number and size of glial cells (D’Sa and 

Duman, 2002; Fuchs et al., 2004; Marsden, 2013). Post-mortem studies have shown reduced 

neuronal density and a relevant reduction of PFC thickness (Cotter et al., 2002; Rajkowska et al., 

1999). Therefore, understanding neuroplasticity changes at a structural and functional level may 

help assessing the mechanisms accompanying such changes. 

Many mechanisms may contribute to atrophy and loss of neurons, specifically failure of 

signaling cascades and target genes that control cell survival. Brain-derived neurotrophic factor 
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(BDNF) is critical for the survival and function of neurons during development and in the adult 

brain. BDNF has a role in processes of learning and memory long-term potentiation that may be 

associated with plasticity of the brain. In absence of this neurotrophic factor neurons undergo a 

process of programmed cell death or apoptosis (Duman et al., 2000), but the survival of the cell 

may also be due to the synaptic connections with other cells (neuroplasticity) (Goldberg and 

Barres, 2000). Signaling pathways as cAMP-CREB cascade when upregulated can inhibit cell 

death pathways and promote BDNF gene expression, leading to cell survival (Duman et al., 

2000).  

 

1.2.2 Neurogenesis as a process of neuroplasticity 

 

Also contributing to neuroplasticity is the process of generating new neurons, neurogenesis. 

Often, in a context of depression adult neurogenesis is extensively studied and comparisons 

between pre-existing neurons and newly generated neurons are made. This process 

encompasses mitotic division of neural progenitors to produce new neurons in the adult brain, 

involving several steps such as, the commitment of the new cell to a neuronal phenotype, 

migration and maturation of the cells, and establishment of appropriate contacts that culminate 

with a full integration on pre-existent network (Patrício et al., 2013). It has already been described 

that adult neurogenesis happens in different brain regions, mainly in two restricted germinal 

zones: the subependymal zone (SEZ) of the lateral ventricles, and the subgranular zone (SGZ) of 

the hippocampal dentate gyrus (DG) (Zhao et al., 2008). In both regions, astrocytes act as 

primary precursors of the newly generated neurons (Seri et al., 2001). The neuronal progenitor 

cell population arising from astroglial cells composes the narrow layer of three nuclei wide, the 

SGZ, where neurogenesis occurs. This multipotent cell population is constituted by the neural 

stem cells (NSCs), which express nestin and glial fribilary acidic protein (GFAP; a marker also 

presented in mature astrocytes). NSCs can be divided in two cell subtypes according to their 

orientation in the SGZ: radial astrocytes/NSCs and horizontal astrocytes/NSCs. In adult 

mammalian brain, neurons born in the SGZ migrate into the granular cell layer of the DG and 

differentiate into glutamatergic granule cells (Zhao et al., 2008). Otherwise, neuroblasts born in 

the SEZ migrate along the rostral migratory stream (RMS) becoming mostly mature GABAergic 

granule and periglomerular interneurons in the olfactory bulb (OB). Despite of the controversy 

around this topic, some reports describe generation of new neurons in other brain regions such 
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as cortex, amygdala, hypothalamus, striatum and substancia nigra (Bédard et al., 2006; 

Ehninger and Kempermann, 2003; Gonçalves et al., 2008; Kodama et al., 2004; Kokoeva et al., 

2005; Yoshimi et al., 2005). Furthermore, this process of hippocampal neurogenesis has already 

been correlated to emotional and memory processes (Burghardt et al., 2012; Denny et al., 2012; 

Malberg et al., 2000; Mateus-Pinheiro et al., 2013a).  

1.3 GLIAL CELLS 

 

Glial cells are the most abundant cells within the central nervous system (CNS). There are 

four types of glia cells in the brain: astrocytes, oligodendrocytes, microglia and NG2-positive cells. 

Oligodendrocytes are responsible for production of myelin along the axons, helping in the 

conduction of electrical signals, whereas microglia are smaller cells with phagocytic functions. 

NG2-positive cells are known as oligodendrocytes progenitor cells but can also give rise to 

astrocytes. Astrocytes are the most abundant glial cells in the brain and play important roles in 

metabolic support of neurons, in the control the blood flow and modulation of the blood brain 

barrier by supplying energy and nutrients to neurons and maintaining homeostasis.  

 

1.3.1 Astrocytes 

 

These cells are classically defined by their star-shape morphology and expression of glial 

fibrils and for their extended numerous processes surrounding neighboring neurons and blood 

vessels (Wang and Bordey, 2008b). As they establish connections to the capillaries of the blood 

brain barrier (BBB) they may influence the microenvironment in this region (Fuchs et al., 2004; 

Wang and Bordey, 2008b). Astrocytes also present neurotransmitters’ receptors that may lead to 

electrical and biochemical events inside the cell (Fuchs et al., 2004). Astrocytes express several 

membrane receptors, namely G-protein coupled receptors, ionotropic receptors and other 

receptors for growth factors, chemokines, steroids, and receptors involved in innate immunity 

such as Toll-like receptors (Abbracchio and Verderio, 2006; Franke and Illes, 2014; Heiman et 

al.; Wang and Bordey, 2008a). Moreover, these cells present a family of high affinity sodium-

dependent glutamate transporters, which are responsible for the uptake of glutamate (Figure 1.3 

a). Physiologically, there are three glutamate transporters in the rodent forebrain that provide 

glutamate clearance of the synaptic cleft during synaptic transmission: GLT-1 (a homolog of 
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EAAT2 in humans), glutamate-aspartate transporter (GLAST, homolog of EAAT1 in humans) that 

are expressed mainly in astrocytes (Rothstein et al., 1996; Wang and Bordey, 2008b); whereas, 

the excitatory amino acid carrier 1 (EAAC1, homolog of EAAT3) is expressed in neurons (Zink et 

al., 2010). Also part of these transporters family are the EAAT4 expressed in Purkinje cells 

(Huang et al., 2004) and EAAT5 which is widely expressed in peripheral tissues (Lee et al., 

2013a). Interestingly, both variant 4 and 5 seem to act more like inhibitory glutamate receptors 

than glutamate transporters, mainly due to their high uncoupled anion conductance (Zhou and 

Danbolt, 2013). Nevertheless, together these transporters contribute to the balance of 

neurotransmitters at the synaptic cleft, preserving the responsiveness of glutamate receptors, 

and others such as Nmethyl-D-aspartate (NMDA) receptors and ATP receptors, and conferring 

neuroprotection against excitotoxicity (Lipski et al., 2007; Tzingounis and Wadiche, 2007).  

GLT-1 and GLAST are highly efficient glutamate transporters and its inhibition with 

pharmacological blockers, antisense oligonucleotides or by transgenic knockout lead to increased 

levels of glutamate and consequent cell death (Izumi et al., 2002; Rothstein et al., 1996; Tanaka 

et al., 1997). Moreover, the use of pharmacological blockers cause Nmethyl-D-aspartate (NMDA) 

receptor-dependent cell death and enhances excitotoxicity induced by exogenous glutamate 

(Selkirk et al., 2005; Wroge et al., 2012), suggesting an interplay between this receptor and the 

astrocytic glutamate transporters. 

 

1.3.2 Neuron-astrocyte interactions 

 

The classical paradigm that brain information processing is exclusively the result of neuronal 

activity has been challenged by an emerging body of evidence (Araque et al., 2014; Kettenmann 

and Verkhratsky, 2008; Perea et al., 2009; Wang and Bordey, 2008a). Indeed, recent findings 

rather strongly support the concept of a “tripartite synapse” (Figure 1.2), in which a cross-talk 

between astrocytes and neurons complements and modulates the communication between pre- 

and post-synaptic structures (Araque et al., 2014). Upon an elevation of synaptically released 

neurotransmitters, astrocytes can increase the intracellular calcium ([Ca2+]i) resulting in the 

release of glutamate via regulated exocytosis (Rossi and Volterra, 2009). Data reports that this 

increase in [Ca2+]i is extremely important, in a functional view, for astrocyte-astrocyte and also 

astrocyte-neuron intercellular communication (Charles et al., 1991; Cornell-Bell et al., 1990; 

Sofroniew and Vinters, 2010). Indeed, one of main functions of astrocytes is the regulation of the 



12 

glutamate concentration in the synaptic cleft of glutamatergic neurons. Important for this 

astrocytic function is the glutamate-glutamine shuttle, which includes not only the uptake of 

extrasynaptic glutamate but also the production and release of glutamine from the astrocytes via 

glutamine synthetase (GS), which will be used by neuronal elements to refill glutamate supply 

(Chiang et al., 2007). In summary, the astrocytic features that favor this concept are: (i) the 

expression of functional neurotransmitter receptors (eg. for glutamate, ATP, GABA), which sense 

surrounding neuronal activity; (ii) the ability to process intracellular calcium signaling which may 

propagate to vicinal astrocytes; and (iii) the ability to release neuro- and vasoactive substances 

such as glutamate, d-serine, ATP, GABA, TNFα, prostaglandins, or peptides, which influence and 

regulate synaptic transmission, blood flow, the permeability of the blood brain barrier and 

metabolic support (Oliveira et al., 2011; Perea et al., 2009; Wang and  

 

Figure 1.2 The tripartite synapse. As neurons, astrocytes express many receptors and transporters 

that are activated upon neurotransmitters release from the presynaptic terminal. This activation increases 

calcium ions inside the astrocyte and parallel release of substances such as ATP. This gliotransmission 

will counter-act on neurons to either inhibit or enhance neuronal activity. Astrocytes also play an important 

role in modulation of presynaptic functions and postsynaptic responses to neurotransmitters. One of the 

main functions of astrocytes is to provide glutamate clearance from the synaptic cleft, creating a neuron-

astrocyte interaction through a glutamate-glutamine shuttle. Glutamate, Glu; glutamine, Gln; glutamine 

synthetase, GS; red dots, neurotransmitter; green dots, gliotransmitter. 
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Bordey, 2008a). Alterations of cellular cross-talk conceptualized as the tripartite synapse 

(Perea et al., 2009) have been extensively demonstrated both in brain slice preparations 

(Henneberger et al., 2010; Martineau et al., 2013; Perea and Araque, 2007; Woo et al., 2012; 

Yang et al., 2003) and in vivo (Chen et al., 2013; Halassa et al., 2009; Han et al., 2012; 

Navarrete et al., 2013; Takata et al., 2011) in rodents and, more recently, in humans (Navarrete 

et al., 2013). These features provide astrocytes with the mechanisms to modulate neuronal 

function (Araque et al., 2014), thereby influencing network regulation and computation of 

behavior responses. Despite of the extensive demonstration of cellular and molecular cross-talk 

pointed out, little is known about the impact of neuron-astrocyte interactions on the production of 

network outputs. 

Back in 2010, our team decided to study this phenomenon and dissect a putative role of 

astrocytes in network computation. Using an L-α-aminoadipate animal model in which astrocytes 

were affected specifically in the PFC, a severe impairment in cognitive tasks that depend on this 

brain region was induced in those animals (Lima et al., 2014). The PFC is intimately related to 

the computation of complex cognitive functions such as information integration, learning, 

memory processing and behavior flexibility (Clark et al., 2004; Goldman-Rakic, 1995), known to 

be affected in the model of depression used in this study. Additionally, cognitive function was 

studied in the dnSNARE mice model of impaired gliotransmission (impaired exocytosis 

specifically in astrocytes). It was gathered data indicating a need for gliotransmitter release from 

astrocytes for the PFC to produce a correct cognitive processing (data under review). This 

observation is in agreement with previous demonstrations using the same dnSNARE model, in 

which absence of gliotransmission was responsible for the exacerbation of cognitive deficits 

associated with sleep loss (Fellin et al., 2009; Halassa et al., 2009). On one hand, these 

observations, together with data obtained from different animal models of astrocytic dysfunction 

(Han et al., 2012; Pannasch et al., 2014), suggests that neuron-astrocyte communication is 

critical for correct production of cognitive outputs. On the other hand, the engraftment of rodent 

forebrain brain with human glial progenitors that differentiate to human-like astrocytes (described 

as being about 20x larger and having more complex morphology), enhanced the cognitive 

abilities of these animals (Han et al., 2013). 
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1.3.3 Roles of astrocytes in brain disorders 

 

Moreover, an increasing significance has been attributed to glutamatergic system in the 

pathophysiology of several mood disorders such as schizophrenia, bipolar disorder and 

depression, and also neurodegenerative disorders as amyotrophic lateral sclerosis (ALS) and 

Alzheimer’s disease (AD) (Kruminis-Kaszkiel et al., 2014; Verkhratsky et al., 2010; Webster et al., 

2005). In fact, it has been reported that a dysfunction or reduced number of glial cells in patients 

suffering from major depressive disorder (MDD) can result in an increase of levels of glutamate in 

blood and cerebral spinal fluid (Hashimoto, 2011), causing a toxic accumulation of glutamate. An 

overabundance of glutamate accompanied by the failure of astrocytes to remove it, may lead to 

neuronal excitotoxicity resulting in neuronal loss, as seen for motor neurons in ALS (Potokar et 

al., 2013). In the context of AD it is known to occur a reactive astrogliosis promoting the 

neurodegenerative processes observed. Among the histopathological features is the presence of 

senile plaques and neurofibrillary tangles, peripheral loss of cholinergic and cholinoceptive 

neurons (in PFC and hippocampus) and the presence of activated macrophages and reactive 

astrocytes (Markiewicz and Lukomska, 2006). The senile plaques are deposits of β-amyloid 

protein and in turn, neurofibrillary tangles are intraneuronal stuctures composed of tau protein. β-

amyloid can be a potent neurotoxic agent that promotes activation of astrocytes and cellular 

mechanisms exacerbation leading to neuronal damage. Furthermore, it is known that 

inflammation contributes to neuropathology associated to AD. Indeed, upon activation, astrocytes 

and microglia can release inflammation-promoting mediators potentially neurotoxic, since these 

glial cells are the brain representatives of the immune system. Although it is considered as a 

beneficial role in defense and repair, an escalating pathological glial activation may contribute to 

secondary nerve-cell damage (Markiewicz and Lukomska, 2006). In response to the extracellular 

β-amyloid deposits, microglia cells can produce TNF-α and other cytokines, and consequently 

promote the secretion of reactive oxygen species, further enhancing neuronal damage. Microglia 

cells by releasing pro-inflamatory citokines and reactive oxygen species can activate surrounding 

astrocytes which will internalize the debris that are being released by dying neurons being 

important for plaque degradation. In addition, astrocytes activated by β-amyloid will also release 

pro-inflamatory cytokines, oxygen reactive species and other inflammation-involved molecules 

that will attract microglia and further contribute to neuronal damage caused by and exarcebation 

of released pro-inflamatory cytokines (Markiewicz and Lukomska, 2006). 
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Astrocytes are also involved in many chronic neurological disorders, such as epilepsy, since 

these cells undergo morphological and functional remodeling in the epileptic brain. Proliferation 

of reactive astrocytes (astrogliosis) is a common feature of temporal lobe epilepsy, which is one 

of the most prevalent forms of localization-related epilepsies in humans (Coulter and Eid, 2012). 

Besides observed neuronal loss, astrogliosis in this pathology is correlated with an increased 

number of seizures and slower clearance of extracellular glutamate in the hippocampal formation 

(Cavus et al., 2005). Reactive astrocytes are widely correlated to the epileptogenesis via their 

effects on glutamatergic regulation, role in buffering potassium and interstitial volume control 

(Benarroch, 2009; Wetherington et al., 2008). The formation of the epileptic foci in the 

hippocampus has been associated to reactive astrocytes (Ortinski et al., 2010) and abnormal 

neuronal excitability in adult model systems (Gómez-Gonzalo et al., 2010). Since there are clues 

to an astrocytic dysfunction and a role of these cells in post-natal synaptogenesis has been 

described; it has been hypothesized whether this abnormal astrocyte development could be the 

cause of predisposition to epileptogenesis of the developing brain adjacent to alterations in the 

excitatory-inhibitory balance (Molofsky et al., 2012). 

 

1.3.4 Gliopathology and depression 

 

Of the main cells in the CNS, astrocytes are highly implicated in glial pathology in MDD. In 

several studies of post-mortem brain tissue of depressive subjects was seen a decrease in 

packing density and number of Nissl-stained population glial cells (Rajkowska and Stockmeier, 

2013). This glia pathology was observed in several brain regions including dorsolateral prefrontal 

cortex (dlPFC) (Cotter et al., 2002; Rajkowska et al., 1999), ornitofrontral cortex (Rajkowska et 

al., 1999), subgenual cortex (Ongür et al., 1998), anterior cingulate cortex (Cotter et al., 2001a; 

Gittins and Harrison, 2011) and amygdala (Bowley et al., 2002). However, in elderly patients of 

MDD the alterations in glial density in the orbitofrontal and anterior cingulate cortex were not 

observed (Khundakar et al., 2011a, 2011b). Specifically, dlPFC is involved in executive function 

and emotional regulation (Davidson et al., 2000; Milham et al., 2001); its neuropathological 

abnormalities in glial cells and in GABAergic interneurons and pyramidal neurons are believed to 

contribute to the pathophysiology of MDD (Oh et al., 2012; Rajkowska and Miguel-Hidalgo, 2007; 

Sanacora and Saricicek, 2007). Moreover, in the dlPFC of depressive patients was observed 

atrophy and reduction of neuronal and glial density (Rajkowska et al., 1999), decreased GFAP 
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expression (Miguel-Hidalgo et al., 2000; Si et al., 2004) and decreased density and size of 

calbindin-immunoreactive (IR) GABAergic neurons (Rajkowska et al., 2007). Oh et al. (2012) 

have recently shown that glutamate changes negatively correlates to GFAP expression levels and 

to calretinin-IR GABAergic neuronal density in the PFC of MDD patients; calretinin-IR GABAergic 

neuronal alterations were positively correlated to changes in glial cells and pyramidal neurons 

markers in the dlPFC. These findings provided some insight on mechanistic basis for neuronal 

and glial excitotoxic damage promoted by glutamatergic transmission, in the dlPFC of MDD 

patients (Oh et al., 2012).  

Within the basis of cytokines hypothesis of depression an interpretation of astrocytic 

hypertrophy as a reflection of local inflammation was made (Maes et al., 2009). Detailed analysis 

of Golgi stained astrocytes revealed cell bodies and processes hypertrophy in the white matter of 

the anterior cingulate cortex of depressed subjects dying by suicide (Torres-Platas et al., 2011). 

Recently, it has been shown in post-mortem studies that the pathology in the white matter of 

prefrontal brain is promoted by decreased oligodendrocyte density, reduction in the expression of 

genes related to cell functions as well as molecular changes in intercellular cell adhesion 

molecule expression levels and a possible mechanism of ischemia (Tham et al., 2011). 

 

1.3.5 Astrocytic mechanisms in depression 

 

There is an increasing evidence of astrocytic dysfunction in the context of depression 

(Choudary et al., 2005; Cotter et al., 2001b; Gosselin et al., 2009; Oh et al., 2012; Sanacora 

and Banasr, 2013). Contrarily to neurodegenerative disorders in MDD there is no prominent 

neuronal pathology, no astrogliosis processes and the expression of GFAP and other astrocytic 

markers is decreased (Rajkowska and Stockmeier, 2013). This astrocyte dysfunction and the 

neuronal impairments have been thought as two related consequences of tripartite synapse 

disturbance. In addition, in several post-mortem studies of depressive-brain no reductions in 

neuronal density or in total number were found (Cobb et al., 2013; Van Otterloo et al., 2009; 

Stockmeier et al., 2004). Instead, it has been reported a decrease in cell bodies size or 

reductions in dendritic branching (Chana et al., 2003; Hercher et al., 2010; Stockmeier et al., 

2004). Together these findings suggest that in MDD is present a neuronal atrophy rather than 

neuronal loss. Furthermore, measure of marked enolase neurons in the serum levels displayed 

no changes in patients with MDD (Schroeter et al., 2008, 2010). Contrastingly, in the same study 
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it was observed an increase of serum levels of the astrocytic marker S100β. Also, other studies 

showed that mRNA for glial markers, such as glutamate transporters and glutamine synthethase, 

was significantly reduced in the locus coeruleus of depressive patients; the expression of mRNA 

for neuronal markers tested were not significantly changed for the same brain region in these 

patients (Bernard et al., 2011). Interestingly, glial toxic ablation rather than neuronal ablation 

lead to depressive-like behaviors (Banasr and Duman, 2008; Lee et al., 2013b). Regarding these 

previous studies, it appears that there is a selective cellular pathology for glial cells in the context 

of depression (Rajkowska and Stockmeier, 2013). Notably, the promotion of each type of cellular 

pathology seen in depression appears to be age-related. In fact, the glial cellular pathology 

appears to be related to younger depressive subjects (less than 60 years of age); contrasting with 

neuronal pathology that appears to relate to older subjects (more than 60 years of age) 

(Khundakar and Thomas, 2009; Miguel-Hidalgo et al., 2000; Si et al., 2004). In the older 

subjects, the neuronal pathology of depression seems to be cause of prominent reductions in the 

density of pyramidal glutamatergic neurons in the orbitofrontalcortex (Khundakar and Thomas, 

2009; Rajkowska et al., 2005). In addition, unaltered astrocytes density and GFAP levels were 

seen in the elderly patients of depression (Davis et al., 2002; Miguel-Hidalgo et al., 2000; Si et 

al., 2004). Contributing to this neuronal pathology may be the excitotoxicity promoted by an 

excess of glutamate at the synapse cleft of glutamatergic neurons due to reduced number of 

astrocytes and astrocytic glutamate transporters (Rajkowska and Miguel-Hidalgo, 2007; 

Rajkowska and Stockmeier, 2013). 

These thrilling findings, suggest that astrocytic modulation of neuronal activity affects the 

network activity and consequent output production, both on healthy and pathological processes. 

Importantly, astrocytes regulate synaptic maturation, transmission and maintenance providing a 

correct development of synapses (Slezak and Pfrieger, 2003). However, the dynamic 

mechanisms underlying this cross-talk between neurons and glia and their implications on 

cellular plasticity in depression are still underexplored. 

 

1.4 GLUTAMATE TRANSPORTER 1: GLT-1  

 

Solute carrier family 1, member 2 (Slc1a2; also known as glial high affinity glutamate 

transporter, GLT-1) is a glial glutamate transporter predominantly expressed in the rat 
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hippocampus; is mainly present in astrocytes plasma membrane and together with GLAST play a 

role in glutamate clearance during synaptic transmission (Rothstein et al., 1996; Wang and 

Bordey, 2008b) (Figure 1.3 a). 

 

 

Figure1.3 Impact of stress exposure and ceftriaxone effect on glutamatergic transmission. 

Astrocytes uptake glutamate at the synaptic cleft of glutamatergic neurons through glutamate-glutamine 

shuttle, which includes not only the uptake of extrasynaptic glutamate (Glu) but also the production and 

release of glutamine (Gln) from the astrocytes via glutamine synthetase (GS) (a). After stress exposure, 

astrocytic transporters such as GLT-1 help the synapse to cope with the increase of glutamate release, 

diminishing excitotoxicity. The chronic exposure to stressors (uCMS) may overcome the capacities of the 

existing GLT-1 and cause excitotoxic effects at the synapse (b). Ceftriaxone (CEF) administration increases 

the expression of GLT-1 glutamate transporter in the astrocyte (c). Further elucidation of CEF beneficial 

potential to prevent or revert the installation of the deleterious effects of uCMS exposure (d) will be te 

main goal of this study.  
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1.4.1 Structure and function 

 

GLT-1 gene is located at locus 3q31 and encodes three transcript variants (1, 2 and 3) that 

differ both in 3’ coding region and 5’ terminal exon. These transcript variants encode three 

distinct isoforms (-a, -b and -c). Transcript variants 2 and 3 encode isoforms with distinct –C and 

–N terminus, respectively, compared to isoform –a. Transcript variant 1 encodes the longest 

isoform, isoform –a, which results in a protein with 573aa. The other two variants result in 

smaller proteins: isoform –b protein has 562aa and isoform –c has 570aa. These are 

glycosylated proteins that have a palmitoylation in the Cys-38, which seems to be important for 

its function in glutamate uptake. Interestingly, only isoforms –a and –b present a conservative 

domain Sodium-dicarboxylate symporter family (SDS) and are known to be transmembranar 

proteins (NCBI, 2014). It is also known that oligomerization is common feature of glutamate 

transporters and isoform –a and –b can interact and form hetero-oligomers in heterologous 

expression systems, in primary cultures from fetal rat and in the adult rat brain (González-

González et al., 2009). However, this arrangement does not seem to interfere with the protein 

function and consecutively with glutamate transport, since its subunits present all the elements 

necessary for the translocation of glutamate (Grewer et al., 2005; Koch and Larsson, 2005). 

Furthermore, different expression was observed between post-natal and young-adult rats. With 

eight weeks of age, it was observed that GLT-1 isoform –a, represented 90% of total hippocampal 

GLT-1, but –b and –c represented only 1% each; however, at post-natal day 14, GLT-1 isoforms –

b and –c were 1.7 and 2.5 times higher in relation to total GLT-1, respectively (Holmseth et al., 

2009). 

Although GLT-1 transporter was primarily detected in astrocytes, studies have also reported its 

presence also in neurons. The splice variant isoforms –a (GLT-1a) and –b (GLT-1b) are described 

to be widely expressed in astrocytes throughout different brain regions (Berger et al., 2005). 

Moreover, this splicing variation does not seem to alter transport characteristics of the isoforms. 

However, there has been descriptions that GLT-1a isoform is not exclusive for astrocytes and 

appears in CA3 neurons of hippocampus and in the olfactory nucleus of rat’s brain (Berger et al., 

2005; Chen et al., 2004). Nonetheless, previous studies have observed a noticeable variation in 

labeling intensity of GLT-1a mRNA expression in astrocytes of pyramidal and molecular CA1 

layers of the hippocampus and other brain areas, but homogeneous expression of GLT-1b 

isoform in astrocytes throughout several brain areas (Berger et al., 2005). Immunoreactives of 
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the neocortical brain extracts have shown higher GLT-1a distribution in the hippocampus, 

compared to –b and –c isorforms, and similar distribution of the three variants in the cerebral 

cortex (Holmseth et al., 2009). Additionally, assessment of intracellular localization of GLT-1a and 

GLT-1b expression on the astrocyte was verified that GLT-1a mRNA was expressed primarily in 

astrocyte processes, whereas GLT-1b mRNA was more restricted to the astrocyte cell body 

(Berger et al., 2005; Holmseth et al., 2009). Together these findings suggest that there are 

different mechanisms regarding the activity and functional regulation of the GLT-1 isoforms. 

 

1.4.2 GLT-1 regulation in mood disorders 

 

It is known that this transporter has a reduced expression in the pathophysiological context of 

depression (Lee et al., 2007; Rajkowska and Stockmeier, 2013; Sanacora and Banasr, 2013; 

Zink et al., 2010). The glial hypothesis of depression admits a glutamine/glutamate shuttle 

malfunction, with reduced reuptake of glutamate, causing excitotoxicity at the synaptic cleft 

(Figure 1.3 b). It is believed that since astrocytes were shown to be affected in the context of 

brain disorders in humans and animal models of chronic stress, loss of GFAP seems to lead to a 

disturbance in the transfer of GLT-1 from intercellular space to cell surface (Hughes et al., 2004) 

and that stress exposure possibly triggers a reduction of GLT-1 in the periaqueductal gray matter 

(Imbe et al., 2012). Compromising the function of GLT-1 will putatively lead to neuronal death, 

suggesting that an increase in glutamate uptake may correct deficits caused by GLT-1 

malfunction in depressive subjects. In fact, learned helplessness animal model of depression 

showed suppressed expression of GLT-1 in the hippocampus and cerebral cortex (Zink et al., 

2010).  

For these reasons, it is hypothesized that by targeting glutamate transporter-activity we may 

increase neuroprotection and therefore diminish excitotoxicity (Figure1.3 c).  

1.5 GLT-1 REGULATION BY B-LACTAM ANTIBIOTICS - CEFTRIAXONE 

 

β-lactam antibiotics are widely used within the clinics and present a variable spectrum of 

antimicrobial activity (Asbel and Levison, 2000). β-lactams include: penicillins, cephalosporins, 

cephamycins and carbapenems. Since there are patients allergic to penincillin and the bacterial 

resistance may be a problem to validity and efficiency of these drugs, other antibiotics have 
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continuously been designed to treat aerobic gram-negative infections. Non-penicillin β-lactams 

like cephalosporins and cephamycins have a wider spectrum of antimicrobial activity, higher 

resistance to beta-lactamase enzymes and can be used against enterobacteriecae family. 

Ceftriaxone (CEF), a type of cephalosporin, can be use to treat: sepsis, meningitis, Lyme 

borreliosis, abdominal infections such as peritonitis and gastrointestinal infections, respiratory 

tract infections such as pneumonia, bone infections and genital infections. Moreover, this 

antibiotic has already been described to cross the blood brain barrier (BBB) (Barichello et al., 

2014; Nau et al., 2010). Rothstein et al. (2005), previously demonstrated that this β-lactam 

antibiotic could be involved in neuroprotection mechanisms by inducing overexpression of the 

GLT-1 transporter preventing neuronal loss induced by malfunction of GLT-1 transport (Figure 1.3 

c). Also in this study, an ability of this antibiotic to prevent motorneuron loss, as well as a rescue 

of the loss of muscular strength and extended survival in a mice model of amyotrophic lateral 

sclerosis (ALS) was shown (Rothstein et al., 2005). Recently, immunohistochemistry findings 

have shown an increase of GLT-1 protein expression in CA1, CA3 and DG regions of the 

hippocampus after treatment with CEF, specially at a dosage of 200 mg/Kg (Karaman et al., 

2013). Following these reports, curiosity for the effects of CEF in neuroprotection has been 

emerging. These effects may be of importance in the context of various disorders involving 

neuronal degeneration, astrocytic dysfunction and inflammation mechanisms. In fact, it has 

already been shown to be a promising target to treat chronic pain; a daily intrathecal treatment of 

rats with CEF upregulates GLT-1 expression in lumbar spinal cord and attenuates opiod-induced 

pain and prevented associated astrocyte activation; it could also revert established neuropathic 

pain and prevent the progression of paralysis in a rat model of multiple sclerosis (experimental 

autoimmune encephalomyelitis; EAE) (Ramos et al., 2010). Moreover, in a mice model of spinal 

muscular atrophy CEF was able to ameliorate neuromuscular phenotype by protecting 

neuromuscular units and increased survival (Nizzardo et al., 2011). Again, this effect is due to 

several mechanisms including the overexpression of GLT-1 transcripts and protein levels. Similar 

effects have been reported in animal models of Parkinson’s disease, ischemia and in axotomy 

conditions (Chotibut et al., 2014; Inui et al., 2013; Soni et al., 2014; Yamada and Jinno, 2011). 

Remarkably, a study conducted in naïve mice has shown antidepressant-like effects of CEF in 

different behavioral domains (tail suspension test, forced swim test, and novelty-suppressed 

feeding test) (Mineur et al., 2007). These data suggests that enhancing neuroprotection by 

increasing the glutamate reuptake, may interfere with depressive-like behaviors. 
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Furthermore, studies carried out in primary human fetal astrocytes highlighted that the 

increased EAAT2 (GLT-1 homolog in humans) transcription levels by CEF is promoted by NF-κ B 

binding site at − 272 position (Lee et al., 2008). The authors further explain that CEF induces 

NF-κ B activation through degradation of Iκ Bα and induction of p65 nuclear translocation with 

further upregulation of its’ downstream target EAAT2. Increase of glutamate uptake by 

overexpression of EAAT2 across the plasma membrane of astrocytes results as an effect of CEF.  

In the future, it would be interesting to dissect the beneficial potential of CEF administration 

on depression would be to assess its neuroprotective effect in preventing or reverse the 

depressive symptoms. This may result in a novel approach and therapeutic target to treat 

depression. 
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1.6 RESEARCH OBJECTIVES 

 

The mail goal of this work was to study the use of astrocytic neuroprotective functions in the 

prevention and reversion of the negative effects of chronic stress in a rat model of depression 

(Figure 1.3 d). Taking in consideration the effects of CEF, this goal was sub-divided in two 

objectives: 

 

Objective 1, 

To explore if treatment with CEF can increase the protective effect of astrocytes and therefore 

prevent the deficits induced by exposure to unpredictable chronic mild stress (uCMS; model of 

depression in rats); 

Objective 2, 

To explore if the protective feature of astrocytes conferred by CEF administration can revert 

the established negative effects of uCMS exposure similarly to ADs treatment. 

 

These objectives were accomplished by evaluating the behavioral, cellular and molecular 

alterations of rats exposed to uCMS pre- or post-treated with CEF (alone or combined with ADs), 

and ADs-treated rats, comparing with the respective controls (non-treated with CEF). 
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2. MATERIALS AND METHODS 

In order to address the proposed objectives two set of animals were designed. One set of 

subjects was established to assess the effect of ceftriaxone (CEF) in the prevention of the effects 

of chronic stress. This set was named “Prevention”. The second set of subjects was established 

to evaluate the potential of CEF to revert the deleterious effects of chronic stress exposure. This 

set was named “Treatment”. Subjects from both sets were evaluated in order to measure 

behavioral, morphological and molecular alterations after exposure to chronic stress, treatment 

with CEF or antidepressants (ADs; alone or in combination), comparing with the respective 

controls (non-treated with CEF). Details on the subjects and treatments performed as given 

below. 

 

2.1 ANIMALS 

Male Wistar rats (Charles-River Laboratories), with 2 months of age and weighing 200-300g 

were group-housed (three per cage) under 12h light: 12h dark cycles, at 22°C, relative humidity 

of 55% and with food and water ad libitum.  

Ninety-four animals were randomly assigned to eleven experimental groups (n=7-10) as 

described in Figure 2.1. The Prevention set comprised 4 experimental groups: two control groups 

and two chronically stressed, treated either with saline or CEF (Figure 2.1, a). The Treatment set 

comprised 7 experimental groups: one control group and six chronically stressed groups treated 

with saline, CEF and/or ADs – fluoxetine or imipramine (Figure 2.1, b). Details on the treatments 

carried out are given below. 

For the sake of simplicity, animals from the Prevention set, treated in the first 3 weeks of the 

uCMS protocol will be, from now on, referred to as “Prevention Groups” (CT+SAL, CT+CEF, 

uCMS+SAL, uCMS+CEF; Figure 2.1, a). Groups belonging to the Treatment set, treated in the 

last two weeks of the uCMS protocol will be referred to as “Treatment Groups” (CT+SAL, 

uCMS+SAL, uCMS+CEF, uCMS+FLX, uCMS+IMIP, uCMS+CEF+FLX, uCMS+CEF+IMIP; Figure 

2.1, b). 

All procedures were carried out in accordance with EU Directive 2010/63/EU and NIH 

guidelines on animal care and experimentation. 
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Figure 2.1 Schematic representation of the experimental groups. Ceftriaxone (CEF) was 

administered in two different time points. a) administration in the first 3 weeks of the uCMS protocol 

(Prevention); saline (SAL) and ceftriaxone (CEF) was administrated either to control (CT) and stressed 

(uCMS) animals. b) administration in the last 2 weeks of uCMS protocol (Treatment); ceftriaxone (CEF) 

was administrated either to control (CT) and stressed (uCMS) animals; antidepressants (ADs) imipramine 

(IMIP) and fluoxetine (FLX), were administered alone or in combination with CEF.  

 

2.2 UNPREDICTABLE CHRONIC MILD STRESS (UCMS) PROTOCOL 

An unpredictable chronic mild stress (uCMS) protocol was applied for 6 weeks as previously 

described (Bessa et al., 2009b). Briefly, the uCMS protocol encompasses several mild stressors: 

confinement to a restricted space for 1h; overnight food deprivation followed by 1h of exposure to 

inaccessible food; overnight water deprivation followed by 1h of exposure to an empty bottle; 

overnight damp bedding; inverted light/dark cycles; exposure to stroboscopic lights during 4h 
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and noise exposure during 4. Animals are random- and uninterruptedly exposed to these 

stressors during 6 weeks. Control animals were handled gently every week throughout the 6 

weeks protocol. 

 

2.3 DRUG TREATMENT 

Groups of stressed animals were administered with the different drugs and at distinct time 

points to address the different objectives proposed (Figure 2.1). In the Prevention set, ceftriaxone 

(CEF) was daily administered intraperitoneally (i.p.; 200 mg/Kg; Labesfal, Portugal) to non-

stressed controls (CT) and stressed (uCMS) groups of animals during the first 3 weeks of uCMS 

exposure. In the Treatment set, CEF, as well as two antidepressants (ADs) from different classes, 

fluoxetine (FLX, selective serotonin reuptake inhibitor-SSRI; 10 mg/kg in ultra-pure water; 

Kemprotec, Middlesborough, UK) and imipramine (IMIP, Tricyclic antidepressant; 10 mg/kg in 

0.9% saline solution; Sigma-Aldrich, St Louis, MO, USA) were daily administered, 

intraperitoneally, alone or in combination with CEF (200 mg/Kg; i.p.) to additional stressed 

groups of animals during the last 2 weeks of the uCMS protocol. 

 Non-stressed control (CT+SAL) and stress-exposed (uCMS+SAL) groups were administrated 

with saline (SAL), used as vehicle. The doses were chosen based on previous studies (Bessa et 

al., 2009a; Rothstein et al., 2005). 

 

 

2.4 BEHAVIOR TESTS  

Behavioral tests were performed at week 4 and at the end of week 6 of the uCMS protocol as 

depicted in Figure 2.2. 
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Figure 2.2. uCMS protocol and schematic representation of the behavioral analysis. 

Ceftriaxone (CEF) was administered in two different time points: during the first 3 weeks (Prevention) or in 

the last 2 weeks (Treatment) of uCMS protocol. Antidepressants (ADs) imipramine (IMIP) and fluoxetine 

(FLX), were administered in the last 2 weeks of uCMS protocol, alone or in combination with CEF. To 

establish baseline values for sucrose preference all animals have performed Sucrose Preference Test 

(SPT). The mood dimension of behavior was assessed with SPT, Sweet Drive Test (SDT) and Forced Swim 

Test (FST) at weeks 4 and 6 of the uCMS protocol. The anxiety-like signs were evaluated through Open 

field (OF) and Novelty suppressed feeding (NSF) tests also at the 4th and 6th weeks of the uCMS protocol. 

Novel Object Recognition (NOR) test evaluated the cognitive dimension at weeks 4 and 6; Morris Water 

Maze (MWM) test was also performed to evaluate cognitive function, at the last week of the uCMS 

protocol. 

 

2.4.1 Sucrose preference test  

 

The Sucrose Preference Test (SPT) was used to evaluate anhedonia at weeks 4 and 6 of the 

uCMS protocol, as previously described (Bessa et al., 2009a). For each assay, animals were 

food- and water- deprived for 12h during the non-active period (day period). The room was 

cleaned with ethanol 96% and the test was performed under dim illumination. Each animal was 

placed individually in a cage with two pre-weighted bottles placed in opposite sites of the cage: 

the one containing a 2% (m/v) sucrose solution in the food site and the one with tap water placed 

in its original site. Both bottles were placed simultaneously in the cage and consumption was 

measured for 1h. All animals performed this test and were allowed to habituate to the sucrose 

solution in a three-trial paradigm, one week before the uCMS protocol, to establish the baseline 

values for sucrose preference. 
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Sucrose preference was calculated by the following formula: sucrose preference=[(sucrose 

consumption / Total consumption) x 100] as previously described (Bessa et al., 2009a). 

Anhedonia was defined as a reduction in sucrose preference in relation to the baseline levels. 

 

2.4.2 Sweet drive test 

 

Sweet drive test (SDT) was also used as a measure of anhedonic behavior as previously 

described (Mateus-Pinheiro et al., 2014). Animals were habituated to sweet pellets (3.77 kcal/g; 

Honey Cheerios®; Nestlé Portugal S.A., Portugal) 4 weeks before testing and in the day before 

the first trial, overnight. Animals were submitted to 3 trials (1 trial every 48h) in the dark/active 

phase, under red light illumination. Before each trial, animals were food-deprived for 12h during 

the light/non-active period and the exposure to stressors was suspended. The test apparatus 

consisted of a black acrylic enclosed arena (82 cm x 44 cm x 30 cm) divided by transparent and 

perforated walls into 3 closed chambers and one pre-chamber in which the animal is initially 

placed. This pre-chamber is connected to a middle chamber by a trap door. Once the animal 

crossed the trap door, this door closes and the animal is allowed to explore de other 2 chambers, 

one on the left and one on the right side of the apparatus. Part of the apparatus was also a 

transparent acrylic lid to ensure surroundings noise-reduction (Mateus-Pinheiro et al., 2014). A 

total of 20 pellets of regular food (3.60 kcal/g; Certificate standard diet 4RF21; Mucedola, S.R.L., 

Italy) were positioned in the corner of the left chamber and 20 sweet pellets were placed in the 

corner of the right chamber. The animals were allowed to explore freely for 10 minutes (min) per 

trial. The number of pellets that were eaten by the animal in each chamber was counted to 

determine the consumption preference. Number of entrances in each chamber was used as 

exploratory parameters. This test was performed by the prevention groups performed this test at 

the 4th week, and by all groups at the 6th week. 

 

2.4.3 Novelty suppressed feeding test  

 

Novelty suppressed feeding test (NSF) was used to measure the anxiety-like behavior in the 

animals from Prevention groups, at week 4 of the uCMS protocol. Animals from Treatment 
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groups have performed this test at week 6. After 18h of food deprivation animals were placed (for 

10 min) in an open-field arena covered with bedding, with a single food pellet on the center. 

When reaching the pellet, the animal was immediately placed individually in the home cage and 

allowed to feed a pre-weighted regular food pellet for 10 min. The latency to feed in the open-field 

arena provided a measure of anxiety-like behavior. The amount of food pellet consumed in the 

home cage was used as a measure of appetite drive (Bessa et al., 2009a; Mateus-Pinheiro et al., 

2013a). 

 

2.4.4 Elevated-plus maze  

 

Anxious-like behavior was measured in the elevated plus-maze (EPM) test, in a 5 min trial as 

previously described (Bessa et al., 2009a). The EPM apparatus consisted of two opposite open 

arms and two enclosed arms elevated 72.4 cm above the floor with an intersection area (hub) of 

100 cm2. Animals were placed individually in the center of the maze, facing the edge of two 

arms. Behavioral activity was recorded by means of a video camera and analyzed using 

EthoVision XT 10.0 (Noldus Information Technology, Netherlands). After each trial the maze was 

cleaned with 10% ethanol. The time spent in the open arms was taken as a measure for anxiety-

like behavior (Bessa et al., 2009a; Mateus-Pinheiro et al., 2013a). All animals have performed 

this test at week 6 of the uCMS protocol. 

 

2.4.5 Open-field test  

 

The open-field (OF) test was also used to assess anxiety-like and exploratory behavior as 

previously described (Prut and Belzung, 2003) in the 6th week of the uCMS protocol, only to the 

prevention groups. The OF test consists of a closed apparatus of 30.5 cm high with a brightly 

illuminated square arena of 43.2 x 43.2 cm. For this test, animals were placed individually in the 

center of the arena and their movement was traced during 5 min, using a two 16-beam infrared 

system. The resulting data was analyzed using the Activity Monitor software (Med Associates, 

Inc.), considering two previously defined zones: a central and an outer zone. Time spent in each 

zone was recorded and further analyzed.  
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2.4.6 Forced Swimming Test 

 

Learned helplessness was evaluated in the forced swimming test (FST) as previously 

described (Mateus-Pinheiro et al., 2013a; Porsolt et al., 1977). Animals were placed in a 

transparent glass cylinder filled with water (25°C; 50 cm of depth) and submitted to a 5 min 

pretest session 24h before conducting the assays. Five min trials were recorded using a video 

camera and analyzed through EthoLog 2.2 (Ottoni, 2000) and EthoVision XT 10.0 (Noldus 

Information Technology, Netherlands) software. Immobility time was assessed and an increase in 

immobility time was considered as learned-helplessness. This test was performed at the 6th week 

of the uCMS protocol for all animals. 

 

2.4.7 Novel Object Recognition test 

 

In order to assess cognitive functions, namely recognition memory, novel object recognition 

test (NOR) was performed as previously described (Bevins and Besheer, 2006; Dere et al., 2007; 

Winters et al., 2008; Ennaceur, 2010). The test apparatus consists of a black acrylic box (50 x 

50 x 150 cm) illuminated with a white lamp (100-140 lux). The test is phased in 4 days and was 

performed at week 4 (only by the prevention groups) and week 6 (all groups) of the uCMS 

protocol. Objects differing from each other in color, shape and texture were used in each time 

point.  

Day 1 – Habituation – On the first day animals were allowed to habituate to the apparatus in 

a 10 min trial, consisting of an exploratory phase.  

Day 2 – Sample phase – In a second day, the animals had to explore two identical objects 

placed at the back left and right corners of the apparatus for 10 min. Within an interval of 

approximately one hour, a second sample object exposure (3 min) was performed. This time, the 

left object was repositioned (spatial recognition) in a new corner of the apparatus (frontal left 

corner). Due to the spatial repositioning, this second trial gives an insight of hippocampus 

function and works as a memory “reinforcement” of the sample object. 

Day 3 – Long-term memory assessment – The right sample object was replaced for a new 

object 24h after memory reinforcement, and animals were allowed to explore the two objects for 

3 min. This trial consists of a choice phase were long-term memory was evaluated.  
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Day 4 – Short-term memory assessment – On the last day, short-term memory was assessed, 

with different objects from the previous days. Similarly to day 1, animals were presented with to 

identical objects in a first trial of 10min exploring. Then, with 1hour interval, the object on the 

right is switched for a new object and a second trial of 3 min is performed.  

Trials were video-recorded and the discrimination index (D) was calculated by the following 

formula: D = (N-F)/(N+F); being N the time spent exploring the Novel object and F the time spent 

exploring the Familiar object. For this test, it was crucial to define what we considered as the 

object exploration by the animal; for that, we assumed exploration of an object as touching it with 

the nose or directing the nose to the object at a distance of less than 2 cm.  

For a schematic representation of the test see Figure 2.3. 

 

 

 

Figure 2.3 Schematic representation of the Novel Object Recognition (NOR) protocol. The 

test consists of 4 phases. DAY 1, Habituation phase, animals explore the apparatus for 10 min. DAY 2, 

Sample phase, animals explore two identical objects in a trial of 10 min then 1h later the left object 

position is changed and a second trial is performed (spatial recognition). DAY 3, Long-term memory 

choice phase, the left object is the same from day 2 and the right object switches for a new object and a 

single trial of 3 min is performed. DAY 4, Short-term memory choice phase, with new objects the animal 

preforms a first trial of 10 min exploring two identical objects then 1h later the right object switches for a 

new one and a second trial of 3 min is performed. 
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2.4.8 Morris Water Maze: Reference memory and Reversal tasks 

 

The Morris water maze (MWM) test was performed to evaluate cognitive functions in the 6 th 

week of the uCMS protocol as previously described (Bessa et al., 2009a). The test included a 

reference memory task (hippocampus-dependent) and a reversal learning task (behavior 

flexibility, dependent on the prefrontal cortex). In both tasks the animal had to explore a black 

pool (diameter 170 cm; depth: 50 cm) filled with water (22ºC) above a hidden platform (31 cm), 

divided in 4 imaginary quadrants. The room was dimly lit and spatial clues were fixed to the walls 

surrounding the pool. The reference memory task consists of a three days protocol. Throughout 

the protocol the platform was kept in the same position and four consecutive trials of 2 min were 

conducted daily. In each trial the animal was placed facing the wall of the pool and finished the 

trial once it reached the platform. Moreover, in each trial the animal was placed in a different 

quadrant. Every time an animal was unable to find the platform within the trial time, the animal 

was guided to the platform and allowed to stay in it for 30 seconds. 

At the fourth day, a reversal task was performed; for this task the platform was positioned at 

the opposite quadrant from previous days. This task was conducted in four trials of 2 min, and 

the percentage of time travelled in the new quadrant was measured. The performance of the 

animals was recorded using a video-tracking system. 

 

2.5 MEASUREMENT OF PLASMA CORTICOSTERONE LEVELS 

Corticosterone levels were measured in blood serum of all animals using a [125I] 

radioimmunoassay (RIA) kit (MP Biomedicals, Costa Mesa, CA). Blood sampling (tail 

venipuncture) was performed at 8:00-9:00 pm (night), at week 6 of the uCMS protocol, one day 

prior to behavior tests. Blood serum was separated by centrifugation (13 000 rpm, 10 min) and 

kept at -20º C before analysis. 

 

2.6 TISSUE PROCESSING 

Animals were anesthetized with sodium pentobarbital (Eutasil, 60 mg/Kg, i.p.; Ceva Saúde 

Animal, Portugal).  For molecular analysis (Western blot and Real Time RT-PCR) and neuronal 
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morphology analysis (Golgi-Cox staining) animals (n=4-6 per group) were transcardially perfused 

with 0.9% saline; brains were then extracted from the skull and divided into two hemispheres: the 

right hemisphere was macrodissected for molecular analysis and the left hemisphere was used 

for 3D morphological analysis. For astrocytic morphology analysis (immunohistochemistry 

procedures) animals (n=3-4 per group) were transcardially perfused with 0.9% saline and 4% 

paraformaldehyde. Brains were collected and embedded in Neg-50 Frozen Section Medium 

(ThermoScientific, Thermo Fisher Scientific, Inc., Waltham, MA, USA) and further frozen at -20ºC. 

Twenty micrometers coronal sections of prefrontal cortex (PFC) and extending over the entire 

length of the hippocampus were cut in a cryostate. Slides will be maintained at -20°C for future 

analyzes. For the purpose of this thesis, the immunohistochemical analyzes were not performed 

due to time constrains.  

 

2.7 MOLECULAR ASSAYS 

2.7.1 Western Blot 

 

For protein quantification the Western blot (WB) technique was applied. Total lysates of 

macrodissected hippocampal dentate gyrus (DG; right hemisphere) and PFC (right hemisphere) 

were mechanically homogenized in HEPES-buffered sucrose solution (0.32 M sucrose; 4 mM 

HEPES (4-(2-Hydroxyethyl) piperazine-1-ethanesulfonic acid) pH 7.4) with protease inhibitors 25x 

(1 tablet per 2 mL of H2O; Complete EDTA free, Roche, Basel, Switzerland), 10% sodium dodecyl 

sulfate (SDS) and Nonidet P-40 (NP-40). The homogenate was centrifuged (3000 rpm, 20 min at 

4ºC), and supernatant was stored at -80ºC until use. A Quick Start™ Bradford (BioRad 

Laboratories, München, Germany) protein assay was done to determine the total amount of 

protein in each homogenate (3 measurements per homogenate) and different concentrations 

(0.5, 1, 3, 5, 8, 10, 16 μg/mL) of bovine serum albumin (BSA, 0.1mg/mL in distilled water; 

Sigma Chemicals, St Louis, MO, USA) were used to create a standard curve for each run. 

Samples were measured at 595 nm in a spectrometer microplate reader (model 680, BioRad 

Laboratories, München, Germany), and volumes corresponding to 50 μg of total protein were 

then calculated. For the SDS-Page step, laemmli buffer (LB) was added to each sample and the 

volume was adjusted with HEPES-buffered sucrose solution. The samples run in a 10% 

acrylamide gel. Transference of SDS-gel to a nitrocellulose membrane was performed with a 
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Trans-Blot® Turbo™ Transfer System (BioRad Laboratories, München, Germany) according to 

manufactures’ instructions. After transferring of the total protein, the membrane was incubated in 

TBS (Tris-buffered saline) with 5% of milk (Molico; Nestlé Portugal S.A., Portugal) for 1 h 

blockage. After blocking unspecific bindings, the membrane was incubated with primary antibody 

(Table 1) overnight at 4ºC with agitation. In the next day, 3 washes of 10 min with 1% milk/TBS-

Triton-X100 (T, ThermoScientific, Thermo Fisher Scientific, Inc., Waltham, MA, USA) solution 

were performed before incubation with secondary antibody (Table 2) for 2 hours at room 

temperature (RT). Bands were revealed using the chemiluminescent Clarity™ Western ECL 

substrate (BioRad Laboratories, München, Germany) and visualized by Bio-Rad Chemidoc and 

Quantity One software. 

Samples homogenates were loaded onto the same gel accordingly to possible comparisons 

between two groups (2 groups per gel and 4 animals per group). For each gel, actin (see Table 1 

and Table 2 for antibodies information) was used as housekeeping and an internal control was 

added in order to minimize procedural variations in the revelation. Results are presented as fold-

change of protein levels between the respective experimental groups after normalization to actin 

and internal control levels. 

 

Table 1. Dilutions and information about the primary antibodies (Ab) used for western-blot analysis. 

Primary Ab Specie 
Working 
dilution 

Company 

GLT-1 Guinea Pig (1:1500) Chemicon®, Millipore 

β-Actin Mouse (1:5000) Ambion®, Life Technologies 

 

Table 2. Dilutions and information about the primary antibodies (Ab) used for western-blot analysis. 

Secundary Ab 
/ Antigenicity 

Working 
dilution 

Company 

Guinea Pig HRP (1:10000) Chemicon®, Millipore 

Mouse HRP (1:8000) BioRad 

 

 

2.7.2 RNA isolation, cDNA synthesis and real time PCR analysis 

 

Total RNA was isolated from macrodissected tissue of the remaining right hippocampus 

(Cornus Ammonis (CA) regions, DG previously used for WB analysis) and PFC samples using the 

Direct-zol RNA miniPrep kit (Zymo Research, Irvine, CA, USA), according to manufacturer’s 
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instructions. Briefly, tissue was mechanically homogenized using a syringe and 20 G needle in 

600 µl of Qiazol Reagent (Qiagen, Valencia, CA, USA). 

Total RNA (500 ng) was reverse-transcribed using qScript™ cDNA SuperMix (Quanta 

Biosciences™, Gaithersburg, Md, USA). Primers for Glutamate transporter-1 isoform-a (GLT-1a) 

and isoform-b (GLT-1b) for real time RT-PCR were designed using Primer-BLAST software (NCBI, 

Table 3). Reactions were performed in an Applied Biosystems 7500 Fast Real-Time PCR System 

(Applied Biosystems, LLC, CA, USA) using 5x HOT FIREPol® EvaGreen® qPCR Mix Plus, ROX 

(Solis Biodyne, Tartu, Estonia). Target gene expression levels were normalized against the 

housekeeping gene Beta-2-Microglobulin (B2M) and the relative expression was calculated using 

the ΔΔCt method. Results are presented as fold-change of mRNA levels between the respective 

experimental groups after normalization to B2M levels. 

 

Table 3. Primers’ sequences for real time RT-PCR and the corresponding amplicon size. 

Name 
in use 

Gene 
symbol 

Gene name Sequences 
Product 
size (bp) 

GLT-1a 
Slc1a2 
isoform a 

Solute carrier family 1 
(glial high affinity 
glutamate transporter), 
member 2, isoform a 

Sense CTCTGGCGGCCAATGGAAAG 

119 
Antisense CCATAAGATACGCTGGGGAGTTT 

GLT-1b 
Slc1a2 
isoform b 

Solute carrier family 1 
(glial high affinity 
glutamate transporter), 
member 2, isoform b 

Sense CACCATCCCCTGCATCCATTCT 

166 
Antisense GCGGATGTGGGAATCTGGTGAAA 

B2M B2M Beta-2 microglobulin 
Sense GTGCTTGCCATTCAGAAAACTCC 

136 
Antisense AGGTGGGTGGAACTGAGACA 

 

 

2.8 MORPHOLOGICAL ANALYSIS: GOLGI-COX STAINING  

 

After perfusion with 0.9% saline, brains were removed and kept in the dark for 15 days in 

Golgi-Cox solution (Bessa et al., 2009b). Subsequently, the brains were transferred to a 30% 

sucrose solution and kept in the refrigerator, in the dark, for more 2-5 days. The tissue was 

sectioned (200 μm) in a vibratome (MicroHM-650V) and collected in 6% sucrose. Sections were 

blotted onto gelatin-coated microscope slides and subsequently alkalinized in 18.7% ammonia.  
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Slices were developed in Dektol (Kodak, Rochester, NY, USA), fixed in Kodak Rapid Fix, 

dehydrated and xylene cleared before coverslipping (Bessa et al., 2009b). 

Three-dimensional (3D) dendritic morphology of neurons was assessed in the dorsal and 

ventral hippocampal DG following already described criteria (Patrício et al., 2014; Pinto et al., 

2014). Two to three animals per group (only the Prevention groups were analyzed) and 8 

neurons per animal were analyzed. Dendritic branches were reconstructed at 1000x (oil) 

magnification, for each selected neuron. For that, a motorized microscope (Axioplan 2; Carl 

Zeiss, LLC, United States) and Neurolucida software (MBF Bioscience, Williston, VT) were used. 

Three-dimensional analysis of those neurons was performed using NeuroExplorer software (MBF 

Bioscience, Williston, VT) and the measurements from individual neurons from each animal were 

averaged. Total dendritic length and branching was compared among experimental groups. For 

each neuron, dendritic spine density (number of spines/dendritic length) of proximal and distal 

branches was analyzed. Selected branches were either parallel or at acute angles to the coronal 

surface of the section. 

 

2.9 DATA ANALYSIS 

Statistical analysis was carried out through GraphPad software (GraphPad Software, Inc., San 

Diego, CA, USA). A repeated measures ANOVA was used to analyze cognitive-learning task 

performance (MWM) and One-Way ANOVA was use to analyze the remaining behavioral results. 

F-values and P-values are indicated along the text. Significant differences between groups were 

analyzed by Tuckey post-hoc test and the correspondent P-values are indicated in the figures. T-

test was used to evaluate differences between two groups whenever appropriate. Statistical 

significance was accepted for P ≤ 0.05. Data is presented generally as group mean ± standard 

error of the mean (SEM). 
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III. RESULTS  
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3. RESULTS 

3.1  VALIDATION OF THE UCMS MODEL OF DEPRESSION  

uCMS exposure is known to disrupt the hypothalamic-pituitary-adrenal (HPA) axis (Ottenweller 

et al., 1994) and therefore the measurement of corticosterone (produced by the adrenals) levels 

in the blood provides a correlate of the stress-level in the tested animals (Patrício et al., 2014; 

Sousa et al., 1998; Ventura-Silva et al., 2013). Control rats display a corticosterone peak at 

diurnal zenith (night time) (D’Agostino et al., 1982), which is affected in animals exposed to 

chronic stress. 

 

 

Figure 3.1 Corticosterone levels measured at night, for validation of the uCMS model. a) 

Corticosterone levels of prevention groups. b) Corticosterone levels of treatment groups. CORT, 

corticosterone; CT, control; uCMS, chronically stressed animals; SAL, saline; CEF, ceftriaxone; FLX, 

fluoxetine; IMIP, imipramine. Data is represented as mean ± SEM. *, different from CT+SAL; #, different 

from uCMS+SAL. *, #, P<0.05; **, P<0.01. n=7-10 animals per group. 

 

Corticosterone levels were measured at the end of the uCMS protocol (6th week) both in the 

prevention and treatment groups. In the prevention groups, the exposure to stress disrupted the 

circadian rhythm of corticosterone secretion, decreasing the zenith levels when comparing to the 

control group (t6=2.93, P= 0.026 Figure 3.1 a). Ceftriaxone (CEF) administration prevented the 

effects of stress on corticosterone levels (uCMS+CEF; t11=2.56, P= 0.026 to CT animals; t7= 2.74, 

P=0.029 to uCMS animals), whereas CEF administration to unstressed animals did not alter the 

corticosterone levels (CT+CEF; Figure 3.1 a) when compared to controls. 
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In the treatment groups, again, uCMS+SAL group presents lower levels of corticosterone when 

compared to control animals (t7=3.60, P=0.009) and CEF seems to revert partially this effect of 

stress (uCMS+CEF; P>0.05 to uCMS animals; P>0.05 to CT animals; Figure 3.1 b). Stressed 

animals treated with the antidepressants (ADs) fluoxetine and imipramine alone or in 

combination with CEF (CEF+FLX; CEF+IMIP) also reverse partially, although not statistically 

significant, the corticosterone levels to those of control animals (Figure 3.1 b).  

 

3.2 ASSESSMENT OF BEHAVIOR DIMENSIONS AFFECTED BY UCMS 

uCMS exposure typically produces deficits in three behavioral dimensions that are commonly 

affected in depression – anxiety, mood and cognition (Bessa et al., 2009a). In order to address 

the potential of CEF either to prevent or treat these deficits, a multidimensional behavioral 

analysis was performed.  

3.2.1 Study of the role of ceftriaxone in the prevention of uCMS-induced 

behavior alterations 

Three behavioral dimensions putatively affected by stress (mood, anxiety, cognition) were 

assessed in the prevention groups. In order to assess longitudinal effects, behavior tests were 

performed at two different time-points: at the 4th and 6th weeks of the uCMS protocol (Figure 2.2). 

Sweet drive test (SDT), sucrose preference test (SPT) and forced swim test (FST) were used to 

assess mood alterations. Novelty suppressed feeding (NSF), elevated plus maze (EPM) and open 

field (OF) tests were used to assess anxiety-related behaviors. Finally, to assess cognitive 

functions, the novel object recognition (NOR) and Morris water maze (MWM) tests were 

performed. 

 

In order to assess anhedonic behavior, SDT and SPT tests were performed (Figure 3.2 a and 

b). In the SDT, uCMS animals presented significantly lower preference levels comparing to 

control group (t8=4.47, P= 0.002) in the 4th week of the uCMS protocol. CEF does not alter the 

performance of control animals, but prevents partially the installation of the anhedonic behavior 

in the uCMS-exposed animals (Figure 3.2 a). Again, at the 6th week of the uCMS protocol, the 



45 

uCMS animals present an anhedonic behavior when compared to control group (t8=2.46, 

P=0.039; Figure 3.2 a). Moreover, CEF maintains the partial prevention of the anhedonic  

behavior caused by stress exposure (Figure 3.2 a). 

 

Figure 3.2 Assessment of depressive-like behavior in the prevention groups at the 4th and 6th 

weeks of the uCMS protocol. a), b) Anhedonia was assessed through the sweet drive test (SDT) and 

sucrose preference test (SPT) at the 4th and 6th weeks. c) At the 6th week the forced swim test (FST) was 

used to assess learned helplessness. CT, control; uCMS, stressed animals; SAL, saline (vehicle); CEF, 

ceftriaxone. Data is represented as mean ± SEM. *, different from CT+SAL; #, different from uCMS+SAL. 

*, P<0.05; **, ##, P<0.01. n=5-10 animals per group. 
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In the SPT, uCMS exposure did not induce lower preferences for sucrose solution, when 

comparing to control animals at the 4th neither at the 6th week of the uCMS protocol (P > 0.05). 

Treatment with CEF did not produce significant differences; therefore the results obtained in this 

test were inconclusive (Figure 3.2 b). 

 

 

The second component of mood, learned helplessness, was assessed at the 6th week of the 

uCMS protocol by the FST. In this test, as expected, stressed animals spent significantly more 

time immobile when comparing to control animals (uCMS+SAL vs CT+SAL, t7=2.72, P=0.030; 

Figure 3.2 c). CEF prevents installation of learned helplessness produced by uCMS exposure, as 

CEF-treated animals spent significantly less time immobile comparing to uCMS+SAL animals 

(t12=3.50, P=0.004; Figure 3.2 c). 

 

The prevention groups were also tested for anxious-like behavior through the NSF test, at the 

4th week of the uCMS protocol. In this test, no differences between control and stressed animals 

were observed (Figure 3.3 a). Moreover, administration of CEF had no effect both on controls and 

uCMS (Figure 3.3 a). No differences were observed in the food consumption of these animals 

(Figure 3.3 a, right panel). 

 

At the end of the uCMS protocol (6th week), anxious-like behavior was also assessed through 

the EPM and OF tests. In the EPM, the control group administered with CEF spent less time in 

the open arms, suggesting a more anxious phenotype when compared to untreated control rats 

(CT+CEF vs CT+SAL, t10=2.45, P=0.034; Figure 3.3 b). Similarly, uCMS+CEF animals spent 

significantly less time in the open arms compared to uCMS+SAL animals (t11=3.36, P=0.006; 

Figure 3.3 b). uCMS alone did not influence the behavior in this task (Figure 3.3 b). For 

confirmation of the CEF effect a second test for anxious-like behavior was performed. In the OF 

test, all 4 groups spent similar time in the center (Figure 3.3 c), which did not confirm the effects 

of CEF in the EPM. 
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Figure 3.3 Assessment of 

anxious-like behavior of the 

prevention groups at the 4th 

and 6th weeks of the uCMS 

protocol. a) At the 4th week 

anxious-like behavior was 

assessed through novelty 

suppressed feeding (NSF). At the 

6th week, b) elevated plus maze 

(EPM) and c) open field (OF) 

tests were used to assess 

anxious-like behavior. CT, control; 

uCMS, stressed animals; SAL, 

saline (vehicle); CEF, ceftriaxone.  

Data is represented as mean ± 

SEM. *, different from CT+SAL; #, 

different from uCMS+SAL. *, #, 

P<0.05. n=7-10 animals per 

group. 

 

Cognitive evaluation was performed at the 4th and 6th of the uCMS protocol through the NOR 

test, to assess short-term and long-term memory of the animals from prevention groups. At the 

4th week, no differences were observed between groups, neither in short-term memory nor in 

long-term memory analysis (Figure 3.4 a). At the 6th week, differences were observed in the short-

term recognition memory task (Figure 3.4 a). In particular, stressed animals explored the new 

object less time than control animals (uCMS+SAL vs CT+SAL; t11=3.01, P=0.012; Figure 3.4 a). 

However, this cognitive impairment was not prevented by CEF administration. No differences 

between all experimental groups were observed in the long-term memory task at the 6th week. 

Reference memory and behavior flexibility was also assessed at the 6th week of the uCMS 

protocol through the MWM test. In the reference memory task no differences were observed in 

escape latencies (time to find the platform; Figure 3.4 b). Regarding behavior flexibility, no 

differences were observed between groups in time spent in the new quadrant (Figure 3.4 b).  
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Figure 3.4 Cognitive assessment of prevention groups at the 4th and 6th weeks of the uCMS 

protocol. a) Short-term memory and Long-term memory were assessed through the novel object 

recognition (NOR) test at the 4th and 6th weeks of the uCMS protocol. b) At the 6th week of the uCMS 

protocol, reference memory and behavior flexibility of prevention animals was evaluated through the 

Morris water maze (MWM). CT, control; uCMS, stressed animals; SAL, saline (vehicle); CEF, ceftriaxone. 

Data is represented as mean ± SEM. *, different from CT+SAL. *, P<0.05. n=7-10 animals per group. 

 

3.2.2 Study of the impact of ceftriaxone in the reversion of uCMS-induced 

behavior alterations  
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To assess the potential of CEF to treat the impairments in the three behavior dimensions 

affected by stress, a similar behavior analysis was performed. Animals from treatment groups 

were tested at the end of the uCMS protocol (6th week) for mood, anxiety and cognition. SDT and 

SPT were performed to assess anhedonia and FST was performed to assess learned 

helplessness. NSF and EPM tests were performed to assess anxious-like behavior. Cognition was 

assessed through the NOR and MWM behavioral tests. 

 

Regarding anhedonia, in the SDT and SPT no differences were observed between groups 

(Figure 3.5 a and b). However, a trend for lower sucrose or sweet preference in the uCMS+SAL 

 

Figure 3.5 Assessment of 

depressive-like behavior of 

the treatment groups at the 

6th week of the uCMS 

protocol. a), b) Anhedonia was 

assessed through  and sucrose 

preference test (SPT). c) forced 

swim test (FST) was performed to 

assess learned helplessness. CT, 

control; uCMS, stressed animals; 

SAL, saline; CEF, ceftriaxone. 

Data is represented as mean ± 

SEM. n=5-10 animals per group. 
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groups comparing to control groups was observed in both tests, although not statistically 

significant (Figure 3.5 a and b). 

In depressive-like behavior, measured by the FST, no differences were observed in time spent 

immobile between uCMS animals and controls (Figure 3.5 c). Stressed animals treated with CEF 

or ADs had similar performance when compared to untreated stressed animals (uCMS+SAL). 

Since uCMS animals did not present depressive phenotype these results are inconclusive. 

 

At the end of the uCMS protocol, treatment groups were also tested for anxious-like behavior, 

through the NSF and EPM tests. In the NSF test, untreated uCMS animals (uCMS+SAL) had 

higher latency to feed when compared to the control group (t12=2.41, P=0.033; Figure 3.6 a). This 

effect was not reverted by CEF (uCMS+CEF), suggesting no positive effect of this treatment. 

Interestingly, animals treated with fluoxetine (uCMS+FLX) displayed less anxious behavior when 

compared to uCMS+SAL (F(5, 40)=4.06, P=0.004, Pajd=0.041; Figure 3.6 a). This effect was not 

observed in animals treated with imipramine (uCMS+IMIP). Animals treated with the combination 

of CEF plus fluoxetine (uCMS+CEF+FLX) or plus imipramine (uCMS+CEF+IMIP) had lower 

latencies to feed when compared to CEF treatment alone (uCMS+CEF+FLX vs uCMS+SAL F(5, 

40)=4.06, P=0.004, Pajd=0.025; uCMS+CEF+IMIP vs uCMS+SAL, F(5, 40)=4.06, P=0.004, Pajd=0.048; 

Figure 3.6 a). Appetite drive was measured to exclude possible bias to the test (Figure 3.6 a). 

Appetite drive for treatment animals seems to be in accordance to the results in latency to feed. 

In fact, animals treated with CEF in combination with imipramine, showed higher appetite drive 

and lower latency to feed (Figure 3.6 a). 

In the EPM test, untreated stressed animals (uCMS+SAL) spent significantly less time in the 

open arms when compared to controls, denoting an anxious phenotype (t10=2.86, P=0.017; 

Figure 3.6 b). This effect was not reversed by CEF (t10=3.53, P=0.005; Figure 3.6 b). Fluoxetine 

and imipramine partially reverted the stress-induced anxious-like behavior, as animals from these 

groups spent more time in the open-arms (Figure 3.6 b) than uCMS animals. Moreover, this effect 

was similar also when these ADs where given in combination with CEF. Altogether this data 

points out that CEF administration does not seem to revert the anxiety-related behaviors triggered 

by uCMS exposure. 
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Figure 3.6 Anxious-like behavior assessment of the treatment groups at the 6th week of the 

uCMS protocol. a) Novelty suppressed feeding (NSF) and b) elevated plus maze (EPM) tests were used 

to assess anxiety in the animals. CT, control; uCMS, stressed animals; SAL, saline; CEF, ceftriaxone. Data 

is represented as mean ± SEM. *, different from CT+SAL; #, different from uCMS+SAL; *, #, P<0.05. n=7-

10 animals per group. 

 

Cognitive function of the treatment groups was also assessed at the end of the uCMS 

protocol. Animals were tested for spatial and object recognition through the novel object 

recognition (NOR) test. Differences between control group and untreated stressed animals were 

observed in short-term memory at the new object recognition (t7=2.92, P=0.022; Figure 3.7 a). 

This effect was partially reverted by CEF or AD administration, yet only fluoxetine treatment 

succeeded to revert the effect significantly (F(5,32)=2.94, P=0.027; Figure 3.7 a). Differences 

between control and stressed animals were also observed for an additional measure of short-

term memory, based on a spatial rearrangement of the familiar objects (spatial recognition; 

t=2.26, P=0.050; Figure 3.7 a, right panel). Regarding long-term recognition memory, no 

significant effects were observed between groups.  
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Figure 3.7 Cognitive evaluation of the treatment groups at the 6th week of the uCMS 

protocol. a) Short-term memory (measured through novel object and as spatial recognition) and Long-

term memory were assessed through novel object recognition (NOR) test. b) Reference memory and 

behavior flexibility of treatment animals was evaluated through the Morris water maze (MWM) test. CT, 

control groups; uCMS, stressed animals; SAL, saline; CEF, ceftriaxone. Data is represented as mean ± 

SEM. *, different from CT+SAL. #, different from uCMS+SAL; *, #, P<0.05. n=7-10 animals per group. 

 

Reference memory state was assessed in the MWM test. In this test, animals from all groups 

performed the task similarly, yielding no significant differences among groups (Figure 3.7 b). In 

the behavior flexibility task untreated uCMS animals spent less time exploring the new quadrant 

when compared to the control groups (t8=2.49, P=0.038; Figure 3.7 b), suggesting deficits in 
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behavior flexibility. Ceftriaxone seems to partially revert this deficit, as these animals behaved 

similarly to controls. This effect was also true for the ADs alone, or in combination with CEF 

(Figure 3.7 b). 

 

 

3.3 CELLULAR AND MOLECULAR CORRELATES OF THE CEFTRIAXONE PREVENTION OF UCMS-

RELATED EFFECTS  

The behavior analysis points out a role for CEF in the prevention of the depressive phenotype 

observed in the tested subjects after uCMS exposure. However, the potential use of CEF as 

treatment for depressive-like behavior remains inconclusive. Therefore, brain tissue obtained 

from the Prevention Groups was analyzed in order to assess cellular and molecular correlates 

that may help to understand the mechanisms underlying the prevention of uCMS-related effects. 

 

3.3.1 Ceftriaxone effect in the expression of glutamate transporter GLT-1 

 

CEF administration is known to increase the expression of glutamate transporter-1 (GLT-1) 

(Rothstein et al., 2005). In order to study the alterations caused by stress in the levels of GLT-1 

and the putative effect of CEF in the prevention of stress-induced effects, mRNA GLT-1 expression 

was quantified by real time (RT)-PCR analysis. Additionally, western blot (WB) analysis was 

performed for quantification of GLT-1 protein levels. Previous studies have related impairments in 

the function of prefrontal cortex (PFC) and hippocampus in animals exposed to the uCMS 

protocol to their depressive phenotype (Bessa et al., 2009a; Mateus-Pinheiro, Pinto, et al., 2013; 

Patrício et al., 2014). Therefore levels of gene transcription and protein expression related to 

GLT-1 were performed in tissue macrodissected from those brain regions of animals of the 

prevention groups (CT+SAL, CT+CEF, uCMS+SAL, uCMS+CEF).  

 

Gene expression levels was determined for the two isoforms of GLT-1 transporter: isoform-a 

(GLT-1a) and isoform-b (GLT-1b; Figure 3.8). In the PFC, neither uCMS exposure nor CEF 

administration had significant impact in the levels of GLT-1 mRNA. 
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In the dorsal hippocampus the administration of CEF significantly decreased the level of GLT-

1a transcript in control animals (t6=4.52, P= 0.004; Figure 3.8 b). However, in this brain region, 

neither uCMS exposure nor CEF administration had significant impact on gene transcript levels 

for GLT-1a and GLT-1b (Figure 3.8 b). 

In the ventral hippocampus, CEF administration seems to interfere with GLT-1b but not GLT-

1a gene expression (Figure 3.8 c). In this area of the brain, the transcript levels of GLT-1a are not 

altered between control and stressed animals or after CEF administration in both conditions. 

Differently, stress exposure decreases the levels of GLT-1b transcripts relatively to CT animals 

(t6=2.81, P=0.031; Figure 3.8 c). Interestingly, administration of CEF triggers the increase of GLT-

1b transcripts in the uCMS+CEF animals when comparing to uCMS animals (t7=4.33, P=0.003; 

Figure 3.8 c). In summary, CEF administration seems to prevent the effect of stress on the GLT-

1b transcript levels in the ventral hippocampus (Figure 3.8 c). 

 

 

Figure 3.8 GLT-1 isoforms -a and -b 

gene expression in the prefrontal 

cortex and hippocampus. GLT-1 

isoform-a (GLT-1a; black bars) and 

isoform-b (GLT-1b; white bars) 

expression as fold change values. a) 

Fold change values in the prefrontal 

cortex, dorsal hippocampus (b), and 

ventral hippocampus (c). CT, control; 

uCMS, stressed animals; CT+CEF, 

control group administrated with 

ceftriaxone; uCMS+CEF, stressed 

animals administrated with ceftriaxone. 

Data is represented as mean ± SEM. *, 

different from CT. #, different from 

uCMS. *, P<0.05; **, ##, P<0.01. n=4-

6 animals per group. 
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3.3.2 Ceftriaxone effect in the protein levels of glutamate transporter GLT-1 

 

For GLT-1 protein quantification, WB analysis was performed for brain tissue containing the 

PFC, dorsal and ventral dentate gyrus (DG) of the hippocampus (Figure 3.9). Similarly to RT-PCR, 

fold change analysis of the relative values for GLT-1 protein quantification was performed. In this 

analysis both isoforms were quantified together, as it was not possible to discriminate the bands 

formed (61 and 62 kDa).  

 

Figure 3.9 GLT-1 protein quantification by western blot of prefrontal cortex and dentate 

gyrus. Fold change values of GLT-1 quantification in the prefrontal cortex (a), dorsal dentate gyrus (b), 

and ventral dentate gyrus (c). Left panel, representative blots for each condition; right panel, relative fold 

change analysis for each group and condition; CT, control group; uCMS, stressed animals; CT+CEF, 

control group administrated with ceftriaxone, uCMS+CEF, stressed animals administrated with ceftriaxone. 

Data is represented as mean ± SEM. *, different from CT; #, different from uCMS. *, P<0.05; **, ##, 

P<0.01. n=4-6 animals per group. 
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Similarly to the distribution of transcript levels, in the PFC no significant differences were 

found in the amount of GLT-1 protein among groups (Figure 3.9 a). 

In the dorsal DG, GLT-1 protein levels in the CT+CEF group were significantly decreased when 

compared to the control group (t8=2.92, P=0.019; Figure 3.9 b). Exposure to uCMS seems to 

decrease the levels of GLT-1 protein in a statistically significant manner (t8=4.12, P=0.003; Figure 

3.9 b). Interestingly, GLT-1 levels remained high by administration of CEF when comparing to 

uCMS animals (t8=3.68, P=0.006; Figure 3.9 b). 

In the ventral DG, there was no effect of stress exposure or CEF administration, both in 

control and stressed animals, in GLT-1 protein levels. For all comparisons, fold change 

differences were very close to 1 and no statistically significant results were observed, suggesting 

that the level of regulation is mild (Figure 3.9 c). 

 

3.3.3 Assessment of ceftriaxone impact on neuronal 3D morphology 

 

uCMS-triggered depressive-like behavior has been shown to be correlated with alterations in 

the neuronal structure and morphology in the hippocampal DG. These alterations are translated 

in dendritic atrophy, decreased number of ramifications, and alterations in spine distribution 

(Bessa et al., 2009b; Mateus-Pinheiro et al., 2013a; Patrício et al., 2014). In order to assess 

cellular alterations promoted by CEF in the Prevention Groups, neuronal 3D morphological 

alterations were assessed through the septo-temporal DG (dorsal and ventral DG). Total dendritic 

length, branching and spine densities were assessed in this analysis. 

The data obtained by 3D reconstruction of dorsal DG neurons is presented in Figure 3.10. CEF 

administration to control animals induced an increase in total dendritic length (t25=3.07, 

P=0.005) of dorsal DG neurons. As expected, stressed animals (uCMS+SAL) presented 

decreased neuronal dendritic length when compared to control animals (t23=2.40, P=0.025). 

Interestingly, CEF administration prevented the installation of the dendritic atrophy caused by 

chronic stress-exposure (t28=2.04, P=0.051). Regarding neuronal branching, no differences were 

observed between control and uCMS animals. CEF alone induced an increase in neuronal 

branching in the CT+CEF group (t33=2.32, P=0.026), but failed to alter the number of branches in 

stressed animals. 
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Regarding the density of spines in the dorsal DG, uCMS exposure leads to a significant 

decrease in the number of spines, when comparing to the control group (CT+SAL; t19=2.23, 

P=0.038; Figure 3.11 b). The administration of CEF prevented the decrease of spine density 

significantly (uCMS+CEF; t26=2.52, P=0.018). 

 

Figure 3.10  Morphological analysis of neurons from the dorsal dentate gyrus.  Total dendritic 

length and branching of neurons in the dorsal dentate gyrus. CT, control groups; uCMS, stressed animals; 

SAL, saline; CEF, ceftriaxone. Data is represented as mean ± SEM. *,# different from CT group. *,# 

P<0.05; **, P<0.01. n=15-22 neurons per group. 

 

Figure 3.11  Analysis of spine densities in the dorsal dentate gyrus. a) Representative image of 

spines in the dorsal dentate gyrus. b) Spine density of the dendrites belonging to neurons at the dorsal 

dentate gyrus. CT, controls; uCMS, stressed; SAL, saline; CEF, ceftriaxone. Data represented as mean ± 

SEM. *, different from CT group; #, different from uCMS group. *, #, P<0.05. n=15-22 neurons per group. 
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In the ventral DG (Figure 3.12), no significant effects of stress exposure were found. Although, 

a typical trend for increased neuronal dendritic length was observed in the uCMS+SAL group 

when compared to control group (CT+SAL). Administration of CEF to control animals increased 

by itself the neuronal dendritic length (CT+CEF; t20=2.38, P=0.027), yet similar administration to 

uCMS animals (uCMS+CEF) kept dendritic lengths close to those of controls (CT+SAL). 

 

 

 

Figure 3.12 Morphological analysis of neurons from the ventral dentate gyrus. Total dendritic 

length and branching of neurons in in the ventral dentate gyrus. CT, control groups; uCMS, stressed 

animals; SAL, saline; CEF, ceftriaxone. Data is represented as mean ± SEM. *, different from CT group. *, 

P<0.05. n=12-17 neurons per group. 

 

 

Regarding the analysis of total spine density in dendrites of the ventral DG neurons, no 

significant differences were observed between groups, neither after uCMS exposure, nor by CEF 

treatment (Figure 3.13 b). 
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Figure 3.13 Analysis of spine densities in the ventral dentate gyrus. a) Representative picture of 

spines in the ventral dentate gyrus. b) Total spine density of the dendrites belonging to neurons at the 

ventral dentate gyrus. CT, control groups; uCMS, stressed animals; SAL, saline; CEF, ceftriaxone. Data is 

represented as mean ± SEM. n=12-17 neurons per group. 
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IV. DISCUSSION AND CONCLUSIONS 
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4. DISCUSSION AND CONCLUSIONS 

The main goal of this work was to assess the potential of ceftriaxone (CEF) to prevent the 

installation or revert the deleterious effects of chronic stress exposure in a rat model of 

depression (uCMS). 

In this study we show that the administration of CEF prevented the installation of depressive-

like behaviors in this model, yet it failed to revert the deleterious effects induced by uCMS 

exposure. Indeed, CEF failed to treat the installed anxious-like behavior; although it seems to 

revert partially the cognitive deficits caused by uCMS exposure. 

 

As previously described, the circadian distribution of corticosterone in control rats is 

characterized by a night peak, typical of the beginning of the active phase of the day (D’Agostino 

et al., 1982). This circadian regulation of corticosterone secretion was found to be altered in 

animals exposed to stressful events, suggesting a disruption of the hypothalamic-pituitary-adrenal 

(HPA) axis (Ottenweller et al., 1994). In fact, it is known that stress is accompanied by HPA axis 

hyperactivity, resulting in deregulated glucocorticoid secretion-pattern into the blood (Schoenfeld 

and Gould, 2012). In our results, a decrease of the corticosterone night peak in the untreated 

stressed animals (uCMS+SAL) was observed, which was prevented by CEF administration in the 

Prevention Groups of animals, and partially reversed by CEF treatment in the Treatment Groups, 

similarly to groups administered with antidepressants (ADs; fluoxetine and imipramine). These 

results confirmed the induction of the uCMS protocol in both animal sets and disclosed a putative 

role of CEF in the regulation of the HPA-axis balance. 

 

In the Prevention Groups, the behavioral analysis was performed one week after the last 

administration of CEF to evaluate its putative effect in the prevention of the installation of the 

deleterious effects caused by stress exposure. Also, it was important to evaluate if this effect 

would remain throughout the chronic exposure to stressors for 3 additional weeks. For that 

purpose, behavioral analyses at the end of the 6th week of the uCMS protocol were performed. A 

positive effect of CEF in preventing the installation of anhedonic effects of stress was observed in 

the Sweet Drive Test; yet, this observation was not confirmed in the Sucrose Preference test. 

Inconclusive results in the SPT could be related to less discriminative potential to assess 
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anhedonic behavior compared to SDT, as previously described (Mateus-Pinheiro et al., 2014). 

Also, in the mood domain, CEF was effective in preventing the learned helplessness symptom 

observed in the stressed animals by the Forced Swim Test. These results suggest that CEF has 

preventive potential of mood impairments to the exposure of chronic stress. Regarding the 

analyses of anxiety and cognitive function, these were inconclusive, as we could not observe a 

stress effect in these two dimensions as previously described (Bessa et al., 2009a; Mateus-

Pinheiro et al., 2013a; Patrício et al., 2014). In fact, uCMS exposure rendered effective 

alterations in corticosterone regulation, suggesting that the uCMS protocol worked in these 

animals. Therefore, at this point we still cannot rule out an effect of CEF also on these 

dimensions. 

 

The second important aim of this study was to understand the potential of CEF treatment to 

revert the uCMS-induced deficits. For that, behavior tests were performed using stressed animals 

treated either with CEF, fluoxetine, imipramine (ADs) or with a combination of CEF and ADs. The 

efficacy of different classes of ADs to revert the deleterious effects of stress in the several 

behavioral dimensions commonly affected by stress was already verified and described (Bessa et 

al., 2009b; Duman, 2014; Mateus-Pinheiro et al., 2013a; Patrício et al., 2014). Regarding the 

Treatment Groups, CEF did not revert anxious-like behavior both in the EPM and NSF tests. 

However, fluoxetine was able to revert the effects of stress and it is hypothesized that the 

beneficial effects of the combination of CEF with either fluoxetine or imipramine may be an effect 

of the ADs alone. In addition, in the cognitive assessment, CEF could partially revert the 

impairments caused by stress on short-term memory, both in novelty recognition and spatial 

rearrangement, evaluated in the NOR test. In the MWM, CEF could partially revert the negative 

effects on behavior flexibility seen in uCMS animals. In both tests, CEF exerted an effect similar 

to ADs. The function of the prefrontal cortex (PFC) is linked to the computation of these cognitive 

tasks and is a brain region severely affected by stress (Cerqueira et al., 2007; Czéh et al., 2008; 

Jay et al., 2004; Shansky and Morrison, 2009). Therefore, brain tissue of these animals should 

be further studied to seek for cellular/molecular correlates that may underlie the rescue of PFC 

function by CEF-triggered mechanisms. In a number of behavioral tests, the uCMS groups did not 

present the marked phenotypic deficits described in the literature (Bessa et al., 2009b)(eg. 

Anxiety-like behavior in the Prevention Groups) when compared to the control groups. Although in 

many of the cases a clear tendency was visible, this lack of differences may be justified by the 



65 

control groups. Since CEF is administered by intraperitoneal injections, controls suffered also 

sham injections that may function as a repeated aggression/stress. In further studies, a novel 

non-injected control group should be added to exclude this possibility. 

 

In order to understand the molecular and cellular mechanisms underlying the prevention of 

uCMS-induced mood impairments by CEF, brain tissues from animals in the Prevention Groups 

were analyzed. This analysis was performed in brain regions typically affected by uCMS such as 

the PFC, hippocampus in general and dentate gyrus (DG) in particular (Bessa et al., 2009b; 

Mateus-Pinheiro et al., 2013a). The goal of this analysis was to investigate a putative effect of 

CEF on dendritic remodeling, a major cellular effect of uCMS exposure namely by correlating it to 

expression levels of GLT-1 transporters or mRNA levels. 

Rothstein et al. (2005) had previously reported that CEF as an increasing effect on GLT-1 

astrocytic transporter expression. Therefore, in order to further study the CEF effect in the 

prevention of the alterations caused by stress, we performed RT-PCR analysis to assess mRNA 

GLT-1 expression levels and WB analysis to quantify GLT-1 protein in the brain regions analyzed. 

Detailed analysis of brain tissue collected from the tested animals revealed that the prevention of 

the depressive-like behavior was accompanied with an increase in the GLT-1 transcript and 

protein expression of GLT-1 transporter in hippocampal areas with important roles in these 

behaviors. Regarding the PFC, no significant differences were observed in GLT-1a and b 

transcript levels of uCMS animals. This lack of effect was also reflected in the protein levels. In 

the dorsal hippocampus, it was observed that gene expression of GLT-1a isoform is 

downregulated in control animals administrated with CEF (CT+CEF), which matches the 

decreased levels of GLT-1 protein in the dorsal DG of these animals. Despite of the lack of 

differences observed for GLT-1 transcript levels after uCMS or CEF administration, in the dorsal 

hippocampus, in the dorsal DG, CEF appears to prevent the effects of stress by maintaining the 

GLT-1 protein levels high. Interestingly, the mRNA of GLT-1b is downregulated in the ventral 

hippocampus of uCMS animals; CEF has prevented this effect through an upregulation of GLT-1b 

transcript. In the ventral hippocampus, CEF seems to interfere significantly only with the GLT-1b 

isoform. These results suggest a balance effect between both isoforms. Indeed, GLT-1 protein 

levels in the ventral DG do not change when comparing each group to respective controls – 

CT+CEF vs CT, uCMS vs CT and uCMS+CEF vs uCMS. This constant stage of GLT-1 protein level 

in the DG is probably reflecting the balance observed in the gene transcript in the remaining 
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hippocampus. Therefore, it may be hypothesized that depending on the physiological state of the 

animal and on the sub-region of the hippocampus analyzed, CEF appears to modulate the GLT-1 

transporter isoforms transcript affected by the given condition. In further analysis, 

microdissection of hippocampal subregions should be performed to access intra-hippocampal 

molecular differences. 

 

Since dendritic atrophy in the DG may underlie the depressive-like behavior caused by uCMS- 

exposure (Bessa et al., 2009b; Mateus-Pinheiro et al., 2013a; Patrício et al., 2014) the 

morphology of DG neurons was assessed. In the dorsal DG of the hippocampus a significant 

effect of CEF to prevent dendritic atrophy and spine densities was observed in uCMS animals. In 

fact, this effect of CEF was similar to the effect of commonly used ADs on neuron dendritic 

remodeling in comparison to animals exposed to chronic stress (Bessa et al., 2009b). However, 

the effect of CEF seems to be specific to the dorsal DG, since in the ventral DG this preventive 

effect was not clear. It was previously evidenced that along the DG septo-temporal axis there is a 

heterogeneous structure and function (Kheirbek et al., 2013; Tanti and Belzung, 2013), being 

the dorsal DG responsible mainly for learning and memory processes, whereas ventral DG is 

related to anxiety and emotional regulation (Tanti and Belzung, 2013). Regarding the behavioral 

results for the prevention groups, it would be also expected an impact on the ventral DG neuronal 

3D morphology. Although ADs promote region specific effects on adult hippocampal 

neurogenesis along the DG septo-temporal axis (Felice et al., 2012; O’Leary et al., 2012), the 

implication of morphological changes in the DG granule neurons is yet to be fulfilled. 

Interestingly, it has been recently recognized that morphological and physiological changes along 

the septo-temporal axis of the hippocampus are contrastingly affected by stress exposure (Pinto 

et al., 2014). In summary, the decreased GLT-1 protein expression in the dorsal DG of uCMS 

animals seems to match the observed total spines density decrease and dendritic atrophy. 

Importantly, CEF prevented these effects, which seem to correlate with the prevention of the 

anhedonic behavior induced by uCMS, thus being the major discovery of this study. Because the 

main carriers of GLT-1 are astrocytes, future work should tackle alteration in these cells, in the 

different conditions studied. In particular, astrocyte numbers and morphology should be 

compared with GLT-1 protein and transcript levels and correlated with CEF preventive effect. A 

direct correlation to astrocytic markers (such as GFAP) and GLT-1 levels should be expected. 
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Since CEF is used in the clinics as an antibiotic, it may be possible to ascribe some of the 

behavior observations to the alterations of the microbiome in the studied animals. Emerging 

evidence on the importance of stress-related microbiotic alterations in the CNS has been taken 

into consideration, suggesting bidirectional interplay between the gut and the brain (Foster and 

McVey Neufeld, 2013; Moloney et al., 2014). This interplay encompasses a communication 

between neuronal networks and hormonal signaling, including humoural signaling molecules, 

promoting an alteration of gastrointestinal and brain function (Mayer, 2011; Moloney et al., 

2014; Rhee et al., 2009). In fact, treatment with antibiotics can cause a fluctuation in the 

composition of an individual flora, as it has been reported to significantly reduce the microbial 

number and diversity in healthy adult mice (Bech-Nielsen et al., 2012). Although, antibiotic 

administration has been suggested to promote a beneficial effect on behavioral dimensions such 

as anxiety and exploratory behavior (Bercik et al., 2011), in our study CEF administration in 

control animals exerted an opposite effect causing higher anxious-like behavior in the EPM 

behavioral paradigm. In this case, the effect was not confirmed in additional anxiety tests, 

therefore this observation was rather inconclusive. It has already been described that the 

epithelial barrier of the gastrointestinal tract is compromised as a result of stress. As a 

consequence, the gastrointestinary tract permeability increases and translocation of gram-

negative bacteria across the mucosal occurs, leading to a further immune response 

characterized by the production of inflammatory mediators. These mediators could be correlated 

to an increase of IgM and IgA against LPS of enterobacteria on serum concentrations in MDD 

patients (Maes et al., 2008; Moloney et al., 2014). Moreover, a link between emotional stressors 

and negative alterations in the gut microflora has been revealed for both humans and animal 

studies (Bailey et al., 2011; Collins and Bercik, 2013; O’Mahony et al., 2009). In fact, in this 

study we could observe positive effects of CEF administration on anhedonic behavior of stressed 

animals. In infection animal models known to have altered microbiota profile, increased anxious-

like behavior is associated to a reduction in the BDNF mRNA or protein levels, which can be 

restored by treatment with probiotics (Bercik et al., 2010, 2011). This work can be transposed to 

AD treatment effects on restoring the levels of BDNF expression that is decreased after stress 

exposure (Duman and Monteggia, 2006; Martinowich and Lu, 2008). Furthermore, the use of 

CEF antibiotic to prevent or treat the installation of chronic stress suggests an effect not only on 

the behavioral mood domain but also on molecular levels of its target, the GLT-1 transporter. 



68 

 

Altogether, these findings help to support the emerging need to unveil the physiological 

causes of depression and therefore, to develop new strategies for novel therapeutics based on 

molecular targets involved in affected mechanisms, such as the GLT-1 transporter. Here, we 

have shown that CEF prevented the installation of chronic stress-related depressive behavior, by 

sustaining the levels of GLT-1 transporters in the dorsal DG. Under chronic stress-exposure, 

increase of excitatory neurotransmitter release seems to be counteracted by the action of GLT-1, 

which in turn seems to prevent the typical dendritic atrophy in the dorsal DG and consequent 

depressive-like behavior, typical of the model of depression used in this study. This work may 

pave the way to the development of new more directed drugs to target GLT-1 expression without 

possible secondary deleterious effects of the antibiotic on the microbiota-brain-gut axis and other 

systems.  
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5. FUTURE PRESPECTIVES 

The present work has explored the mechanisms by which ceftriaxone (CEF) antibiotic impacts 

on depression-related behavior, GLT-1 transcript and protein expression levels and also on 

dendritic remodeling. At this stage, a number of additional questions arise which should be 

addressed in future work: 

- The manifestation of the effects of stress remains inconclusive for behavioral paradigms 

such as open field (OF) or elevated plus maze (EPM), since the performance of controls is 

similar to that of stressed animals. Control animals may present a minor level of stress 

induced by the repetitive sham injections. Therefore, this possibility should be excluded by 

establishing an additional group of non-injected controls, in a future experimental set. 

 

- The interesting effects of CEF in the reversion of the cognitive deficits triggered by uCMS-

exposure should be further addressed, namely by seeking cellular and molecular 

correlates in brain areas responsible for these tasks (e.g. prefrontal cortex). 

 

- In order to complement the analyses of 3D morphological neuronal alterations, further 

astrocytic morphological changes should be accessed. In particular, at astrocyte numbers 

and morphology should be correlated with GLT-1 protein and transcript levels and 

compared to CEF preventive effects. A direct correlation to astrocytic markers (such as 

GFAP) and GLT-1 levels is expected. This evaluation could be performed by means of 

immunohistochemistry techniques such as 3,3'-Diaminobenzidine (DAB) staining or 

immunofluorescence double-lab§eling of these cells with glial fibrillary acidic protein 

(GFAP) and GLT-1 transporter. 

 

- Alternative methods for targeting overexpression of GLT-1 in astrocytes, by using a adeno-

associated virus type 8 (AAV8)-Gfa2 vector (Li et al., 2014) and characterization of CEF 

effects using a transgenic BAC-GLT-1-e-GFP reporter mice (Lepore et al., 2011) to access 

GLT-1 should be implemented. Indeed, during this project collaboration was established 

with the Thomas Jefferson University (Lepore lab) in order to exchange expertise in these 

models in the near future. 
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