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We consider resonant scatterers with large scattering cross-sections in graphene that are produced
by a gated disk or a vacancy, and show that a gated ring can be engineered to produce an efficient
electron cloak. We also demonstrate that this same scheme can be applied to tune the direction of
electron flow. Our analysis is based on a partial-wave expansion of the electronic wave-functions in
the continuum approximation, described by the Dirac equation. Using a symmetrized version of the
massless Dirac equation, we derive a general condition for the cloaking of a scatterer by a potential
with radial symmetry. We also perform tight-binding calculations to show that our findings are
robust against the presence of disorder in the gate potential.

I. INTRODUCTION

Analogies between light and electrons are known to be
at the origin of a plethora of interesting physical phe-
nomena in condensed matter and in optics. Interference
effects such as Anderson localization [1] and Fano reso-
nances [2] are just two examples of effects that have been
observed in both areas of Physics. In the last decade the
advent of metamaterials and the isolation graphene have
been fostering the discovery of novel fundamental phe-
nomena and applications based on the analogy between
light and electrons.

On one hand, the low-energy electronic excitations of
graphene [3], are described by Dirac fermions with linear
dispersion relation similar to photons [4]. This “optics-
like" dispersion relation has been exploited in the devel-
opment of electronic analogues of photonic devices such
as beam-splitters, wave-guides, and Fabry-Perot inter-
ferometers in ballistic graphene [5, 6]. Graphene-based
electronic analogues of optical applications grounded on
metamaterials, such as perfect lenses, have been also pro-
posed [7, 8].

On the other hand progresses in the field of meta-
materials [9] have allowed the development of elec-
tromagnetic cloaks to achieve invisibility, and stimu-
lated the quest for their electronic analogues. Among
the existing approaches to achieve invisibility one can
highlight the coordinate-transformation method [10–12]
and the scattering cancellation technique [13–20]. The
coordinate-transformation method requires metamateri-
als with anisotropic and inhomogeneous profiles, which
are able to bend the incoming electromagnetic radiation
around a given region of space, rendering it invisible to
an external observer. This method has been first real-
ized experimentally for microwaves [12], and later for in-
frared and visible frequencies [21, 22]. Extensions of this
method to matter waves do exist [23–26], proving that
it is possible to reroute the probability flow around a
scatterer. However, as in the electromagnetic case these
electronic analogues require cloaking layers with extreme
material parameters, such as anisotropic potential pro-

files and/or infinite values for the effective mass, impos-
ing limitations to practical implementations in condensed
matter systems. Alternatively, the scattering cancella-
tion technique for electromagnetic waves relaxes many of
these constraints in terms of metamaterial requirements.
It uses an homogeneous and isotropic plasmonic layer
in which the induced polarization vector is out-of-phase
with respect to the electric field so that the in-phase con-
tribution given by the cloaked object may be partially or
totally canceled [13, 14, 17, 27]. The scattering cancela-
tion technique was first experimentally implemented for
microwaves [15, 18], and later extended to acoustic [28],
and matter waves [29–31]. One of the proposals for mat-
ter waves cloak, based on the expansion of partial waves
and later extended to graphene [32], demonstrates that
core-shell nanoparticles embedded in a host semiconduc-
tor with a size comparable to electronic wavelengths can
be “invisible” to incoming electrons [29]. To achieve this
effect the contribution of the first two partial waves must
vanish simultaneously so that the total scattering cross
section can be smaller than 0.01% of the physical cross
section. As we shall see, a similar effect can be exploited
in graphene for the cloaking of electronic scatterers.

Charge carriers in graphene have high mobility, and
their peculiar properties cause small transport cross-
sections as a result of back-scattering suppression. How-
ever, different types of defects, such as vacancies and co-
valently bonded adatoms, can form resonant states at, or
close to, the Dirac point [33–35]. Resonant states increase
the scattering cross-section by many orders of magnitude
and hence may limit the carrier’s mobilities. They can
also can be used to modify the electronic properties in
the vicinity of the Dirac point.

In the present article we combine the idea of “electronic
cloaking” with graphene’s peculiar electronic properties
to propose an alternative and efficient scheme for achiev-
ing electronic invisibility of resonant scatterers. We show
that sharp transitions between invisible and resonant
states occur for some values of the potential, which can
be viewed as an electronic analogue of optical comblike
states in coated scatterers [36]. We consider two dif-
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ferent resonant scatterers: an engineered resonant state
produced by a top gate and a vacancy. We demonstrate
that the “electron cloak” scheme proposed in Refs. [29, 32]
is strongly facilitated by the fact that the first two phase
shifts, which give the dominant contribution in the treat-
ment of electron scattering by a core-shell impurity, are
identical for graphene. As a result, one just need to tune
one of the scattering potentials to vanish the scattering
cross-section, in contrast to the case where the impu-
rity is embedded in a host semiconductor [29]. When the
sub-lattice symmetry is broken in graphene, e.g. as in the
case a vacancy, the first two phase shifts are no longer
equal so that energy selective cloaking is more difficult
to achieve. However, it is highly efficient at the Dirac
point, where the resonant state is located. We also de-
rive a general condition for the cloaking of a scatterer by
a potential with radial symmetry using a symmetrized
version of the massless Dirac equation. We extend the
analysis to tight-binding calculations and show that our
results are robust against the presence of disorder. Our
findings reveal that electron cloaks are not only more eas-
ily implemented in graphene, but also that they could be
applied to selectively tune the direction of electron flow
in this material. We suggest that new devices may be
engineered by exploiting the cloaking effect.

The article is organized as follows: in section II we
introduce the partial-waves formalism for graphene, and
find the conditions for resonant scattering produced by a
gate potential and a vacancy. In section III we analyze
the effect of surrounding the two types of resonant scat-
terers with a potential ring, leading to cloaking. We also
derive a general condition for cloaking by a potential of
radial symmetry; the example of cloaking of a void by a
δ−function potential is provided. In section IV we per-
form tight-binding calculations to demonstrate that our
findings are robust against disorder in the ring, even in
the presence of non-perfect potentials.

II. SINGLE POTENTIAL AND THE
RESONANT SCATTERING REGIME

We consider a monolayer of graphene with a gated disk
that works as a scattering center, and we choose its po-
tential to maximize its total cross section. This can be
achieved in the resonant scattering regime. Our starting
point is the continuum-limit Hamiltonian of graphene

H0 = ~vF (τzσxpx + σypy), (1)

where p = (px, py) is the momentum operator around
one of the two inequivalent Dirac points K and K ′,
vF ≈ 106 m/s is the Fermi velocity, σ and τ denote Pauli
matrices, with σz = ±1 (τz = ±1) describing states on
A-B sublattice (atK-K ′). For such large scatterers inter-
valley scattering is negligible and, in the long wavelength
limit, for potentials with radial symmetry, the scatterer is

described byHV = VΘ(R−r) where V is a constant, R is
the radius of the scatterer and Θ(.) is the Heaviside func-
tion. Here we use the partial-wave method to calculate
the cross section of scattered waves by a radially sym-
metric potential. In what follows, we derive the partial-
wave scattering amplitudes and from their knowledge, all
gauge-invariant quantities can be determined unequivo-
cally. In cylindrical coordinates, the components of the
graphene spinor Ψ(r) = (ψA(r), ψB(r))T are decomposed
in terms of radial harmonics

ψA(r) =

∞∑
m=−∞

gAm(r)eimθ (2)

ψB(r) =

∞∑
m=−∞

gBm(r)ei(m+1)θ , (3)

where θ ≡ arg(kx + iky), k is the wavevector, m is the
angular momentum quantum number and A(B) repre-
sents the sublattice. After separating the variables of the
graphene plus impurity Hamiltonian H′+HV , we obtain
two coupled first order equations for the radial functions
gAm(r) and gBm(r), where σ, τ are Pauli matrices for sub-
lattice and valley respectively. τz is conserved and thus
we can focus on states at K valley; scattering ampli-
tudes for states at K ′ are quantitatively the same. In
a partial-waves expansion, the asymptotic form for the
spinor wave-function is given by [34, 37]

ψλ,k(r) =

(
1
λ

)
eikr cos(θ) +

f(θ)√
−ir

(
1

λeiθk

)
eikr

(4)

where λ = ±1 denotes the carrier polarity and f(θ) is
scattering amplitude. Using a partial wave analysis, we
can relate f(θ) with the phase-shifts δm.

f(θ) =

√
2

πk

∞∑
m=−∞

eimθeiδm sin δm. (5)

The differential cross section is given by dσ
dθ = |f(θ)|2

and the total cross section σ(kR) and transport cross-
section σT (kR) are given by

σ(kR) =

ˆ
dσ

dθ
dθ =

4

k

∞∑
m=−∞

sin2 δm, (6)

σT (kR) =

ˆ
dσ

dθ
[1− cos(θ)]dθ =

2

k

∞∑
m=−∞

sin2 (δm − δm+1).

(7)

The d. c. conductivity of graphene layer at zero temper-
ature can be obtained directly from σT (kR) [34].

To identify the phase-shifts, we write the spinors for
the region inside and outside the potential as a super-
position of angular harmonics. For r > R, we have
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E = λ~vF kout and the partial-wave m is a sum of an
incoming and a scattered wave according to

ψout
m (r, θ) = Am

(
Jm(koutr)e

imθ

iλoutJm+1(koutr)e
i(m+1)θ

)
+Bm

(
Ym(koutr)e

imθ

iλoutYm+1(koutr)e
i(m+1)θ

)
, (8)

whereas for r < R we have

ψin
m(r, θ) = Cm

(
Jm(kinr)e

imθ

iλinJm+1(kinr)e
i(m+1)θ

)
, (9)

where kin ≡ |E − V |/~vF . The boundary condition
ψin
m(R, θ) = ψout

m (R, θ) leads to two equations. The so-
lution of these equations determine the ratio Bm/Am.
It is straightforward to show that the phase-shift δm
for partial-wave m relates to the Bm/Am according to
Bm/Am = − tan(δm) (for more details about partial-
waves in graphene, see references [34, 37, 38]).

The Dirac equation with a radial scalar potential is
symmetric under exchanging gAm and gB−m−1, which leads
to the absence of back-scattering. The latter also corre-
sponds to the relation δ−m = δm+1 between phase-shifts.
For small energies kR � 1, channels m = −1, 0 give the
main contributions to f(θ).

For a fixed energy of the incoming electron, we can tune
the potential V to produce a resonant scatterer that will
effectively trap the electrons inside the disk, which occurs
for phase-shifts of ±π/2. Figure 1 (a) shows the phase
shifts of three partial waves; there are two resonances at
different values of electrostatic potential, associated to
the contributions of δ0 = δ−1 and δ1 = δ−2.

The transport cross-section as a function of the po-
tential (Figure 1 (b)) presents pronounced peaks that
occur exactly at the maximum of the phase- shifts, char-
acterizing the resonant scattering regime. Figure 1(b)
reveals that the transport cross-section exhibits asym-
metric, Fano-like resonances associated to the modes for
m = −2, 1.

A. Circular void : another source of resonant
scattering

There are various ways to induce resonant scattering
in graphene. One possibility is the creation of vacancies
that give rise to zero-mode states [33, 39, 40]. Vacancies
can be engineered by irradiating high-energy ions [41, 42].
This method allows the controlled incorporation of reso-
nant scatterers, and can be used to taylor the electrical,
mechanical, and magnetic properties of graphene [41, 42].
A vacancy in graphene can be modeled by a void with
zig-zag edges [38, 43]. The boundary conditions for the
wave-function at a void of radius R with zig-zag edges is
given by ψA(r = R) = 0 for the A spinor component. In

(a)
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Figure 1: (a) phase shifts δ0 (black), δ1 (red) and δ2
(blue) and (b) transport cross-section σT ( 6 first partial
waves are considered) as a function of the electrostatic

potential V for E = 0.02 eV and R = 10 nm.

this case, if we apply the boundary conditions to Eq. 8,
we obtain

δm = − arctan

(
Ym(koutR)

Jm(koutR)

)
(10)

where E = λout~vF kout. The zig-zag edges break sub-
lattice symmetry and the relation between the δm and
δ−m−1 is not valid anymore. As it can be seen from Fig. 2,
the main contribution to the scattering cross-section at
low energies is given by δ0 [38], that gives rise to resonant
scattering for E → 0.

III. CLOAKING RESONANT SCATTERERS

After preparing the system in the resonant scattering
regime, which maximize the transport cross-section, we
now proceed to discuss the cloaking scheme for the scalar
potential. We keep the original potential V (now called
V1) in the disk of radius R (now called R1) , and include
a new potential V2 in a ring of internal radius R1, and
external radius R2 that is used to tune the cloaking mech-
anism (see Fig. 3). The basic idea is the following: we
change V2 in such a way that δm vanishes, so that σ ∼ 0.
Differently from a normal 2DEG, where it is necessary to
tune V1 and V2 to produce δ0 = δ1 = 0,±π [29], here it
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Figure 2: Transport cross-section for a vacancy of radius
R1 = 1 nm as a function E considering the 6 first partial
waves (solid) and and a single partial-wave δ0 (dashed) .

suffices to modify one of the phase-shifts, as δ0 = δ−1 are
the main contributors to the cross-section; hence when
they are zero, the total cross-section goes effectively to
zero (it is reduced by several orders of magnitude).

Figure 3: Sketch of the problem, showing the incoming
electron, the impurity, and the cloak.

We perform the same type of calculations described
in the previous section but instead of defining the wave-
functions in two regions, we now have three: Outside the
potentials (region 3), for r > R2, we have

ψ3
m(r, θ) = Am

(
Jm(k3r)e

imθ

iλ3Jm+1(k3r)e
i(m+1)θ

)
+Bm

(
Ym(k3r)e

imθ

iλ3Ym+1(k3r)e
i(m+1)θ

)
. (11)

For R2 < r < R1 (region 2) we have

ψ2
m(r, θ) = Cm

(
Jm(k2r)e

imθ

iλ2Jm+1(k2r)e
i(m+1)θ

)
+Dm

(
Ym(k2r)e

imθ

iλ2Ym+1(k2r)e
i(m+1)θ

)
, (12)

whereas for r < R1 (region 1) we have

ψ1
m(r, θ) = Em

(
Jm(k1r)e

imθ

iλ1Jm+1(k1r)e
i(m+1)θ

)
, (13)

where k1 ≡ |E − V1|/~vF , k2 ≡ |E − V2|/~vF and
k3 ≡ |E|/~vF . The boundary conditions ψ3

m(R2, θ) =

ψ2
m(R2, θ) and ψ1

m(R1, θ) = ψ2
m(R1, θ) lead to four equa-

tions. The solution of these boundary conditions deter-
mine Bm/Am and consequently δm.

To highlight the effects of cloaking, we choose V1 to
maximize the initial cross-section, which is related to the
resonant scattering through the disk of ratio R1. Then,
we tune the potential of the ring V2 and its radius R2

in order to minimize the cross-section. Let us start with
the situation described in the Figure 1, where we have a
disk with radius R1 = 10 nm and, for an incident beam
with energy E = 0.02 eV (a value close to the Dirac
point, which can be easily accessible for graphene on h-
BN), resonant scattering occurs for some specific values
of V1. For V1 = 199 meV and V1 = −114 meV, the
broad peaks in the transport cross-section are related to
the resonance of the low-order phase-shift, δ0 = δ−1. On
the other hand, for V1 = 282 meV and V1 = 221 me, we
can see a sharp peak in consequence of the resonance of
the phase-shifts δ1 = δ−2. Next, we tune the potential
and the radius of the ring to investigate the maximal
decrease in σT in these particular situations. To identify
the best cloaking scenarios, we analyze the behavior of
the cloaking efficiency, which is the ratio between the
transport cross-sections with, σT , and without, σT0, the
ring, σT /σT0.

Figure 4(a) shows a density plot of the cloaking effi-
ciency as a function of the potential V2 and radius R2

of the ring, for a fixed value of E and of the transport
cross-section for the resonant scatterer σT 0 = 132 nm
(V1 = −114 meV). Panel 4(b), which is a lateral cut
of Figure 4 (a) for R2 = 20 nm, reveals an impressive
suppression of the transport cross-section of 3 orders of
magnitude.

In view of these results, we conclude that the cloak
is very efficient in this setup. Here, we consider a sce-
nario where both the resonant scattering and the cloak-
ing are engineered with the use of tunable back and top
gates [32]. In this particular case, it is necessary to work
with disks and rings with radius in the order of tens of
nm. Best cloaking efficiency, of the order of 10−5, can
be obtained with thin layers with a distance of ∼ 2 nm
between internal and external radius. In spite of the fact
that geometries with these sizes may be difficult to fab-
ricate, fortunately there are some regions in the parame-
ters’ space that provide a very effective cloaking for more
realistic values of R2 and V2.

Moreover, for fixed R2, there are large oscillations of
the value of the transport cross-section as a function
of the potential of the ring. These variations in the
transport cross-section allow us to drastically change the
transport regime: from cloaking to resonant scattering
by applying small changes in the gate voltage V2.

Figure 5 (a) reports σT /σT0 as a function of the energy
of the incident beam E and V2. We can see that cloak-
ing is more efficient at low energies, close to the Dirac
point, where the changes in transport cross-section are
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Figure 4: (a) Cloaking efficiency as a function of V2 and
R2 for E = 0.02 eV, R1 = 10 nm and V1 = −114 meV.
(b) Cloaking efficiency for the same parameters of (a)

and R2 = 20 nm.

more pronounced. If now V2 is set to minimize σT /σT0,
Fig. 5 (b) shows the cloaking efficiency as a function of
the energy and highlights the energy selective nature of
cloaking: The original resonance was located at E = 0.02
eV, where the cloaking is more efficient.

To obtain information on the direction of the scatter-
ing process, we mapped the differential cross-section as
a function of the scattering angle θ and V1 (see Figure
6 ). The absence of back-scattering is very clear for any
value of V2. Besides that, we can see that the cloaking
is isotropic and there are changes in the scattering in-
tensity according to the scattering angle in the resonant
regime. We conclude that tuning V2 allows the control
of the scattering angle, demonstrating the feasibility of
directional scattering.

A. Cloaking vacancies

We also investigate the cloaking mechanism for vacan-
cies, a different source of resonant scattering. Again we
keep the original vacancy with a radius of R1 = 1 nm

Figure 5: (a) Cloaking efficiency as a function of V2 and
E for R1 = 10 nm, V1 = −114 meV and R2 = 20 nm.
(b) Cloaking efficiency as a function of E for the same

parameters of (a) and V2 = 286 meV.

and include a new potential V2 in a ring of radius R1 and
R2 (R2 > R1) , or equivalently, a disk of radius R2. We
use the potential to tune cloaking, maintaining the basic
idea: we change V2 in such a way that it leads to σ ∼ 0.
The two boundary conditions ψ3

m(R2, θ) = ψ2
m(R2, θ)

and ψ2
m(R1, θ) = 0 lead to the ratio Bm/Am, and conse-

quently δm.
The density plot of the cloaking efficiency as a func-

tion of V2 and R2, shown in Figure 7a, reveals that the
most efficient cloaking occurs for rings that are 1-5 nm
thick. As discussed previously, thin cloaking layers based
on back and top gates are difficult to engineer. Conse-
quently, we focus the rest of our analysis on thicker rings,
of the order of R2 ∼ 10-20 nm. For large values of R2,
there are strong oscillations of the scattering intensity,
going from strong scattering to transparent states with
small changes in V2( see Figure 7b). The distance be-
tween the peaks in Figure 7b is set by external radius R2.
Remarkably, strongly scattering states closely coupled to
invisible ones also exist in photonics systems, where the
scattering cross-section of multi-layered plasmonic covers
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Figure 6: Differential cross-section as a function of V2
and the scattering angle θ for E = 0.02 eV, R1 = 10 nm,

V1 = −114 meV and R2 = 20 nm

may exhibit this so-called “comblike” behavior [36]. Here
a similar behavior in the cross-section occurs as a func-
tion of the external potential, and not as a function of
the incident wavelength as in the photonics case. This
result would allow one to dramatically modify electron
scattering in graphene by varying an external parameter.

An important difference between the disk and the void
cases is the selectivity in energy. In the first scenario,
there is a reduction in the value of σT of 3 orders of
magnitude at the specific energy where the resonant state
is located, which in turn can be tuned by the potential
V1. For the vacancy, the resonance is always located at
the Dirac point and cloaking only occurs in the vicinity
of E = 0 (see Figure 8 a). For energies very close to
the Dirac point, the cloaking is very efficient, as shown
in Figure 8 b. However, for the energies discussed in the
previous section, the transport cross-section is reduced
to only 10% of its original value.

Considering just the first partial-wave, It is possible
to obtain a simplified expression for maximum cloaking
(δ0 = 0) at the Dirac point (E = 0). The condition reads:

J1(x)Y0(αx)− J0(αx)Y1(x) = 0, (14)

where x = |V2|R2

~vF and α = R1

R2
. This equation is satisfied

for a sequence of increasing values of x for a given α < 1.
In the limit x� 1 the above equation acquires the form

cos[x(1− α)] ≈ 0 , (15)

whose solution is

x =
(2n+ 1)π

2(1− α)
, (16)

with n = 0, 1, 2, . . ., and it is consistent with Figures 7
and 8.

Figure 7: (a) Cloaking efficiency as a function of V2 and
R2 for E = 2 meV and a vacancy of radius R1 = 1 nm;
(b) Cloaking efficiency for the same parameters of (a),

E = 1 meV and R2 = 20 nm.

B. Condition for cloaking by an arbitrary potential

In this subsection an integral equation for the phase-
shifts is derived and a general condition for the vanishing
of the phase-shifts is obtained. For a general potential
V (r) we seek solutions of the Dirac equation in the form

ψm(r, θ) =

(
F (r)eiθm

iG(r)eiθ(m+1)

)
. (17)

Acting with the Hamiltonian H0 + V (where H0 is the
Dirac Hamiltonian) in the above general form of ψm(r, θ)
we end up with two coupled first-order differential equa-
tions:

G′ +
m+ 1

r
G = εF , (18)

F ′ − m

r
F = −εG , (19)

where ε = (E−V )/(vF~). We benefit from symmetrizing
the two last equations by introducing two new functions,
G = g/

√
r and F = f/

√
r. These lead to

g′ +
j

r
g = εf , (20)

f ′ − j

r
f = −εg . (21)
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Figure 8: (a) Cloaking efficiency as a function of V2 and
E for a vacancy of radius R1 = 10 nm and R2 = 20 nm.
(b) Cloaking efficiency as a function of E for the same

parameters of (a) and V2 = 87 meV.

where j = m+ 1/2. For zero potential, we write

g′0 +
j

r
g0 = ε0f0 , (22)

f ′0 −
j

r
f0 = −ε0g0 , (23)

where ε0 = E/(vF~). We can now combine the two sets
of equations, with and without the potential, by an ap-
propriate multiplication of the equations with the inter-
action by the spinor components with zero potential and
vice-versa. This procedure leads to

d

dr
(f0g) = f0fε−gg0ε0 ,

d

dr
(g0f) = −g0gε+ff0ε0 , (24)

which we can subtract from each other to obtain

d

dr
(f0g − fg0) = − V

vF~
(gg0 + f0f) . (25)

Integrating the preceding equation from zero to infinity
and recalling that f0 and g0 vanish at r = 0 we obtain

lim
x0→∞

[f0g−fg0]x0 = − 1

vF~

ˆ ∞
0

drV (r)(gg0+f0f) (26)

We also note that for r → ∞, the scattering states are
simply related to the asymptotic forms of the Bessel func-
tions as

f →
√

2

kπ
cos(kr − λm + δm) , (27)

g →
√

2

kπ
sin(kr − λm + δm) . (28)

Using the latter asymptotic forms, Eq. (26) reads

2

kπ
sin δm = − 1

vF~

ˆ ∞
0

drV (r)(gg0 + f0f) . (29)

Now f0 =
√
rJm(kr) and g0 = λ

√
rJm+1(kr), and we

obtain

sin δm = −πk
2

1

vF~

ˆ ∞
0

dr
√
rV (r)[fJm(kr)+gλJm+1(kr)] .

(30)
We note that there is an alternative route for deriving
the last relation, but it is a much more complex pro-
cedure that uses the Lippamnn-Schwinger equation and
the Green’s function of the Dirac Hamiltonian. For a
potential of finite range r = R, we have

sin δm = −πk
2

1

vF~

ˆ R

0

dr
√
rV (r)[fJm(kr)+gλJm+1(kr)] .

(31)
From this equation we extract the general condition that
is sin δm = 0 (cos δm = 1):

0 =

ˆ R

0

dr
√
rV (r)[fJm(kr)+gλJm+1(kr)] ≡ K̃m , (32)

which is the central result of this subsection, since it cor-
responds to the general invisibility condition for an arbi-
trary potential V (r). Let us consider a simple application
of the above result taking into account a potential that
is constant up to r = R. Then Eq. (32) leads to
ˆ R

0

drr[Jm(pr)Jm(kr) +Jm+1(pr)Jm+1(kr)] = 0 , (33)

where p = (E − V )/(vF~) (we assumed E > 0 and E >
V ). Performing the integral, we obtain the condition

0 = pJm−1(pR)Jm(kR)− kJm−1(kp)Jm(pr) , (34)

which is the same we obtain from the phase-shift analysis.
In the above form, the result (32) is both a condition

for the vanishing of the phase-shift caused by a potential
and a cloaking condition if the potential can be sepa-
rated into two (or more) different contributions that can
be tuned separately, as discussed in the previous exam-
ples. Finally it should be appreciated that condition (32)
depends only on the value of the wave function in the re-
gion where the potential is finite. In the next subsection
we discuss an intriguing problem, the ability of a spatially
short-range potential to cloak a resonant scatterer.
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C. Cloaking a void with a δ−function potential

Let us consider the cloaking of a void by a δ−function
potential of the form V (r) = V0δ(r − R0); we also de-
fine v0 = V0/(vF~). The fact that the Dirac equation is
a first-order differential equation and the δ−potential is
rather singular implies that the boundary condition can-
not be the continuity of the spinor at the location of the
potential. The radial part of the Dirac equation can be
written in matrix form as

dS
dr

= −iεσyS + iσyvS −
j

r
σzS ≡ Ĝ(r)S , (35)

where ST = (f, g) and v = V/(vF~). Formally, the latter
equation can be integrated as

S = Tre
´ r
r0
dr′Ĝ(r′)S(r0) , (36)

where Tr is the radial position-ordering operator, defined
as

Tr[Ĝ(r1)Ĝ(r2)] = θ(r1 − r2)Ĝ(r1)Ĝ(r2)

+ θ(r2 − r1)Ĝ(r2)Ĝ(r1) . (37)

Performing the integral, which is now a well defined quan-
tity, the spinor right after the position of the δ−function
reads

S(R0+η) = Tre
´R0+η

R0−η
dr′Ĝ(r′)S(R0−η) = eiσyv0S(R0−η) ,

(38)
and η = 0+. Eq. (38) embodies the boundary condition
obeyed by the spinor at a δ−function potential. Using
Lagrange-Silvester formula, we can compute the value
of the exponential as follows: for a function f(M) [one
should not confuse the spinor component f with f(M)]
of a 2× 2 matrixM we have that

f(M) = f(m1)
m2 −M
m2 −m1

+ f(m2)
m1 −M
m1 −m2

, (39)

where m1/2 are the two eigenvalues of the matrix M.
Applying this result to our case we obtain

f(iσyv0) = cos v0 + iσy sin v0 . (40)

Thus, the boundary condition obeyed by the spinor reads

S(R0 + η) = (cos v0 + iσy sin v0)S(R0 − η) . (41)

We note that in this case the spinor is not continuous, as
we had anticipated, and therefore we need a prescription
for integrating the δ−function in Eq. (30). To that end,
we have to assume that both spinors, that to the left
and that to the right of the potential, contribute half to
the integration. Furthermore, we should not forget that
the spinors at the right and at the left of the δ−function
are connected by Eq. (41). If this is done, then the
previous method yields the same result as the phase-shift

analysis. We should stress that for this problem the “free”
solutions are those referring to the scattering states in the
presence of the void. Therefore, Jm(kr) and Jm+1(kr) in
Eq. (30) should be replaced by the spinor components
of the scattering states in the presence of the resonant
scatterer alone, that is, by:

Jm(kr)→ cos δ0m[Jm(kr) + tan δ0mYm(kr)] , (42)

where tan δ0m is defined by Eq. (10). In the presence of
the δ−function potential, the spinor to the right of the
potential has to have the form

ψm(r, θ) = cos δm

[(
Jm(kr)eiθm

iJm+1(kr)eiθ(m+1)

)
− tan δm

(
Ym(kr)eiθm

iYm+1(kr)eiθ(m+1)

)]
. (43)

At low energies, we find the following conditions that
make the first two first phase-shifts vanish:{

cos v0 −R0k[1 + 2 ln(R/R0)] sin v0 = 0 , l = 0
−R2k2 cos v0 + 1

4R0(3R2 − 2R2
0)k3 sin v0 = 0 , l = 1

.

(44)
Note that for v0 ≈ π/2 the cloaking condition is purely
geometric: for δ0 = 0, we have the condition R0 =

√
eR,

whereas for δ1 = 0 we obtain the relation R0 =
√

3/2R.
The two numbers do not differ much from each other.
Therefore, we can almost cancel the two phase shifts at
the same time.

In Figs. 9 and 10 we depict density plots of the func-
tions |K̃0| and |K̃1|. The regions where |K̃m| = 0 corre-
spond to the vanishing of sin δm and therefore to a cloak-
ing effect on the void by the δ−function potential. In
Fig. 9 a density plot is depicted as function of R0 and
k. The vertical dark blue regions with |K̃m = 0| corre-
sponds to the R0 =

√
eR and R0 =

√
3/2R for |K̃0| and

|K̃1|, respectively. Interesting enough we see that these
geometric conditions for cloaking hold as long as kR . 1.
In Fig. 10 a density plot is depicted as function of R0

and v0. As in the previous figure we see dark blue regions
where |K̃m| = 0 around v0 ≈ π/2.

IV. TIGHT-BINDING CALCULATIONS

To confirm our predictions and to test the robustness
of the cloaking against disorder, we also model our sys-
tem with a tight-binding Hamiltonian, and use the ker-
nel polynomial method (KPM) [44] to calculate the local
density of states of a graphene sheet [45]. This real-space
approach allows us to introduce gated regions with arbi-
trary geometries. Thus, we consider the possibility of
having a gate potential without perfect radial symme-
try by introducing roughness to the ring potential. The
Hamiltonian reads

H = −t
∑
〈i,j〉

eiφijc†i cj + V1
∑
i∈R1

c†i ci + V2
∑
i∈R2

c†i ci (45)



9

Figure 9: Density plot of |K̃m|, with R = 2.8 Å, and
v0 = π/2, as function of k and R0. Top panel: |K̃0|;

bottom panel: |K̃1|.

where ci is the annihilation operator of electrons on site
i where t ≈ 2.8 eV is the hopping energy between nearest
neighbors (NN) sites in a honeycomb lattice. V1 is the
radial potential and V2 is the potential of the ring.

For a tight-binding hamiltonian with N=2× 600× 600
sites and periodic boundary conditions, we follow the
same scheme that was discussed in the previous sections:
we consider a disk of radius R1 = 8a where a is the lat-
tice constant of graphene and tune V1 to obtain a quasi-
bound state inside the disk, as illustrated in Figure 11 for
V1 = 0.45t, which is equivalent to the resonant scatter-
ing regime. We then vary V2 inside the ring with radius
R1 = 8a and R1 = 16a to maximize the cloaking. In Fig-
ure 11 b, the quasi-bound state disappears, highlighting
the cloaking efficiency (even in the presence of disorder,
as we shall see in in the following). Finally, we introduce
roughness in the external side of the ring and compare
the local density of states with (Figure 11 c) and without
disorder (Figure 11 b). The cloaking is highly efficient in
both situations, demonstrating the robustness of our re-
sults against disorder, which is intrinsic to the fabrication

Figure 10: Density plot of |K̃m|, with R = 2.8 Å, and
k = 0.034 1/Å (corresponding to Vg = 50 V in a

graphene FET on SiO2), as function of v0 and R0. Top
panel: |K̃0|; bottom panel: |K̃1|.

process. The same procedure can be repeated in the case
of the vacancy and the results were found to be similar.

V. CONCLUSIONS

In conclusion, we have envisaged novel, alternative
electronic cloaking mechanisms in graphene. These
mechanisms are based on drastically reducing the scat-
tering cross-section of resonant scatterers in graphene,
which can be either an engineered resonant state pro-
duced by a top gate or a vacancy. Using a partial-wave
expansion of the electronic wave-functions in the contin-
uum approximation, described by the Dirac equation, we
demonstrate that electronic cloaking is very efficient; the
reduction in the scattering cross-section can be as im-
pressive as 3 orders of magnitude. In the particular case
of the resonant state, we show that cloaking is strongly
facilitated by the fact that the first phase shifts, which
give the dominant contribution to electron scattering, are
identical for graphene. Hence one just need to tune one of
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(a)

(b)

(c)

log(ρi)

Figure 11: Logarithm of the local density of states for
E = 0.00 eV. Panel (a): V1 = 0.45t V2 = 0. Panels (b)
and (c) V1 = 0.45t V2 = 0.23t. The sites with Vi = V1

are black while the sites with Vi = V2 are green.

the scattering potentials to reduce significantly the scat-
tering cross-section, this in contrast to other electronic
cloaking schemes in graphene proposed so far [29]. We
also show that sharp transitions between invisible and
strongly scattering states occur for some values of the po-
tential. We suggest that this result, which can be viewed
as an electronic analogue of optical comblike states in
coated scatterers [36], could be explored in applications
aiming at tuning the electron flow in graphene. Using
a symmetrized version of the massless Dirac equation,
we derive a general condition for the cloaking of a scat-
terer by a potential with radial symmetry. By means
of tight-binding calculations, we show that our findings

are robust against the presence of disorder. Altogether,
our results reveal that electron cloaks are not only more
easily achieved in graphene, but also that they could be
applied to selectively tune the direction of electron flow
in graphene by applying external gate potentials. As a
result, we hope that could serve as the basis for designing
novel, disruptive electronic devices.
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