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DEEP LEARNING FOR GRADIENT FLOWS USING
THE BREZIS–EKELAND PRINCIPLE

Laura Carini, Max Jensen, and Robert Nürnberg

Abstract. We propose a deep learning method for the numerical solution of
partial differential equations that arise as gradient flows. The method relies
on the Brezis–Ekeland principle, which naturally defines an objective function
to be minimized, and so is ideally suited for a machine learning approach
using deep neural networks. We describe our approach in a general framework
and illustrate the method with the help of an example implementation for the
heat equation in space dimensions two to seven.

1. Introduction

In this paper we advocate a deep learning approach for solving parabolic partial
differential equations (PDEs)

ut + ∂φ(u) = f ,

that arise as evolution equations for gradient flows. We exploit the variational
principle of the seminal papers by Brezis and Ekeland, [2,3], now commonly known
as the Brezis–Ekeland principle, [17, 19]. We also refer to [21] for related work, as
well as to [7] for alternative variational formulations for large classes of PDEs.

Using neural networks for the numerical solution of PDEs has become increasingly
popular over the last decade. An advantage of neural network-based approaches
is their suitability for high-dimensional problems. For a comprehensive review
of current developments we refer to [1, 12]. Among currently popular techniques
are methods based on residual minimization, e.g. see [15, 16, 18], and on the
reformulation as a backward stochastic differential equation, e.g. [8, 9, 10,14].

Most relevant for this work are variational approaches. For an elliptic problem, E
and Yu, [6], proposed a deep learning method based on a variational principle that
leads to a natural optimization framework. An approach connecting variational
principles with convex duality for stationary equations was taken in [11], which
mirrors some aspects of our work for gradient flows.

The aim of our approach is three-fold:
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(1) Machine learning approaches have been criticized for their less developed
methodology to bound, or at least estimate, the approximation error. It is
therefore interesting that the minimum of the Brezis–Ekeland functional,
which is minimized during the learning process, is guaranteed to be zero
for the exact solution, thus providing an error measure that is known at
the point of computing the neural net approximation.

(2) Adversarial networks have very successfully been applied across multiple
problem classes of machine learning. We were intrigued by the question
whether duality can be a context in which the concept of adversarial
networks is translated to partial differential equations as well as to convex
analysis, by introducing a neural network for the primal and another one
for the dual problem. In a resulting min-max formulation the training
stages of the respective networks take opposing, or adversarial, roles in
finding the value of the joint loss functional.

(3) Finally, we wish to construct a method which takes advantage of the specific
structural properties of gradient flows, based on the relevance of these
properties in the literature for the construction of finite element methods
for time-dependent PDEs.

The outline of the remainder of the paper is as follows: in section 2 we introduce
gradient flows and the Brezis–Ekeland principle; in section 3 we formulate our deep
learning approach; in section 4 we discuss the computer implementation of the
method; in section 5 we present numerical experiments, followed by conclusions.

2. The Brezis–Ekeland principle for gradient flows

Let V ⊂ H ⊂ V ∗ be a Gelfand triple and T > 0 a fixed time. In addition, let
φ ∈ C1(V ) be convex, f ∈ L2(0, T ;V ∗) and u0 ∈ V . We consider the gradient flow

(2.1) ut + ∂φ(u) = f a.e. in (0, T ) , u(0) = u0 .

The Brezis–Ekeland principle asserts that solutions u ∈ Y to (2.1), with

Y := {w ∈ L2(0, T ;V ) ∩H1(0, T ;V ∗) : w(0) = u0} ,

are the global minimizers of the functional Φ : Y → [0,∞] defined by

Φ(w) = 1
2‖w(T )‖2H − 1

2‖w(0)‖2H +
∫ T

0
φ(w) + φ∗(f − wt)− 〈f, w〉 dt

=
∫ T

0
φ(w) + φ∗(f − wt) + 〈wt − f, w〉 dt ,(2.2)

using
∫ T

0 〈wt, w〉 dt = 1
2‖w(T )‖2H − 1

2‖w(0)‖2H . Here 〈·, ·〉 is the duality pairing
between V and V ∗, and φ∗(w) = supv∈V 〈w, v〉−φ(v) is the conjugate of φ. In fact,
owing to [17, Theorem 8.99], u solves (2.1) if and only if

(2.3) Φ(u) = min{Φ(w) : w ∈ Y } = 0 .
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Inspired by the work in [20], we now consider a time-discrete variant of (2.2) and
the associated minimization problem. For that purpose, we divide [0, T ] into N
sub-intervals with end points t0 = 0 < t1 < · · · < tN = T .

The parabolic nature of (2.1) ensures that u(t) only depends on u(s) if s ≤ t,
but not if s > t. Together with the Brezis–Ekeland principle (2.3) this guarantees
that minimization and summation may be interchanged:

min
w∈Y

Φ(w)(2.4)

= min
w∈Y

N∑
n=1

∫ tn

tn−1

φ(w) + φ∗(f − wt) + 〈wt − f, w〉 dt

=
N∑
n=1

min
wn∈Y

wn(tn−1)=wn−1(tn−1)

∫ tn

tn−1

φ(wn) + φ∗(f − (wn)t) + 〈(wn)t − f, wn〉 dt,

where we have defined w0(0) = u0. The representation (2.4) of the minimization
problem suggests a clear strategy for our deep learning method: we will sequentially
solve N optimization problems for the PDE (2.1) on the time intervals [tn−1, tn],
where the initial data is either given by u0 at the first step, or by the previously
computed solution at time tn−1.

The heat equation. The canonical example of a gradient flow is the heat equation.
Given a Lipschitz domain Ω ⊂ Rd, d ≥ 1, we consider the PDE:

(2.5)


ut − κ∆u = f, in (0, T )× Ω ,

u(0, ·) = u0, in Ω ,

u = 0, on (0, T )× ∂Ω ,

where κ > 0. Upon defining H = L2(Ω), V = H1
0 (Ω) and φ(u) = κ

2 ‖∇u‖
2
L2 , the

problem (2.5) is a special case of (2.1), and the Brezis–Ekeland functional (2.2) in
this case reduces to:

(2.6) Φ(w) =
∫ T

0

κ

2 ‖∇w‖
2
L2 + 1

2κ

[
sup
v 6=0

〈f − wt, v〉
‖∇v‖L2

]2

+ 〈wt − f, w〉 dt ,

where we have used that φ∗(w) = 1
2κ

[
supv∈H1

0 (Ω)\{0}
〈w,v〉
‖∇v‖L2

]2
, e.g. see [17]. We

remark that φ∗ defines a norm on H−1(Ω) = (H1
0 (Ω))∗. Combining (2.4) and (2.6)

we find that minw∈Y Φ(w) equals

N∑
n=1

min
wn(tn−1)

=wn−1(tn−1)

∫ tn

tn−1

κ

2 ‖∇wn‖
2
L2 + 1

2κ

[
sup
v 6=0

〈f − (wn)t, v〉
‖∇v‖L2

]2

+ 〈(wn)t − f, wn〉 dt ,(2.7)

with the solution u of (2.5) being a minimizer in the sense that Φ(u) = 0 and that
the choice wn = u, n ∈ {1, . . . , N}, yields a minimizer of (2.7) over Y N .
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3. The deep learning approach

In this section we discuss a deep learning algorithm to find approximations of
the solution to (2.1). For simplicity we restrict our attention to the heat equation,
so that (2.7) is our starting point.

We wish to find the approximations unh ≈ u(tn, ·), n = 1, . . . , N , where unh is
given by a neural network. More generally, in this paper we view a neural network
ûh as a function determined through its weights θ. Given θ the neural network
takes a position x ∈ Ω as input and returns ûh(x; θ) as output. The approximation
set containing the functions unh is thus given by

Uh := {ûh(·; θ) : θ ∈ Θ} ,

where Θ is the set of possible weights. In this notation unh = ûh(·; θ) is the neural
network with a choice of weights θ determined through the method described in
this section.

In order to define a discrete version of the Brezis–Ekeland functional (2.7) and
perform its minimization over Uh, we turn our attention to the interpretation of
v in φ∗(w) = 1

2κ

[
supv∈H1

0 (Ω)\{0}〈w, v〉/‖∇v‖L2

]2
. Also the v are approximated by

neural networks. Since their architecture may be different compared to ûh, we
introduce v̂h(x; η) and

Vh := {v̂h(·; η) : η ∈ H} ,

where H is the set of possible weights in v̂h.
While we assume Uh,Vh ⊂ H1(Ω) throughout, elements of Uh and Vh will in

general not belong to H1
0 (Ω) because the Dirichlet boundary conditions may not

be satisfied homogeneously. Therefore, similarly to [6], we introduce a penalty term
into φ∗(w) to obtain the functional

(3.1) φ∗h(wh) = 1
2κ

[
sup

vh∈Vh\{0}

(wh, vh)(
‖∇vh‖2L2 + λ‖vh‖2L2(∂Ω)

) 1
2

]2

,

where λ > 0 is a penalty parameter depending on the structure of the neural net.
Then the denominator in (3.1) cannot vanish for vh 6= 0 due to a Poincaré-Friedrichs
inequality and the penalization weakly imposes homogeneous boundary conditions
on any maximising vh as λ → ∞. We note that such penalization strategies to
enforce Dirichlet boundary conditions are common in deep learning approaches,
see e.g. [6], and have a long tradition in discontinuous Galerkin approximation
methods, [5, §4.2].

It remains to discretize the time derivatives in the Brezis–Ekeland functional.
To this end we substitute (wn)t in (2.7) by backward time differences. Let ∆tn =
tn − tn−1 and let (·, ·) denote the L2-inner product over Ω. Inspired by (2.7), we
then define the solution of the deep learning method through the following sequence
of optimization problems: Given un−1

h ∈ Uh, for n = 1, . . . , N , find a minimizer



DEEP LEARNING USING THE BREZIS–EKELAND PRINCIPLE 253

unh ∈ Uh to

Φn(wh) = κ∆tn
2 ‖∇wh‖2L2 + ∆tnφ∗h

(
f −

wh − un−1
h

∆tn

)
+ (wh − un−1

h , wh) + λ‖wh‖2L2(∂Ω) ,(3.2)

where we have once again added a penalization term; this time to weakly impose
homogeneous Dirichlet boundary conditions on wh.

Obtaining the minimizer of (3.2) requires a maximization to evaluate
φ∗h(f − (wh − un−1

h )/∆tn), see (3.1). For the remainder of this section we fo-
cus on an algorithm for solving this min-max problem. In the subsequent text it
will be convenient to refer to

φ̃∗h(wh; vh) = 1
2κ

[
(wh, vh)

(‖∇vh‖2L2 + λ‖vh‖2L2(∂Ω))
1
2

]2

,

which is equal to φ∗h(wh) if vh is a maximizer. Similarly, we write

(3.3) Φ̃n(wh; ph) = κ∆tn
2 ‖∇wh‖2L2 + ∆tn ph + (wh − un−1

h , wh) + λ‖wh‖2L2(∂Ω) ,

which equals Φn(wh) upon choosing ph = φ∗h
(
f − wh−un−1

h

∆tn

)
.

Algorithm 1
1: Compute an approximation u0

h ∈ Uh to u0
2: for n = 1, . . . , N do
3: un,0h ← un−1

h , k ← 0
4: while termination_criterion(un,kh , k) = FALSE do
5: k ← k + 1
6: pn,kh = maxvh∈Vh\{0} φ̃

∗
h(f − (un,k−1

h − un−1
h )/∆tn; vh)

7: un,kh ∈ arg minwh∈Uh Φ̃n(wh; pn,kh )
8: end while
9: unh ← un,kh

10: end for

We shall base the minimization of (3.2) on Algorithm 1. The approximation of
the initial conditions in line 1 of the algorithm is a supervised learning problem.
Lines 2 and 10 frame the iteration over the time steps. Lines 4 and 8 implement a
loop where the optimization of φ̃∗h (line 6) and Φ̃n (line 7) are alternated.

Remark 3.1. Alternatively to the above, one could use φ∗(w) = 1
2κ‖∇∆−1w‖2L2

for the formulation of the method, see [17, Example 8.104]. In this scenario we
envisage ∆−1u being approximated by a neural net, using an existing methodology
for solving the Laplace problem.
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4. BENNO: Brezis–Ekeland Neural Network Optimizer

We make a full Python implementation [4] of our deep learning approach available
on Github, which is called Brezis–Ekeland Neural Network Optimizer, in short
BENNO.

Neural Network Structure. We describe the internal structure of the neural
networks ûh and v̂h, which were introduced in the previous section. Both these
neural networks use five densely-connected layers with a linear activation function
for the input and output layers and a (leaky) rectified linear unit activation function
σ(s) = max{0, s}+ µmin{0, s}, µ ≥ 0, for the inner layers. Each layer is made of
m nodes, except for the output layer that presents a single node. This means that
the neural network ûh has the following architecture:
S1(x) = W 1x+ b1, S2(x) = σ(W 2S1(x) + b2) , S3(x) = σ(W 3S2(x) + b3) ,
S4(x) = σ(W 4S3(x) + b4) , S5(x) = W 5S4(x) + b5, and ûh(x; θ) = S5(x) ,

where the set of parameters of the neural network ûh(·; θ) are given by
θ = {W 1, b1,W 2, b2,W 3, b3,W 4, b4,W 5, b5} ,

with W 1 ∈ Rm×d, W i ∈ Rm×m for i = 2, 3, 4, W 5 ∈ R1×m, bj ∈ Rm for j = 1, . . . , 4
and b5 ∈ R. With a slight abuse of notation, the application of the activation
function is understood elementwise: σ(z) is the vector (σ(z1), . . . , σ(zm)) for z =
(z1, . . . , zm) ∈ Rm. By default, we set µ = 0.03 in the definition of σ.

Also the network v̂h has an architecture of this type; however, generally with a
different parameter m. As indicated in the previous section, we denote the weights
of v̂h by η.

Adam Optimizer, Loss Functions and Algorithm. We implemented the neu-
ral networks with the help of the Tensorflow Sequential API. Both neural networks
were trained with the Adam Optimizer, a variant of the stochastic gradient descent
method based on an adaptive estimation of first-order and second-order moments
that improves the speed of convergence [13]. For the optimization parameters, we
use the standard values β1 = 0.9, β2 = 0.999 and ε = 10−8 in the notation of [13].

There are three distinct optimization scenarios with their respective loss func-
tions:

(1) The approximation of u0 by u0
h ∈ Uh in line 1 of Algorithm 1: It is a

supervised learning problem with the loss function L = ‖u0 − wh‖2L2 . We
use the constant learning rate α = 10−3.

(2) The maximization of φ̃∗h in line 6 of Algorithm 1: We use the constant
learning rate α = 10−5. By default the training extends over 500 epochs.

(3) The minimization of Φ̃n in line 7 of Algorithm 1: We employ the k-dependent
decaying learning rate

α(k) = 10−51{k≤5} + 10−61{5<k≤50} + 10−71{50<k≤120}

+ 10−81{120<k≤140} + 10−91{140<k≤180} + 10−101{180<k}.

By default the training extends over 50 epochs.
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The integrals appearing in these loss functions are evaluated with the help of a
Monte-Carlo integration method, using the sampling points {xi : i = 1, . . . , Ns} ⊂
Ω. Here Ns = Ni +Nb, with Ni points drawn from a uniform distribution in Ω and
Nb points drawn from a uniform distribution on ∂Ω.

Finally, the default termination criterion in line 4 of Algorithm 1 is

termination_criterion(un,kh , k) =
{

TRUE : k > 200 ,
FALSE : k ≤ 200 ,

which is employed in all numerical experiments of the forthcoming section.

5. Numerical results

We consider problem (2.5), with f = 0, on the domain Ω = (0, π)d, for d =
2, 3, 5, 7. Given the initial condition u0(x) =

∏d
i=1 sin(aixi), for a ∈ Nd and x ∈ Ω,

the exact solution to (2.7) with κ = [
∑d
i=1 a

2
i ]−1 is u(t, x) = e−t

∏d
i=1 sin(aixi).

We investigate the following types of approximation errors:

MSE = 1
Ns

Ns∑
i=1

(u(tn, xi)− unh(xi))2,

εabs,L∞ = max
i=1,...,Ns

|u(tn, xi)− unh(xi)|, εrel,L2 =
[∑Ns

i=1(u(tn, xi)− unh(xi))2∑Ns
i=1(u(tn, xi))2

] 1
2

,

εrel,H1=
[∑Ns

i=1(u(tn, xi)− unh(xi))2 + |∇u(tn, xi)−∇unh(xi)|2∑Ns
i=1(u(tn, xi))2 + |∇u(tn, xi)|2

] 1
2

,

where MSE stands for mean square error, and the other quantities define ap-
proximations of the L∞-norm error and of the relative L2- and H1-norm errors,
respectively.

In addition the Brezis–Ekeland functional itself represents a measure of the
accuracy of the deep learning algorithm since we look for u such that Φ(u) =
min Φ = 0. It follows that values of the loss function Φ̃n give us information about
the quality of the training and the approximate solution unh.

Unless otherwise stated, we use the layer width m = mvh = 30 for the neural
networks v̂h, while the the layer width m = muh will be varied for ûh depending on
the dimension d. For the time discretization we use uniform time steps ∆tn = ∆t,
n = 1, . . . , N , where we always choose ∆t = 10−4. Finally, for the boundary value
penalty parameter we always use λ = 100.

Energy landscapes for a 5D problem. Let d = 5 and a = (2, 2, 1, 2, 3)ᵀ. We
choose Ni = 105 inner and Nb = 103 boundary sampling points. The optimization
to obtain the initial value approximation u0

h is done over 5 · 104 epochs. We use
muh = 60 for ûh.

We are interested in the shape of the graphs of the two objective functions Φ̃n
and φ̃∗h as functions of the neural network weights θ and η, respectively. This will
allow us to gain insight into how challenging the training of the neural nets is.
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Fig. 1. Plots of Φ̃n(ûh(θ); p1,200
h ) against different components of

θ: b160 (left), W 3
46,60 (middle) and W 3

7,45 (right).

Fig. 2. Plots of −φ̃∗h((u1,199
h − u0

h)/∆t; v̂h(η)) against different
components of η: b230 (left), W 3

2,1 (middle) and W 4
21,3 (right).

Having computed u1
h = u1,K

h = ûh(θ̂), in Figure 1 we plot the loss function
Φ̃n(ûh(θ); pn,Kh ), for n = 1 and K = 200, against selected entries of θ. In particular,
for each plot we keep all the weights in θ = θ̂ fixed, apart from a single entry of
θ, that we continuously vary from −1 to 1. In this way it is possible to visualize
how the Brezis–Ekeland functional varies depending on certain parameters of the
neural network ûh. While generally smooth, we note that the right plot in Figure 1
shows that Φ̃n has a nearly vanishing gradient when the parameter W 3

7,45 varies in
[−1, 0], which may require attention during the optimization process.

Similarly, in Figure 2 we show the loss function −φ̃∗h((un,k−1
h − un−1

h )/∆t; v̂h(η))
plotted against selected entries of the neural network weights η. Once again we ob-
serve nearly flat parts in the graph, but now in addition we see also some non-convex
and non-smooth regions, which may pose challenges during the optimization.

Error quantities for a 5D problem. We use the previous example to compute
error quantities for the trained neural networks. Table 1 shows values of the
Brezis–Ekeland loss function (Φ̃n), the mean square error (MSE), the absolute
error (εabs,L∞) and the relative errors (εrel,L2 , εrel,H1) for the neural networks unh
for every tn, n = 0, . . . , N . The reported values of Φ̃n are large, possibly caused
by the fact that the measure of Ω is considerable with |Ω| = π5 ≈ 306, as is the
scaling of the boundary term λ‖ · ‖2L2(∂Ω) with λ = 100 and |∂Ω| = 2 · 5 · π4 ≈ 974.
We observe that all the other error quantities slowly increase with time, which is
typical for approximations of parabolic PDEs.
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Φ̃n MSE εabs,L∞ εrel,L2 εrel,H1

t0 — 5.894e-04 0.142 0.138 0.420
t1 112.762 6.195e-04 0.134 0.142 0.438
t2 67.164 6.516e-04 0.146 0.140 0.439
t3 72.938 6.785e-04 0.145 0.149 0.439
t4 62.323 7.214e-04 0.150 0.153 0.441
t5 51.332 7.466e-04 0.150 0.156 0.442
t6 85.143 7.804e-04 0.158 0.160 0.444
t7 45.920 8.211e-04 0.161 0.164 0.445
t8 48.652 8.196e-04 0.162 0.164 0.446
t9 58.798 8.686e-04 0.167 0.169 0.447
t10 37.395 8.780e-04 0.166 0.170 0.448

Tab. 1. Error quantities at times tn, n = 0, . . . , N , for the 5D
test problem.

Apart from the global error properties, we are also interested in how these
quantities change during the training process. In Figure 3 we plot the loss function
Φ̃n(un,kh ; pn,kh ) and the four contributions to it against k, for k = 1, . . . ,K = 200,
during the training for the time t4 = 4 · 10−4, i.e. n = 4. We observe a significant
decrease of the Brezis–Ekeland functional Φ̃n during the training, from about 400
for k = 1 to about 60 for k = 200, when the weights seem to have converged.
Observe also that the decrease is non-monotone, with a global maximum of about
1000, and that the graph is rather oscillatory. In addition, we note that after an
initial increase, the functional decays rapidly at first and then slower as the iteration
proceeds. The plot of the four contributions reveals that the term λ‖un,kh ‖2L2(∂Ω) is
the dominant contribution in the Brezis–Ekeland functional (3.3) once the iterative
scheme settles down.

The analogous plot for the mean square error (MSE) is shown on the left of
Figure 4, where we again notice an oscillatory decrease until convergence is reached.
In addition, on the right of Figure 4 we show the concatenated plots of the MSE
against k, for every time tn, n = 1, . . . , N . To help differentiate the different time
steps, we indicate the start of the training for a new time step with vertical lines.
The figure demonstrates that overall the MSE increases in time, but that each
training procedure decreases the MSE until convergence can be observed.

Dependence on the dimension d. Here we let d = 2, 3 or 5, and set a = (2, 2)ᵀ,
a = (2, 2, 3)ᵀ and a = (2, 2, 1, 2, 3)ᵀ, respectively. The number of sampling points
in Ω is Ni = 104 for d = 2 and Ni = 105 for d = 3, 5, while Nb = 400, 600, 1000 for
d = 2, 3, 5, respectively. Moreover, for the training of the initial conditions u0

h we
use 5 · 103 epochs in the cases d = 2, 3, and 5 · 104 for d = 5. We set muh = 60
throughout.

Table 2 shows the values of the Brezis–Ekeland loss function Φ̃n, the MSE, the
absolute error εabs,L∞ , the relative error εrel,L2 and the GPU time used for the
training of the neural networks ûh and v̂h, for the tenth time step, t10 = 0.001, for
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Fig. 3. Plots of Φ̃n(un,kh ; pn,kh ) (left) and of the 4 terms contribu-
ting to it (right) against k, for n = 4, for the 5D test problem.
For the right plot the chosen colours are red for κ∆t

2 ‖∇u
n,k
h ‖2L2 ,

blue for ∆t pn,kh , magenta for (un,kh − un−1
h , un,kh ) and green for

λ‖un,kh ‖2L2(∂Ω).

Fig. 4. Plots of the MSE against k at time t4 = 4 · 10−4 (left),
and of the MSE against (n− 1)K + k, for n = 1, . . . , N . (right)

the three problems d = 2, 3, 5. It can be observed that an increase in the dimension
leads to a decrease in the accuracy of the algorithm. Indeed, reading the table
from left to right, we notice that all the measures increase monotonically with the
dimension, with the only exception being the absolute error εabs,L∞ , which actually
reduces slightly going from the 3D to the 5D problem. While a growth of the error
is to be expected with an increase of the dimension, the figures here indicate that
further improvements of the neural net architecture and the training methodology
should be investigated.

Effect of the number of nodes m for a 7D problem. Let d = 7 and a =
(2, 2, 1, 3, 2, 2, 3)ᵀ. We choose Ni = 105 and Nb = 1400 sample points. The initial
conditions are training over 5 · 104 epochs. The layer width muh of the networks
ûh varies between 60 and 100.
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2D 3D 5D
Φ̃n 4.54e-02 3.97 39.93

MSE 1.74e-04 1.00e-03 7.67e-03
εabs,L∞ 6.25e-03 0.14 0.13
εrel,L2 2.71e-02 8.98e-02 0.15

GPU time [s] 58195 73595 100641

Tab. 2. Comparison of error quantities and the GPU time for the
three test problems with d = 2, 3, 5.

muh 60 100
Φ̃n 469.11 60.44

MSE 3.80e-03 1.21e-03
εabs,L∞ 0.59 0.31
εrel,L2 0.70 0.38

GPU time [s] 119972 117657
Tab. 3. Comparison of error quantities and the GPU time for the
7D test problem with either 60 or 100 nodes per layer.

From the error quantities reported in Table 3 we can immediately see that using
more nodes in the network architecture is beneficial in higher dimensions. In fact,
all the reported quantities are lower when considering the case with muh = 100.

Finally, in Figure 5 we present plots of the MSE against k = 1, . . . ,K = 200 for
the training of the third time step, n = 3, comparing the performance of the two
different network structures. We note that the MSE is on average increasing for
the network with 60 nodes per layer, possibly indicating that the neural network
does not have enough expressivity to make the learning effective. In contrast, when
training with wider layers one is able to decrease the MSE after the typical initial
increase. These results strongly indicate that for higher dimensional problems, more
elaborate networks perform better in practice. Unfortunately, memory and GPU
time limitations mean that at present we are not able to investigate this trend for
even higher dimensional problems.

6. Conclusions

We introduced a novel deep learning approach for the numerical solution of
PDEs using the Brezis–Ekeland principle. As a proof of concept we implemented
a practical algorithm for the heat equation and presented results for experiments
up to dimension 7. Higher dimensional problems are particularly computationally
challenging, and more research into the optimal design for the employed neural
networks is needed. Similarly to other neural network based approaches, we expect
our method to be superior to classical algorithms for very high dimensional problems,
whereas in lower space dimensions classical algorithms are likely more efficient. In
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Fig. 5. Plots of the MSE against k at time t3 = 3 · 10−4 for the
7D problem with neural networks using 60 (left) and 100 (right)
nodes per layer.

addition, an extension of the implemented method to nonlinear problems is part of
future research.
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