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UNIQUE SOLVABILITY OF FRACTIONAL FUNCTIONAL
DIFFERENTIAL EQUATION ON THE BASIS

OF VALLÉE-POUSSIN THEOREM

Satyam Narayan Srivastava, Alexander Domoshnitsky,
Seshadev Padhi, and Vladimir Raichik

Abstract. We propose explicit tests of unique solvability of two-point and
focal boundary value problems for fractional functional differential equations
with Riemann-Liouville derivative.

1. Introduction

In this paper we consider the fractional functional differential equation

(1.1) (Dα
0+x)(t) +

m∑
i=0

(Tix(i))(t) = f(t) , t ∈ [0, 1], m ≤ n− 2, n ≥ 2 ,

where Dα
0+ is the Riemann-Liouville fractional derivative of the order n−1 < α ≤ n

(see [11], [14]), n is integer, the operators Ti : C → L∞ are linear continuous
operators acting from the space of the continuous functions C to the space of
essentially bounded functions L∞, i = 0, . . . ,m, and f ∈ L∞.

We consider also the auxiliary equation

(1.2) (Dα
0+x)(t) +

m∑
i=0

(|Ti|x(i))(t) = f(t) , t ∈ [0, 1], m ≤ n− 2, n ≥ 2 ,

where the positive operator |Ti| is such that the following inequalities hold:

(1.3) − (|Ti|1)(t) ≤ (Ti1)(t) ≤ (|Ti|1)(t) , t ∈ [0, 1] .

Of course, it will be clear below, that we are interested in the operators |Ti| with
the minimal norms in the space of continuous functions C.

The operators Ti : C → L∞ and |Ti| : C → L∞ can be, for example, of the
following forms:
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1) Operators with deviations

(Tix(i))(t) =
mi∑
j=0

qij(t)x(i)(t− τij(t)) ,(1.4)

(|Ti|x(i))(t) =
mi∑
j=0
|qij(t)|x(i)(t− τij(t)) ,

where τij : [0, 1] → R, qij : [0, 1] → R, are measurable bounded functions, R =
(−∞,+∞). To complete the description of these operators, we have to define
what has to be substituted into (1.4) instead of x(i)(t − τij(t)) in the case of
t− τij(t) /∈ [0, 1]. Let us assume that

(1.5) x(i)(ξ) = 0 for ξ /∈ [0, 1], i = 0, . . . ,m ,

that allows us to preserve the n-dimensional fundamental system for the homoge-
neous equation

(1.6) (Dα
0+x)(t) +

mi∑
j=0

qij(t)x(i)(t− τij(t)) = 0 .

2) Integral operators

(Tix(i))(t) =
1∫

0

Ki(t, s)x(i)(s) ds ,(1.7)

(|Ti|x(i))(t) =
1∫

0

|Ki(t, s)|x(i)(s) ds ,

under the standard assumptions on the kernels Ki(t, s) implementing that Ti : C →
L∞, for example, Ki(t, s) is a continuous function [0, 1]× [0, 1]→ R (see, [12]).

3) Linear combinations and superpositions of the deviations and integral opera-
tors, for example, the operators

(Tix(i))(t) =
1∫

0

mi∑
j=1

Kij(t, s)x(i)(s− τij(s)) ds .(1.8)

(|Ti|x(i))(t) =
1∫

0

mi∑
j=1
|Kij(t, s)|x(i)(s− τij(s)) ds .

We consider the boundary value problem consisting of equation (1.1) and the
boundary conditions

(1.9) x(i)(0) = 0 for i = 0, 1, . . . , n− 2, x(k)(1) = 0 ,
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where k is an integer which is between 0 and n− 1. In the case of k = 0, we have
the classical two-point (n− 1, 1)- problem. In the case of k ≤ n− 1, we have the
sort of focal problems. We assume below that m ≤ k.

We consider equation (1.1) in the space D of functions x : [0, 1]→ R such that
x(n−1) is absolutely continuous on every interval [ε, 1], where ε > 0 and summable
on [0, 1] and x(n) such that tx(n) is summable. The norm in the space D define

as ‖x‖D =
n−2∑
i=0

max
0≤t≤1

∣∣x(i)(t)
∣∣ +

1∫
0

∣∣∣x(n−1)(t)
∣∣∣ dt +

1∫
0
t
∣∣∣x(n)(t)

∣∣∣ dt. Considering this

space D looks naturally when fractional equations with the Riemann-Liouville
derivatives and the boundary conditions (1.9) are considered. We say that x ∈ D
is a solution of (1.1) if it satisfies this equation for almost every t ∈ [0, 1]. If the
problem consisting of the homogeneous equation (Dα

0+x)(t) +
m∑
i=0

(Tix(i))(t) = 0

and condition (1.9) has only the trivial solution, then problem (1.1), (1.9) has a
unique solution which can be represented in the form [2]

(1.10) x(t) =
∫ 1

0
G(t, s)f(s)ds .

For applications of fractional differential equations in various field of science and
engineering one can refer the classical books [11, 14].

The main reason for the study of fractional functional differential equations
could be, in our opinion, around the following idea for the study of systems of
fractional equations. Consider a boundary value problem consisting, for example,
of a system of two “ordinary fractional differential equations". For its analysis, we
can use the integral representations of solutions of the first equation and obtain
x1(t) through x2(t). Then we substitute this representation instead of x1(t) into
the second equation and obtain a scalar fractional functional differential equation.
In the simplest case of a system of “ordinary” fractional equations, the equation,
we get, includes the integral operator of type 2). If we start with a system of delay
fractional differential equations, the equation, we get after the substitution into
the second equation, is a fractional functional differential equation that includes
the superpositions of deviation and integral operators. Thus, operators of type 3)
appear. Examples of such systems can be found in [7, 8, 9].

Positivity of solutions is one of the most important properties in applications
(see, for example, the book by Henderson and Luca [7]). Concerning problem
(1.4),(1.9), in the case of so called ordinary linear equations, (i.e. τij(t) ≡ 0,
t ∈ [0, 1], j = 0, . . . ,mi, i = 1, . . . ,m in (1.4)) and its nonlinear generalizations,
we can note the following papers [3, 8, 9, 10, 13, 15].

One of the motivations for our research is Lyapunov’s inequalities for fractional
differential equations which have been presented in Chapter 5 of the recent book
by Agarwal, Bohner, and Ozbekler [1]. Note the following assertion was presented
for the first time in [5]. Actually, the result in [5] is more general than Theorem 1.1
as the solution need not be assumed to be different from zero on (0, 1).
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α In inequality (1.13) In inequality (1.15)
1.6 2.052759111 4.120246548

1.5999 2.05244883 4.119533208
1.5998 2.052138367 4.11819636
1.597 2.043474592 4.098884212
1.58 1.991943084 3.97506386
1.5 1.7724538 3.45372767

Tab. 1

Theorem 1.1 ([1, 5]). Let 1 < α ≤ 2 and x be a solution of the boundary value
problem

(1.11)
{

(Dα
0+x)(t) + q0(t)x(t) = 0 on [0, 1] ,

x(0) = x(1) = 0 .

If x(t) 6= 0 for all t ∈ (0, 1), then the inequality

(1.12)
∫ 1

0
|q0(t)| dt > Γ(α)4α−1

holds.

Note that in [5], it was not assumed that x(t) 6= 0 for t ∈ (0, 1). For (1.11) with
a constant coefficient q0(t) = q0, we have (1.12) in the form

(1.13) |q0| ≥ Γ(α)4α−1 .

Using Corollary 2.3 (one can refer [4] for proof), we get that the inequality

(1.14) |q0| <
αα

(α− 1)α−1 Γ(α+ 1)

guarantees that the problem (1.11) has only the trivial solution. Note that the
part on unique solvability coincides with the known result of [6]. Inequality (1.14)
means that in the case of zeros of solution x(t) at the points 0 and 1, we obtain
that

(1.15) |q0(t)| ≥ αα

(α− 1)α−1 Γ(α+ 1)

since in the case of the coefficient q0 satisfying inequality (1.11) we exclude the
existence of zero at the point 1, i.e. x(1) 6= 0. Let us compare (1.13) and (1.15),
computing the right-hand sides in them, we have values in Table 1.

Table 1 demonstrates the advances of our results if we compare the results of
[1, 5] and ours.
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2. Main Results

Lemma 2.1. Using the technique of [13], one can obtain the uniqueness of solution
to the problem

(2.1)


Dα

0+x(t) = f(t) ,
x(0) = x′(0) = . . . = x(n−2)(0) = 0 ,
x(k)(1) = 0 ,

where k is an integer number which is between 0 and n− 1, in the form

(2.2) x(t) =
∫ 1

0
Gk(t, s)f(s) ds ,

where Gk(t, s) is Green’s function of problem (2.1) defined by

(2.3) Gk(t, s) = 1
Γ(α)

{
(t− s)α−1 − tα−1(1− s)α−1−k , 0 ≤ s ≤ t ≤ 1 ,
−tα−1(1− s)α−1−k , 0 ≤ t < s ≤ 1

and its j-th derivative is defined by

(2.4) ∂j

∂tj
Gk(t, s) = (α− 1)(α− 2) · · · (α− j)

Γ(α){
(t− s)α−j−1 − tα−j−1(1− s)α−1−k , 0 ≤ s ≤ t ≤ 1 ,
−tα−j−1(1− s)α−1−k , 0 ≤ t < s ≤ 1 .

Let us define the operator K : L∞ → L∞ and |K| : L∞ → L∞ by the equalities

(Kz)(t) = −
m∑
i=0

Ti

[∫ 1

0

∂i

∂ti
Gk(t, s)z(s) ds

]
(t) = f(t) ,(2.5)

(|K|z)(t) = −
m∑
i=0
|Ti|

[∫ 1

0

∂i

∂ti
Gk(t, s)z(s) ds

]
(t) = f(t) .

We use the notation Ti[γ(t)], (|Ti|[γ(t)]) meaning that the operator Ti and |Ti| acts
on the continuous function γ(t), i.e. Ti[γ(t)] = (Tiγ)(t), |Ti|[γ(t)] = (|Ti|γ)(t).

Theorem 2.2. Assume that there exist a function v ∈ D such that v(t) > 0, v′(t) >
0, · · · , v(k)(t) > 0 for t ∈ (0, 1), v(0) = v′(0) = · · · = v(n−2)(0) = 0 and

(2.6) (Dα
0+v)(t) +

m∑
i=0

(|Ti|v(i))(t) ≡ ψ(t) ≤ −ε < 0 for t ∈ (0, 1) ;

then the problem (1.1), (1.9) is uniquely solvable for any essentially bounded f and
the spectral radius of |K| : L∞ → L∞ is less than one.

Proof. Consider the auxiliary problem

(2.7)
{

(Dα
0+x)(t) = z(t) ,

x(i)(0) = v(i)(0), x(k)(1) = v(k)(1) , i = 0, 1, . . . , n− 2 ,
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where z(t) is a function in L∞ and such that there exists a positive number δ such
that z(t) ≤ −δ for t ∈ [0, 1]. It is clear that

(2.8)



x(t) =
∫ 1

0 Gk(t, s)z(s) ds+ uk(t) ,
x′(t) =

∫ 1
0

∂
∂tGk(t, s)z(s) ds+ u′k(t) ,

x′′(t) =
∫ 1

0
∂2

∂t2Gk(t, s)z(s) ds+ u′′k(t) ,
...
x(m)(t) =

∫ 1
0

∂m

∂tmGk(t, s)z(s) ds+ u
(m)
k (t) ,

where u(t) is a solution of the homogeneous equation Dα
0+u(t) = 0 satisfying the

conditions u(i)(0) = v(i)(0), i = 0, . . . , n− 2, u(k)(1) = v(k)(1). Let us substitute
these representations instead of v(t) and its derivatives into inequality (2.6):

(2.9) z(t) +
m∑
i=0

Ti

[∫ 1

0

∂i

∂ti
Gk(t, s)z(s) ds

]
+

m∑
i=0

(Tiui)(t)) = ψ(t) .

It is clear that |Ti| : C → L∞ are positive operators for i = 0, 1, . . . ,m, and this
imply that the operator |K| : L∞ → L∞ defined by equality (2.5) is positive.
Thus, we have the equation

(2.10) z(t)− (|K|z)(t) = Ψ(t) , t ∈ [0, 1] ,

where

(2.11) Ψ(t) ≡ ψ(t)−
m∑
i=0

(|Ti|u(i))(t) .

It is clear that u(i)(t) > 0 for t ∈ (0, 1]. This implies that Ψ(t) ≤ −ε < 0. The
function w(t) = −z(t) satisfies the inequality w(t) − (|K|w)(t) = −Ψ(t) > 0 for
t ∈ [0, 1]. From equality (2.10), according to [12, Theorem 5.3 on page 76] it follows
that ρ(|K|) < 1. This completes the proof of the theorem. �

Corollary 2.3. If n− 1 < α ≤ n and the following inequality is fulfilled

(2.12) |T0|
[
tα−1

(
α

α− k
− t
)]

+
m∑
i=1

α(α− 1) · · · (α− i+ 1)|Ti|
[
tα−i−1

(
α− i
α− k

− t
)]

< Γ(α+ 1), t ∈ [0, 1] ,

then problem (1.1), (1.9) is uniquely solvable for any f ∈ L∞.

Proof. The proof follows from Corollary 4 of [4]. �
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