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DELAY-DEPENDENT STABILITY CONDITIONS
FOR FUNDAMENTAL CHARACTERISTIC FUNCTIONS

Hideaki Matsunaga

Abstract. This paper is devoted to the investigation on the stability for two
characteristic functions f1(z) = z2 + pe−zτ + q and f2(z) = z2 + pze−zτ + q,
where p and q are real numbers and τ > 0. The obtained theorems describe
the explicit stability dependence on the changing delay τ . Our results are
applied to some special cases of a linear differential system with delay in the
diagonal terms and delay-dependent stability conditions are obtained.

1. Introduction

We consider two characteristic functions
f1(z) = z2 + pe−zτ + q

and
f2(z) = z2 + pze−zτ + q,

where p and q are real numbers and τ > 0. Equations f1(z) = 0 and f2(z) = 0 are
the characteristic equations of linear differential equations

x′′(t) + px(t− τ) + qx(t) = 0(1.1)
and

x′′(t) + px′(t− τ) + qx(t) = 0(1.2)
with the delay τ , respectively.

A quasi-polynomial f(z) is said to be stable if all zeros of f(z) have negative
real parts. In studying the stability of a characteristic function, main concern is on
the stability region, the maximal region in the space of parameters for which the
characteristic function is stable. Clarifying the dependence of all parameters on
stability is important; however, it is not easy for a more general quasi-polynomial
that contains f1(z) and f2(z). In this case, the quasi-polynomial or the zero solution
of the corresponding delay differential equation may switch finite times from stability
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to instability and vice versa as a parameter increases. Such phenomena for changing
parameter are often referred to as stability switches; see, e.g., [2, 3].

In 1966, Hsu and Bhatt [5] first presented the following stability results for f1(z)
and f2(z); see also Stépán [7, Corollary 3.4 and Theorem 3.8].
Theorem A. Let τ = 1. Then function f1(z) is stable if and only if there exists a
nonnegative integer m such that either

p > 0 , p < q − (2m+ 1)2π2 and p < −q + (2m+ 2)2π2

or

p < 0 , p > −q + 4m2π2 and p > q − (2m+ 1)2π2 .

Theorem B. Let τ = 1. Then function f2(z) is stable if and only if

p > 0, q > 0 and p < − 2
π
q + π

2
or there exists a nonnegative integer m such that either

p > 0 , p <
2

(4m+ 3)π q −
(4m+ 3)π

2 and p < − 2
(4m+ 5)π q + (4m+ 5)π

2
or

p < 0 , p > − 2
(4m+ 1)π q + (4m+ 1)π

2 and p >
2

(4m+ 3)π q −
(4m+ 3)π

2 .

Notice that Theorems A and B provide the stability conditions for (1.1) and
(1.2), respectively, and depend on the parameters p and q with τ = 1. A natural
question then arises: how do the stability conditions for f1(z) and f2(z) depend on
the delay τ with fixed p and q? The purpose of this paper is to answer the question.
As an application, we can obtain delay-dependent stability conditions for some
special cases of a linear differential system with delay in the diagonal terms.

2. Main results

Our main results are stated as follows:
Theorem 2.1. Function f1(z) is stable if and only if either

0 < 5p < 3q and τ ∈ (τ2,0, τ1,1) ∪ (τ2,1, τ1,2) ∪ · · · ∪ (τ2,k1−1, τ1,k1)(2.1)

or

0 < −p < q and τ ∈ (τ1,0, τ2,0) ∪ (τ1,1, τ2,1) ∪ · · · ∪ (τ1,k2−1, τ2,k2−1) .(2.2)
Here τ1,n, τ2,n, k1, and k2 are defined as

τ1,n = 2nπ√
p+ q

, τ2,n = (2n+ 1)π√
−p+ q

, n = 0, 1, 2, . . . ,

k1 =
⌈

2
√
−p+ q −

√
p+ q

2(
√
p+ q −

√
−p+ q )

⌉
, k2 =

⌈ √
p+ q

2(
√
−p+ q −

√
p+ q )

⌉
,(2.3)

where d·e denotes the ceiling function, namely, dxe = min{s ∈ Z | x ≤ s}.
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Fig. 1: Stability region of f1(z) with τ = 1 (Theorem A).
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Fig. 2: Stability region of f1(z) with q = 1 (Theorem 2.1).

Theorem 2.2. Function f2(z) is stable if and only if any one of the following
three conditions holds:

p > 0, 15p2 ≥ 4q and 0 < τ < τ3,0,(2.4)
p > 0, 15p2 < 4q and τ ∈ (0, τ3,0) ∪ (τ4,0, τ3,1) ∪ · · · ∪ (τ4,k3−1, τ3,k3),(2.5)
p < 0, 3p2 < 4q and τ ∈ (τ3,0, τ4,0) ∪ (τ3,1, τ4,1) ∪ · · · ∪ (τ3,k4−1, τ4,k4−1).(2.6)

Here τ3,n, τ4,n, k3, and k4 are defined as

τ3,n = (4n+ 1)π
p+

√
p2 + 4q

, τ4,n = (4n+ 3)π
−p+

√
p2 + 4q

, n = 0, 1, 2, . . . ,

k3 =
⌈√

p2 + 4q
4p − 1

⌉
, k4 =

⌈
−
√
p2 + 4q

4p − 1
2

⌉
.(2.7)
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Fig. 3: Stability region of f2(z) with τ = 1 (Theorem B).
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Fig. 4: Stability region of f2(z) with q = 1 (Theorem 2.2).

Remark 2.3. Theorems 2.1 and 2.2 show that as τ increases from 0, both f1(z)
and f2(z) switch finite times from stability to instability and vice versa under
suitable conditions, and they become unstable eventually; see Figs. 2 and 4.

Proof of Theorem 2.1. Let λ = zτ and g1(λ) = τ2f1(z). Then

g1(λ) = λ2 + pτ2e−λ + qτ2 .

Clearly, the stability of f1(z) is equivalent to that of g1(λ). Thus, we will prove
that function g1(λ) is stable if and only if either (2.1) or (2.2) holds.

By Theorem A, function g1(λ) is stable if and only if there exists a nonnegative
integer m such that either

p > 0 , pτ2 < qτ2 − (2m+ 1)2π2 and pτ2 < −qτ2 + (2m+ 2)2π2(2.8)
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or

p < 0 , pτ2 > −qτ2 + 4m2π2 and pτ2 > qτ2 − (2m+ 1)2π2 .(2.9)

It follows that

(2.8) ⇐⇒ p > 0 , (−p+ q)τ2 > (2m+ 1)2π2 , (p+ q)τ2 < (2m+ 2)2π2

⇐⇒ q > p > 0 , τ >
(2m+ 1)π√
−p+ q

, τ <
(2m+ 2)π√

p+ q

⇐⇒ q > p > 0 , τ2,m < τ < τ1,m+1.

Notice that k1 defined by (2.3) is the smallest nonnengative integer that satisfies
τ2,k1 > τ1,k1+1 because τ2,k > τ1,k+1 is equivalent to

k >
2
√
−p+ q −

√
p+ q

2(
√
p+ q −

√
−p+ q ) (> −1).

Suppose that
2
√
−p+ q −

√
p+ q

2(
√
p+ q −

√
−p+ q ) ≤ 0 ,

namely, 3q ≤ 5p. Then we obtain k1 = 0 and τ2,k > τ1,k+1 for k = 0, 1, 2, . . . . In
this case, no nonnegative integer m that satisfies (2.8) exist. Hence, if 0 < 5p < 3q,
then k1 ≥ 1 and

0 < τ2,0 < τ1,1 < τ2,1 < τ1,2 < · · · < τ2,k1−1 < τ1,k1 < τ1,k1+1 < τ2,k1 ,

which indicates that (2.8) holds if and only if (2.1) holds.
Similarly, we observe that

(2.9) ⇐⇒ p < 0 , (p+ q)τ2 > 4m2π2 , (−p+ q)τ2 < (2m+ 1)2π2

⇐⇒ −q < p < 0 , τ >
2mπ√
p+ q

, τ <
(2m+ 1)π√
−p+ q

⇐⇒ −q < p < 0, τ1,m < τ < τ2,m.

Notice that k2 defined by (2.3) is the smallest positive integer that satisfies τ1,k2 >
τ2,k2 because τ1,k > τ2,k is equivalent to

k >

√
p+ q

2(
√
−p+ q −

√
p+ q ) (> 0) .

Therefore, we obtain

0 = τ1,0 < τ2,0 < τ1,1 < τ2,1 < · · · < τ1,k2−1 < τ2,k2−1 < τ2,k2 < τ1,k2 ,

which implies that (2.9) holds if and only if (2.2) holds. This completes the
proof. �

Proof of Theorem 2.2. Let λ = zτ and g2(λ) = τ2f2(z). Then

g2(λ) = λ2 + pτλe−λ + qτ2.

Clearly, the stability of f2(z) is equivalent to that of g2(λ). Thus, we will prove
that function g2(λ) is stable if and only if (2.4), (2.5), or (2.6) holds.
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From Theorem B, function g2(λ) is stable if and only if

p > 0, q > 0 , pτ < −2qτ2

π
+ π

2(2.10)

or there exists a nonnegative integer m such that either

p > 0, pτ <
2qτ2

(4m+ 3)π −
(4m+ 3)π

2 , pτ < − 2qτ2

(4m+ 5)π + (4m+ 5)π
2(2.11)

or

p < 0 , pτ > − 2qτ2

(4m+ 1)π + (4m+ 1)π
2 , pτ >

2qτ2

(4m+ 3)π −
(4m+ 3)π

2 .(2.12)

It is easy to see that

(2.10) ⇐⇒ p > 0 , q > 0 , 0 < τ <
−p+

√
p2 + 4q

4q π = τ3,0,

which coincides with (2.4). We observe that

(2.11) ⇐⇒ p > 0,
{

4qτ2 − 2(4m+ 3)pπτ − (4m+ 3)2π2 > 0
4qτ2 + 2(4m+ 5)pπτ − (4m+ 5)2π2 < 0

⇐⇒ p > 0 , q > 0 , τ4,m < τ < τ3,m+1.

Notice that k3 defined by (2.7) is the smallest nonnegative integer that satisfies
τ4,k3 > τ3,k3+1 because τ4,k > τ3,k+1 is equivalent to

k >

√
p2 + 4q

4p − 1 (> −1).

Suppose that
√
p2 + 4q/(4p)− 1 ≤ 0, namely, 15p2 ≥ 4q. Then we obtain k3 = 0

and τ4,k > τ3,k+1 for k = 0, 1, 2, . . . . In this case, no nonnegative integer m that
satisfies (2.11) exist. Hence, if p > 0 and 15p2 < 4q, then k3 ≥ 1 and

0 < τ3,0 < τ4,0 < τ3,1 < · · · < τ4,k3−1 < τ3,k3 < τ3,k3+1 < τ4,k3 .

These facts indicate that (2.10) or (2.11) holds if and only if (2.4) or (2.5) holds.
Similarly, we observe that

(2.12) ⇐⇒ p < 0,
{

4qτ2 + 2(4m+ 1)pπτ − (4m+ 1)2π2 > 0
4qτ2 − 2(4m+ 3)pπτ − (4m+ 3)2π2 < 0

⇐⇒ p < 0, q > 0, τ3,m < τ < τ4,m.

Notice that k4 defined by (2.7) is the smallest nonnegative integer that satisfies
τ3,k4 > τ4,k4 because τ3,k > τ4,k is equivalent to

k > −
√
p2 + 4q

4p − 1
2 (> −1).

Suppose that −
√
p2 + 4q/(4p)−1/2 ≤ 0, namely, 3p2 ≥ 4q. Then we obtain k4 = 0

and τ3,k > τ4,k for k = 0, 1, 2, . . . . In this case, no nonnegative integer m that
satisfies (2.12) exist. Therefore, if p < 0 and 3p2 < 4q, then k4 ≥ 1 and

0 < τ3,0 < τ4,0 < τ3,1 < τ4,1 < · · · < τ3,k4−1 < τ4,k4−1 < τ4,k4 < τ3,k4 ,
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which implies that (2.12) holds if and only if (2.6) holds. This completes the
proof. �

3. Application

In this section, we investigate the asymptotic stability of the zero solution of a
linear delay differential system

(3.1)
{
x′(t) = −ax(t− r)− by(t),
y′(t) = −cx(t)− dy(t− r),

where a, b, c, d are real numbers and r > 0. The characteristic equation of (3.1) is
given by

det
(
z + ae−zr b

c z + de−zr

)
= 0 ,

that is,
z2 + (a+ d)e−zr + ade−2zr − bc = 0.(3.2)

When a = d, equation (3.2) is reduced to{(
z + ae−zr +

√
bc
)(
z + ae−zr −

√
bc
)

= 0 (bc ≥ 0) ,(
z + ae−zr + i

√
−bc

)(
z + ae−zr − i

√
−bc

)
= 0 (bc < 0) .

(3.3)

In 2009, the author [6] presented delay-dependent stability conditions for (3.1) with
a = d by using root analysis of (3.3). Consequently, let us treat other two special
cases a+ d = 0 and ad = 0.

Consider first the case a+ d = 0. Then equation (3.2) becomes
z2 − a2e−2zr − bc = 0.(3.4)

By applying Theorem 2.1 to equation (3.4) with p = −a2, q = −bc, τ = 2r and
τj,n = 2rj,n (j = 1, 2), we obtain the following corollary.

Corollary 3.1. Let d = −a. Then the zero solution of (3.1) is asymptotically
stable if and only if

a2 + bc < 0 and r ∈ (r1,0, r2,0) ∪ (r1,1, r2,1) ∪ · · · ∪ (r1,`2−1, r2,`2−1) .
Here r1,n, r2,n, and `2 are defined as

r1,n = nπ√
−a2 − bc

, r2,n = (n+ 1/2)π√
a2 − bc

, n = 0, 1, 2, . . . ,

`2 =
⌈ √

−a2 − bc
2(
√
a2 − bc−

√
−a2 − bc)

⌉
.

Next, consider the case ad = 0. Without loss of generality, we may assume d = 0.
Then equation (3.2) becomes

z2 + aze−zr − bc = 0 .(3.5)
By applying Theorem 2.2 to equation (3.5) with p = a, q = −bc, τ = r and
τj,n = rj,n (j = 3, 4), we obtain the following corollary.
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Corollary 3.2. Let d = 0. Then the zero solution of (3.1) is asymptotically stable
if and only if any one of the following three conditions holds:
(i) a > 0, 15a2 ≥ −4bc > 0 and 0 < r < r3,0,

(ii) a > 0, 15a2 < −4bc and r ∈ (0, r3,0) ∪ (r4,0, r3,1) ∪ · · · ∪ (r4,`3−1, r3,`3),
(iii) a < 0, 3a2 < −4bc and r ∈ (r3,0, r4,0) ∪ (r3,1, r4,1) ∪ · · · ∪ (r3,`4−1, r4,`4−1).
Here r3,n, r4,n, `3, and `4 are defined as

r3,n = (4n+ 1)π
a+
√
a2 − 4bc

, r4,n = (4n+ 3)π
−a+

√
a2 − 4bc

, n = 0, 1, 2, . . . ,

`3 =
⌈√

a2 − 4bc
4a − 1

⌉
, `4 =

⌈
−
√
a2 − 4bc

4a − 1
2

⌉
.

In the remainder case ad 6= 0 and a 6= ±d, although two delays r and 2r make the
distribution of roots of (3.2) much more complicated, some new explicit stability
conditions for (3.1) have been obtained; see [4] for details.

Finally, it turns out that Čermák and Kisela [1] have extended some parts of
Theorem 2.1 to a stability criterion of fractional delay differential equations.
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