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In brief

WiFi sensing is a method to detect the

presence or motion of humans or objects

within a wireless network by analyzing

signal propagation changes utilizing

learning algorithms. SenseFi, presented

in this article, is a comprehensive

framework for WiFi-sensing researchers.

It integrates current learning algorithms,

hardware platforms, and datasets for

different WiFi-sensing tasks, which could

support future research on designing

WiFi-sensing models.
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THE BIGGER PICTURE WiFi is extensively used in wireless communication to connect devices within a
network. Along with the development of machine-learning algorithms and the widespread use of Internet
of Things (IoT) products, applications of WiFi have recently expanded from communication to sensing.
The presence or motion of humans or any objects within the wireless environment can be interpreted
from signal propagation patterns. Compared with traditional video forms of sensing, WiFi sensing has
the benefits of privacy protection, non-line-of-sight (NLOS) detection, and broad coverage. A comprehen-
sive WiFi-sensing framework called SenseFi is proposed in this article that integrates hardware platforms,
learning algorithms, and datasets applied for different WiFi-sensing tasks. We hope that SenseFi will
contribute to future algorithm design and evaluation for real-world applications.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Over the recent years, WiFi sensing has been rapidly developed for privacy-preserving, ubiquitous human-
sensing applications, enabled by signal processing and deep-learning methods. However, a comprehensive
public benchmark for deep learning in WiFi sensing, similar to that available for visual recognition, does not
yet exist. In this article, we review recent progress in topics ranging fromWiFi hardware platforms to sensing
algorithms and propose a new library with a comprehensive benchmark, SenseFi. On this basis, we evaluate
various deep-learningmodels in terms of distinct sensing tasks, WiFi platforms, recognition accuracy, model
size, computational complexity, and feature transferability. Extensive experiments are performed whose re-
sults provide valuable insights into model design, learning strategy, and training techniques for real-world
applications. In summary, SenseFi is a comprehensive benchmark with an open-source library for deep
learning in WiFi sensing research that offers researchers a convenient tool to validate learning-based
WiFi-sensing methods on multiple datasets and platforms.
INTRODUCTION

With the proliferation of mobile Internet usage, wireless net-

works, such as WiFi access points (APs), have become a

ubiquitous component of infrastructure in smart environments,

ranging from commercial buildings to domestic surroundings.

By analyzing the patterns of its wireless signals, current-day

APs have evolved beyond being pureWiFi routers and also serve

as a type of ‘‘sensor device’’ to enable new services for human

sensing. In particular, recent studies have pointed out that WiFi

signals in the form of channel state information (CSI)1,2 are
This is an open access article under the CC BY-N
extremely promising for a variety of device-free human-sensing

tasks, such as occupancy detection,3 activity recognition,4–7

fall detection,8 gesture recognition,9,10 human identification,11–13

people counting,14,15 and pose estimation.16 Unlike coarse-

grained received signal strengths, WiFi CSI records more fine-

grained information in terms of the propagation of a signal

between WiFi devices and their reflection with respect to the

environment of human beings. However, as WiFi signals (2.4 or

5 GHz) lie in the non-visible band of the electromagnetic

spectrum, WiFi CSI-based human sensing is intrinsically more

privacy friendly than camera-based surveillance. Thus, it has
Patterns 4, 100703, March 10, 2023 ª 2023 The Author(s). 1
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Figure 1. The diagram of the SenseFi library

and benchmark
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drawn significant attention from both academic and industrial

agents. In response to the increasing interest, a new WiFi stan-

dard, 802.11bf,17 was designed by the IEEE 802.11bf Task

Group (TGbf), which will be used to amend the current WiFi stan-

dard both at the medium access control (MAC) and physical

layer (PHY) to includeWiFi sensing as part of regular WiFi service

officially by late 2024.

Existing WiFi-sensing techniques can be categorized into

model- and learning-based methods. Model-based methods,

such as Fresnel Zone,18 rely on physical models that describe

the propagation of WiFi signals. They explicate the underlying

mechanism of WiFi sensing and design sensing methods for

periodic or single motions, such as respiration19–22 and fall-

ing.8,23,24 Nevertheless, model-based methods are incapable

of accurately sensing complicated human activities consisting

of a series of different motions. For example, human gait com-

prises the synergistic movement of arms, legs, and bodies, dif-

ferences that are difficult to depict using physical models. In

contrast, by feeding significant amounts of data into machine-

learning25 or deep-learning models,5,9 learning-based methods

exhibit remarkable performance in complicated sensing tasks.

Various deep neural networks have been designed to enable ap-

plications such as human activity recognition26 and gesture

recognition.9 Although deep-learning models have performed

admirably in function approximation, they require very high

amounts of labeled data, which are expensive to collect and

are adversely affected by distribution shifts induced by environ-

mental dynamics.27

Most state-of-the-art deep-learning models have been

developed for computer vision tasks,28 such as human activity

recognition,29,30 and natural language processing,31 such as

sentiment classification.32 These models have demonstrated

their ability to process high-dimensional and multimodal data.

These approaches have inspired the use of deep learning in

WiFi sensing for data pre-processing, network design, and

learning objectives. As a result, an increasing number of deep-

learning models have been developed for WiFi sensing.33,34

These have successfully addressed the shortcomings of tradi-

tional statistical learning methods. However, this article mainly

focuses on achieving high accuracy on specific sensing tasks

by customizing deep neural networks and does not explore the

relationship between various deep-learning models and different

WiFi-sensing data collected using different devices and CSI

tools. It is unclear whether the impressive results reported in

research papers on WiFi sensing should be primarily attributed

to the deep model design or the WiFi platform. Therefore, there

are still significant gaps in our understanding of the relationship

between deep learning and WiFi sensing. For instance, the
2 Patterns 4, 100703, March 10, 2023
following questions may be considered:

(1) how can a deep neural network be

customized for aWiFi-sensing task by inte-

grating existing network modules (e.g.,

fully connected layer, convolutional layer,

recurrent neural unit, and transformer
block) into a synergistic framework? (2) How do existing models

perform when compared fairly on multiple WiFi-sensing plat-

forms and data modalities? (3) How can a trade-off be achieved

between recognition accuracy and efficiency?

To address these questions, we propose SenseFi, a bench-

mark and model zoo library for WiFi CSI sensing, using deep

learning. To this end, we first introduce the prevalent deep-

learningmodels, includingmultilayer perceptron (MLP), convolu-

tional neural network (CNN), recurrent neural network (RNN), var-

iants of RNN, CSI transformers, and CNN-RNN, and summarize

their effectiveness in CSI feature-learning and WiFi-sensing

tasks. Then, we investigate and benchmark these models on

three WiFi human activity recognition datasets comprising both

raw CSI data and processed data collected using the Intel

5300 CSI tool1 and the Atheros CSI tool.25,35 The accuracies

and efficiencies of these models are analyzed and compared

to demonstrate their potential for real-world applications. We

also explore the benefits to different WiFi-sensing tasks afforded

by transfer learning and the utilization of unsupervised learning to

extract features without labels, reducing the need for annotation.

As depicted in Figure 1, all deep models in our model zoo, along

with the dataset loading and learning schemes, are incorporated

into a single library, allowing researchers to develop and eval-

uate their models easily in a variety of environments.

The contributions of this study are summarized as follows.

d We systematically introduce WiFi-sensing technology,

analyze the benefits afforded to WiFi sensing by cutting-

edge deep-learning models, and review recent progress

on deep-learning-empowered WiFi sensing.

d We propose SenseFi, a comprehensive WiFi-sensing

framework that enables systematic evaluation and com-

parison of various deep-learningmodels in an open-source

manner. SenseFi benchmarks advanced deep models and

learning schemes forWiFi sensing, providing evidence and

tools for future research.

d In addition to existing datasets (UT-human activity recog-

nition [HAR]36 and Widar37), we construct and release

two new datasets (NTU-Fi HAR and human identification

[Human-ID]) using a CSI platform that provides higher-

resolution CSI data than that currently available, enabling

us to benchmark deep-learning methods and evaluate

their feasibility for WiFi sensing.

d Unlike existing works that focus on supervised learning,

SenseFi also investigates and benchmarks transfer learning

and unsupervised learning schemes, which enable knowl-

edge transfer across different sensing tasks and data-

efficient WiFi sensing, respectively.



ll
OPEN ACCESSArticle

Please cite this article in press as: Yang et al., SenseFi: A library and benchmark on deep-learning-empowered WiFi human sensing, Patterns (2023),
https://doi.org/10.1016/j.patter.2023.100703
d We summarize the observations and experiences that may

benefit real-world applications of WiFi-sensing research in

terms of model design, model training, and learning strate-

gies. We also discuss current challenges and outline future

directions of research.

Concept of WiFi sensing
WiFi-sensing data: CSI

In WiFi communication, CSI captures information on the propa-

gation of wireless signals in a physical environment after diffrac-

tion, reflection, and scattering by describing the channel proper-

ties of the communication link. Modern wireless communication

networks following the IEEE 802.11 standard, such as multiple-

input multiple-output (MIMO) and orthogonal frequency division

multiplexing (OFDM), at the PHY, aim to increase data capacity

and improve orthogonality in transmission channels affected

by multipath propagation. As a result, modern WiFi APs typically

involve multiple antennas with many subcarriers for OFDM. Cor-

responding to a pair of transmitter and receiver antennas, CSI

describes the phase shift and amplitude attenuation of multiple

paths on each subcarrier. Compared with received signal

strength, CSI data are of higher resolution and can be consid-

ered to be ‘‘WiFi images’’ of the environment of propagation.

Specifically, the channel impulse response (CIR), hðtÞ, of WiFi

signals is defined as follows in the frequency domain:

hðtÞ =
XL

l = 1

ale
j4ldðt � tlÞ; (Equation 1)

where al and 4l denote the amplitude and phase of the l-th multi-

path component, respectively; tl denotes the time delay; L de-

notes the number of multipaths; and dðtÞ denotes the Dirac delta

function. To estimate CIR, the OFDM receiver samples the signal

spectrum at the subcarrier level in a realistic implementation,

which represents the amplitude attenuation and phase shift us-

ing a complex number. In WiFi sensing, CSI recording functions

are realized using specific tools.1,35 The estimation can be repre-

sented by

Hi = kHikej:Hi ; (Equation 2)

where kHik and :Hi denote the amplitude and phase of the i-th

subcarrier, respectively.

WiFi-sensing tools and platforms

The number of subcarriers is determined by the bandwidth and

tool used. The number of subcarriers is directly proportional to

the resolution of the CSI data. Existing CSI tools include Intel

5300 NIC,1 Atheros CSI Tool,35 and Nexmon CSI Tool.38 Several

realistic sensing platforms have been constructed using these

tools. The Intel 5300 NIC is the most commonly used tool, and

it was the first CSI tool to be released. It can record 30 subcar-

riers for each pair of antennas during operation using a

20-MHz bandwidth. The Atheros CSI Tool increases the resolu-

tion of CSI data by improving the recording of CSI to 56 subcar-

riers at 20 MHz and 114 subcarriers at 40 MHz. These tools have

been widely used in many applications.5,6,9,25,39 The Nexmon

CSI Tool was the first tool that enabled CSI recording on smart-

phones and Raspberry Pi—it can capture 256 subcarriers at 80

MHz. However, previous studies40,41 have demonstrated that
CSI data collected using the Nexmon CSI Tool are quite noisy.

In this study, we only investigate the effectiveness of deep-

learning models trained on representative CSI data obtained

using the widely used Intel 5300 NIC and Atheros CSI tools.

CSI data transformation and cleansing

In general, CSI data consist of a vector of complex numbers,

including the amplitude and phase. The processing of these data

for deep-learningmodels is theprimary aim inWiFi sensing.Based

on existing works, we summarize the following approaches.

1. Only the amplitude data are used as input. Raw phases

obtained from a single antenna are randomly distributed

due to random phase offsets,42 stabilizing the amplitude

of CSI and enhancing its suitable for WiFi sensing. A sim-

ple denoising scheme, such as wavelet denoising,25 can

be used to filter the high-frequency noise in CSI ampli-

tudes. This is the most common practice in most WiFi-

sensing applications.

2. The CSI difference between antennas is used for model-

basedmethods. Although raw phases are noisy, the phase

difference between two antennas is quite stable9 and can

reflect subtle gestures more accurately than amplitudes.

The CSI ratio43 was proposed to mitigate noise using the

division operation and by increasing the sensing range.

These techniques are mostly designed for model-based

solutions as they require clean data for setting thresholds.

3. The processed Doppler representation of CSI is used. The

dependence of CSI data on the environment is eliminated

by simulating the Doppler feature, which only reflects

human motion, using the body-coordinate velocity profile

(BVP).

In our benchmark, as we focus on learning-based methods,

we use the most common data modality (i.e., amplitude only)

and the BVP modality designed to be domain invariant.

Insight: The effect of human activities on CSI

As depicted in Figure 2, CSI data for human sensing consist of

two dimensions: subcarrier and packet number (i.e., time dura-

tion). At each packet or timestamp, t, we have Xt = NT 3 NR 3

Nsub, where NT , NR, and Nsub denote the numbers of transmitter

antennas, receiver antennas, and subcarriers per antenna,

respectively. This can be considered to comprise a ‘‘CSI image’’

of the surrounding environment at the time, t. The CSI images

from subsequent timestamps form a ‘‘CSI video’’ that can

describe human activity patterns. To connect CSI data with

deep-learning models, we summarize the data properties that

offer a better understanding of deep model design.

1. Subcarrier dimension / spatial features. The values of

multiple subcarriers can capture the propagation of sig-

nals after diffraction, reflection, and scattering, thereby

describing the spatial environment. These subcarriers

can be considered to be analogous to image pixels, from

which convolutional layers extract spatial features.44

2. Time dimension / temporal features. For each subcar-

rier, its temporal dynamics represent changes in the envi-

ronment. In deep learning, temporal dynamics are usually

modeled using RNNs.45

3. Antenna dimension/ resolution and channel features. As

each antenna captures a different propagation path of the
Patterns 4, 100703, March 10, 2023 3



Figure 2. The CSI samples of three human activities in NTU-Fi, collected by Atheros CSI Tool
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signal, it can be considered to be a channel in deep

learning, similar to the RGB channels of an image. CSI

data gathered from a single pair of antennas are similar

to a grayscale image with only one channel. Thus, the

number of pairs of antennas is directly proportional to

the resolution of the CSI data. Antenna features should

be processed separately in convolutional layers or recur-

rent neurons.
RESULTS

Models: Deep neural networks for WiFi sensing
Deep learning is a branch of machine learning that involves the

use of models composed of numerous processing layers to learn

data representations.44 Unlike classical statistical learning,

which relies primarily on handcrafted features designed manu-

ally using prior knowledge,46 deep learning aims to extract

features automatically from large amounts of labeled data

and optimize model performance using backpropagation.44

Although the deep-learning theories were developed in the

1980s, the high computational requirements made their imple-

mentation impractical until the development of graphical pro-

cessing units (GPUs). Deep learning has since been widely

used in fields such as computer vision,28 natural language pro-

cessing,31 and interdisciplinary research.47

Deep-learning models for WiFi sensing typically consist of a

feature extractor and a classifier. The classifier usually consists

of several fully connected layers that can learn a good decision

boundary, and the design of the feature extractor is critical to

success. A large number of deep architectures have been pro-

posed for feature extractors,48 with each enjoying specific ad-

vantages for certain types of data. Deep-learning models for

WiFi sensing are constructed using these prevailing architec-

tures to extract patterns of human motion.5 We summarize the

latest works on deep models for WiFi sensing in Table 1 and

observe that the network architectures of these works include

MLP, CNN, RNN and its variants, combinations of these net-

works, and transformers.
Patterns 4, 100703, March 10, 2023
Here, we briefly introduce these network architectures for

benchmarking purposes. MLP relies on dense connections be-

tween neuron layers71 and is commonly used as a classifier.

When used as a feature extractor, it mixes the spatial and tempo-

ral dimensions of CSI data, damaging the intrinsic structure of

the data. CNN preserves spatial information and uses shared

weights for convolution kernels, which helps to reduce the num-

ber of parameters compared with MLP. 1D and 2D convolutions

are widely used in WiFi sensing and have achieved good re-

sults.37,54 However, CNNs can suffer from a limited receptive

field and the equal importance of all convolutions, which can

be partially addressed using an attention mechanism. Deep

CNN, such as a series of residual neural networks (ResNets),72

exhibits good performance in classification tasks on high-dimen-

sional data. An RNN is designed to capture temporal patterns73;

however, its training complexity is high owing to its high depth

and number of parameters. Several variants of RNN have been

developed to learn long-term patterns more efficiently, such as

long short-term memory (LSTM) and GRU. Combining an RNN

and a CNN enables the learning of spatiotemporal representa-

tions with fewer parameters. The transformer extracts features

by exploiting attention among spatial or temporal dimensions

and exhibits good performance. However, it relies significantly

on a large number of parameters for training.74 Figure 3 illus-

trates the input of WiFi CSI data into various network types.

Scenarios: Learning schemes for deep WiFi-sensing
models
Traditional training of deep models relies on supervised

learning based on high volumes of labeled data, but data

collection and annotation are bottlenecks in realistic WiFi-

sensing applications. For example, the recognition of human

gestures requires users to perform gestures hundreds of

times, which is impractical in real-world scenarios. Figure 4 il-

lustrates the learning methods and their contribution to WiFi

sensing in the real world.

Supervised learning is a method of training deepmodels using

input data that has been labeled for a specific output. This is the

most commonly used learning strategy in current WiFi-sensing



Table 1. A survey of existing deep-learning approaches for WiFi sensing

Method Year Task Model Platform Scenario

Yousefi et al.36 2017 human activity recognition RNN, LSTM Intel 5300 NIC supervised learning

WiCount49 2017 people counting MLP Intel 5300 NIC supervised learning

EI50 2018 human activity recognition CNN Intel 5300 NIC transfer learning

CrossSense34 2018 human identification, gesture recognition MLP Intel 5300 NIC transfer ensemble learning

Chen et al.51 2018 human activity recognition LSTM Intel 5300 NIC supervised learning

DeepSense5 2018 human activity recognition CNN-LSTM Atheros CSI Tool supervised learning

WiADG27 2018 gesture recognition CNN Atheros CSI Tool transfer learning

WiSDAR52 2018 human activity recognition CNN-LSTM Intel 5300 NIC supervised learning

WiVi7 2019 human activity recognition CNN Atheros CSI Tool supervised learning

SiaNet9 2019 gesture recognition CNN-LSTM Atheros CSI Tool few-shot learning

CSIGAN53 2019 gesture recognition CNN, GAN Atheros CSI Tool semi-supervised learning

DeepMV54 2020 human activity recognition CNN (attention) Intel 5300 NIC supervised learning

WIHF55 2020 gesture recognition CNN-GRU Intel 5300 NIC supervised learning

DeepSeg56 2020 human activity recognition CNN Intel 5300 NIC supervised learning

Sheng et al.57 2020 human activity recognition CNN-LSTM Intel 5300 NIC supervised learning

Sch€afer et al.41 2021 human activity recognition LSTM Nexmon CSI Tool supervised learning

Moshiri et al.58 2021 human activity recognition CNN Nexmon CSI Tool supervised learning

Ding et al.59 2021 human activity recognition CNN Intel 5300 NIC few-shot learning

Widar37 2021 human identification, gesture recognition CNN-GRU Intel 5300 NIC supervised learning

WiONE60 2021 human identification CNN Intel 5300 NIC few-shot learning

Ma et al.61 2021 human activity recognition CNN, RNN, LSTM Intel 5300 NIC supervised learning

THAT62 2021 human activity recognition Transformers Intel 5300 NIC supervised learning

WiGr63 2021 gesture recognition CNN-LSTM Intel 5300 NIC supervised learning

MCBAR64 2021 human activity recognition CNN, GAN Atheros CSI Tool semi-supervised learning

CAUTION12 2022 human identification CNN Atheros CSI Tool few-shot learning

CTS-AM65 2022 human activity recognition CNN (attention) Intel 5300 NIC supervised learning

WiGRUNT66 2022 gesture recognition CNN (attention) Intel 5300 NIC supervised learning

Zhuravchak et al.67 2022 human activity recognition LSTM Nexmon CSI Tool supervised learning

EfficientFi39 2022 human activity recognition, human

identification

CNN Atheros CSI Tool multitask supervised

learning

SecureSense68 2022 human activity recognition, human

identification

CNN Atheros CSI Tool supervised learning

AirFi69 2022 gesture recognition CNN-MLP Atheros CSI Tool transfer learning

AutoFi70 2022 human activity recognition, human

identification

CNN-MLP Atheros CSI Tool unsupervised learning
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research.5,7,36,52 These methods usually use cross-entropy loss

between the ground-truth label and prediction to optimize the

model. Although supervised learning is easy to implement and

exhibits high performance in many tasks, it requires a large

amount of labeled data, which limits its widespread use in real-

istic applications.

Transfer learning is a method of transferring knowledge from

one domain to another.75 When the two domains are similar, a

model can be pre-trained on one domain and fine-tuned in a

new environment, which can lead to significant performance

improvement. In contrast, when the two domains are distinct,

such as the different environments in which CSI data are

collected, the distribution shift can hinder performance, and

domain adaptation should be used. Domain adaptation is

a type of semi-supervised learning that addresses domain

shifts in transfer learning. It has been successfully implemented
in object recognition76–78 and text classification.79 Multidisci-

plinary scenarios are common in WiFi sensing because CSI

data are significantly dependent on the training environment.

Several methods have been developed to address this

problem.27,50,64,80,81

Unsupervised learning is a method of learning data repre-

sentations without any labels. The resulting feature extractor

can be used to facilitate downstream tasks by training a spe-

cific classifier. Unsupervised learning has been demonstrated

to improve the generalizability of models in visual recognition

tasks82 by avoiding reliance on any specific task. Current un-

supervised learning models are based on self-supervised

learning.83 Despite its effectiveness, unsupervised learning

has not been widely used in WiFi sensing, with only AutoFi be-

ing developed to enable model initialization for automatic user

configuration in WiFi-sensing applications.70
Patterns 4, 100703, March 10, 2023 5



Figure 3. The illustration of how CSI data are

processed by MLP, CNN, RNN, and Trans-

former
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Few-shot learning is a data-efficient learning strategy that

uses only a few samples from each category during training.

This is typically achieved using contrastive or prototypical

learning. SiaNet9 is a pioneering method for exploring few-shot

learning in WiFi sensing using a Siamese network. Subsequent

studies12,60 have extended prototypical networks from visual

recognition to WiFi sensing and achieved good recognition

results. In particular, the use of a single sample for each class

during training is referred to as one-shot learning. Few-shot

learning has potential applications in practical WiFi-based

gesture recognition and Human-ID because of its reliance on

only a small number of samples.

Ensemble learning uses multiple models to improve predictive

performance.84 The ensemble process can operate at the

feature or prediction level. The feature-level ensemble concate-

nates features obtained from multiple models and subsequently

trains a final classifier. Prediction-level ensemble is more com-

mon, usually referring to voting or probability addition. Ensemble

learning can enhance performance, but it incurs heavy computa-

tion overhead. CrossSense50 developed a mixture-of-experts

approach, selecting one appropriate expert corresponding to

each input, thereby reducing computation cost.

In this study, we empirically explore the effectiveness of super-

vised learning, transfer learning, and unsupervised learning for

WiFi CSI data as they are themost commonly used learning stra-

tegies in WiFi-sensing applications.
Benchmarking deep learning in WiFi sensing
In this subsection, an empirical study is reported on WiFi CSI

data in terms of the aforementioned deep models, including

MLP, CNN, series of ResNet, RNN, GRU, LSTM, bidirectional

LSTM (BiLSTM), CNN + GRU, and vision transformer (ViT; i.e.,

transformer). The number following themodel indicates the num-

ber of layers, and all specific designs are described in the exper-

imental procedures. The four datasets are detailed in Table 2.

Briefly, UT-HAR and Widar were collected using Intel 5300

NIC,1 and the NTU-Fi series of data were collected using the
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Atheros CSI tool.35 11 types of deep

models are evaluated on these datasets

using the three learning strategies. Eventu-

ally, detailed analytics are obtained on the

convergence of the optimization, network

depth, and network selection.

Evaluations of various deep

architectures

Overall comparison. We summarize the

performances of all baseline models in

Table 3. On UT-HAR, ResNet-18 exhibits

the best accuracy of 98.11%, followed

by CNN-5. The shallow CNN-5 achieves

good results on all datasets, but the deep

networks, i.e., the ResNet series, do not
exhibit significant improvement in comparison. In fact, ResNet-

101 yields degenerating results on NTU-Fi. BiLSTM yields the

best performance on the two NTU-Fi benchmarks. To compare

these results, we visualize them in Figure 5, based on which

we can derive the following conclusions.

d MLP, CNN-5, GRU, LSTM, and transformer all achieve

good results on all benchmarks, indicating that these net-

works are suitable as feature extractors for WiFi CSI data.

d MLP, GRU, and CNN exhibit stable and superior perfor-

mance compared with the other networks. CNN and

GRU involve fewer parameters and lower computational

complexity.

d Very-deep networks (such as the series of ResNets) do not

consistently outperform CNN-5 and sometimes even

perform slightly worse on the NTU-Fi benchmark. This sug-

gests that shallow networks, such as CNN-5, are already

sufficient as feature extractors for WiFi sensing.

d Vanilla RNN performs worse than LSTM and GRU because

of its difficulty in capturing long-term patterns and suscep-

tibility to gradient vanishing.

d The transformer architecture, i.e., ViT, does not operate

satisfactorily when the size of training dataset is not

adequate and the task is difficult, e.g., in NTU-Fi Human-

ID. In this case, simple MLP outperforms ViT.

d As depicted in Figure 5, nomodel performswell on all data-

sets consistently, especially on the more difficult Widar

dataset.

Computational complexity. The computational complexity of

the models, as measured in terms of the floating-point operation

(Flop) values presented in Table 3, is an important consideration

during the selection of a model for WiFi sensing. The vanilla RNN

exhibits low complexity but does not perform well. GRU and

CNN-5 are the second-best performing models, achieving

good results with relatively low computational complexity. It

should be noted that the transformer (ViT) exhibits very high

computational complexity owing to the attention computation,



Figure 4. The illustration of the learning

strategies
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and its performance is similar to that of CNN, MLP, and GRU.

Thus, its utilization for supervised learning tasks in WiFi sensing

is inappropriate.

Model parameters. The number of model parameters also af-

fects the amount of GPU memory required for the inference.

As presented in Table 3, vanilla RNN involves the smallest num-

ber of parameters, followed by CNN-5 and CNN + GRU. The

numbers of parameters of CNN-5, RNN, GRU, LSTM, BiLSTM,

and CNN +GRU are all small and acceptable for model inference

on the edge. When considering both the number of parameters

and the accuracy, CNN-5, GRU, BiLSTM, and CNN + GRU are

good choices for WiFi sensing. Although the number of model

parameters can be reduced via techniques, such asmodel prun-
ing,85 quantisation,85 or by fine-tuning hy-

perparameters, we only evaluate pure

models with the minimum number of

parameters required to converge in the

training split in this study.

Evaluation of learning schemes

Apart from supervised learning, other

learning schemes are also useful to realize

robust and data-efficient WiFi-sensing ap-

plications. In this subsection, we evaluate

two prevailing learning strategies in these

models.

Evaluation using transfer learning. Trans-

fer-learning experiments are conducted

using NTU-Fi. The model is transferred

from the HAR dataset to the Human-ID da-

taset by pre-training it on the entire HAR

dataset and then fine-tuning a new classi-

fier on the training split of Human-ID. This

simulates a situation in which the model

can be trained using a large amount of

labeled data collected in a laboratory,

and then a small amount of data can

be used to customize the model for spe-

cific tasks for users. Human activities in

the HAR dataset and human gaits in

the Human-ID dataset are composed of

human motions; therefore, the feature

extractor should be able to generalize

over these two tasks. We evaluate this

setting for all baseline models, and the re-

sults are listed in Table 4. It is observed

that the CNN-5 feature extractor exhibits

the best transferability, achieving a score

of 96.35% on the Human-ID task. The se-

ries of ResNets also exhibits superior

performance; however, their model com-

plexities are much higher. ResNet-18 out-

performs ResNet-50 and ResNet-101,

which suggests that greater depth may

not always improve transferability in
WiFi-sensing tasks. Similar to CNN-5, MLP and BiLSTM also

exhibit good transferability. However, RNN, CNN + GRU, and

ViT are observed to achieve scores of only 57.84%, 51.73%,

and 66.20%, respectively, which demonstrates their weaker

capacity for transfer learning. This could be attributed to over-

fitting, such as a simple RNN that only memorizes specific pat-

terns on the HAR dataset but cannot recognize new patterns.

This could also be attributed to the feature-learning mecha-

nism. For example, the transformer (ViT) learns the connections

between local patches via self-attention, but these connections

may be different on the HAR and Human-ID datasets. Recog-

nizing different activities often relies on detecting differences

in a series of motions. However, most human gaits are very
Patterns 4, 100703, March 10, 2023 7



Table 2. Statistics of four CSI datasets for our SenseFi benchmarks

Datasets UT-HAR36 Widar37 NTU-Fi HAR39 NTU-Fi Human-ID64

Platform Intel 5300 NIC Intel 5300 NIC Atheros CSI Tool Atheros CSI Tool

Category number 7 22 6 14

Category names lie down, fall, walk, pick up,

run, sit down, stand up

push&pull, sweep,

clap, slide, 18 types

of draws

box, circle, clean,

fall, run, walk

gaits of 14 subjects

Data size (330,250) (antenna,

subcarrier, packet)

(22,20,20) (time,

x_velocity, y_velocity)

(3,114,500) (antenna,

subcarrier, packet)

(3,114,500) (antenna,

subcarrier, packet)

Training samples 3,977 34,926 936 546

Testing samples 996 8,726 264 294

Training epochs 200 100 30 30
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similar, so only subtle patterns can be used as indicators for

gait identification.

Evaluation using unsupervised learning. We further investigate

the effectiveness of unsupervised learning for CSI feature

learning. We adopt the self-supervised approach AutoFi70 to

construct two parallel networks and use Kullback-Leibler (KL)

divergence, mutual information, and kernel density estimation

loss to train the two networks using only unlabeled CSI data. Af-

ter unsupervised learning, an independent classifier is trained

based on the fixed parameters of the two networks. All backbone

networks are tested using the same strategy—unsupervised

training on NTU-Fi HAR and supervised learning (i.e., fine-tuning)

on NTU-Fi Human-ID. The evaluation is performed usingHuman-

ID, and the results are presented in Table 5. CNN-5 exhibits the

best accuracy of 97.62%, followed by MLP and ResNet-18.

Recurrent networks such as RNN, GRU, and LSTM do not

perform well after unsupervised learning. These results demon-

strate that unsupervised learning can help deep models learn

discriminative features for CSI data—thus, CNNs are the most

effective. Compared with the results of transfer learning, unsu-

pervised learning yields better cross-task evaluation results,

which suggests that unsupervised learning on a large dataset

may aid model training on a smaller labeled dataset. CNNs and

MLP-based networks are more suitable for unsupervised

learning of WiFi CSI data.

Model analysis

Convergence of deep models. Although all the models

converge eventually, their training difficulties vary and affect their

practical usage. To compare their relative ease of convergence,

we depict the training losses of MLP, CNN-5, ViT, and RNN in

terms of epochs in Figure 6. It should be noted that the CNN con-

verges very quickly within 25 epochs on all four datasets, and

MLP also converges quickly. The transformer requires a higher

number of training epochs owing to a greater number of model

parameters. In comparison, RNN hardly converges on UT-HAR

and Widar and converges more slowly on NTU-Fi. We further

explore the convergence of RNN-based models, including

GRU, LSTM, BiLSTM, and CNN + GRU in Figure 7. Although

strong fluctuations are observed during the training phases of

GRU, LSTM, and BiLSTM, these three models exhibit much

lower training losses. In particular, GRU achieves the lowest

loss among all RNN-based methods. The training phase of

CNN + GRU is more stable, but its convergence loss is larger

than those of the others.
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The role of transfer learning. We further plot the training losses

of all models on NTU-Fi Human-ID with pre-trained parameters

obtained from NTU-Fi HAR in Figure 8. Compared with the

training procedures of the randomly initialized models depicted

in Figures 6C and 7C, convergence is achieved and becomes

much more stable. Two conclusions are derived based on these

results: (1) the feature extractors of these models are transfer-

able across two similar tasks, and (2) the fluctuations of training

losses are caused by the feature extractor because only the

classifier is trained during transfer learning.

Comparison with traditional machine learning (TML). To

demonstrate the superiority of deep-learning models, we eval-

uate the performance of TML methods on UT-HAR. UT-HAR

contains low-dimensional CSI data; therefore, TML is expected

to handle it more easily. Support vector machine (SVM),

K-nearest neighbor (KNN), decision tree, random forest, and

several configurations of naive Bayes are selected for compari-

son, and the results are listed in Table 6. The best model is

observed to be random forest, achieving 87.75% accuracy on

UT-HAR. It outperforms vanilla RNN and LSTM slightly. In partic-

ular, most deep-learning methods are observed to outperform

TML methods by large margins. These results demonstrate

that deep models are better suited to WiFi sensing than TML

methods.

Poor performance of very-deep CNNs. As is evident from the

data presented in Table 3, deeper ResNets do not perform bet-

ter than the basic ResNet-18 in supervised learning, transfer

learning, and unsupervised learning. In visual recognition,

deeper networks perform better on large-scale datasets,72

such as ImageNet. This raises the question of whether the

poor performance of these deep models should be attributed

to underfitting or overfitting in WiFi sensing. We attempt to

answer this question by conducting an experiment on Widar

and plotting its training and testing accuracy, as depicted in

Figure 9. Figure 9A indicates that although the training accu-

racies of the three ResNets reach almost 100%, their testing

accuracies remain low. This indicates that the poor perfor-

mance of ResNets may be attributed to overfitting induced by

domain shifting due to different environments in Widar.37 As

CSI captures both moving objects and the environment, a dis-

tribution shift is induced when the training and testing environ-

ments are different. The generalizability of deep models can be

improved further via domain adaptation.86 In addition, overfit-

ting leads to unstable testing performance of deep models.



Table 3. Evaluation of deep neural networks (using supervised learning) on four datasets

Dataset UT-HAR Widar NTU-Fi HAR NTU-Fi Human-ID

Method Acc (%) Flops (M) Params (M) Acc (%) Flops (M) Params (M) Acc (%) Flops (M) Params (M) Acc (%) Flops (M) Params (M)

MLP 92.00 23.17 23.170 67.24 9.15 9.150 99.69a 175.24 175.240 93.91 175.24 175.240

CNN-5 97.61b 31.68 0.296b 70.19b 3.38 0.299 98.70 28.24b 0.477 97.14 28.24b 0.478

ResNet18 98.11a 49.93 11.180 71.70a 38.39 11.250 95.31 54.19 11.180 96.42 54.19 11.190

ResNet50 97.21 86.40 23.550 68.56 69.70 23.640 99.38b 90.66 23.550 92.91 90.67 23.570

ResNet101 94.99 162.58 42.570 68.71 145.87 42.660 95.31 166.83 42.570 88.40 166.85 42.590

RNN 83.53 2.51a 0.010a 47.05 0.66a 0.031a 84.64 13.09a 0.027a 89.30 13.09a 0.027a

GRU 94.18 7.60b 0.030 62.50 1.98b 0.091b 97.66 39.39 0.079 98.96b 39.39 0.079

LSTM 87.18 10.14 0.040 63.35 2.64 0.121 97.14 52.54 0.105 97.19 52.54 0.105

BiLSTM 90.19 20.29 0.080 63.43 5.28 0.240 99.69a 105.09 0.209 99.38a 105.09 0.210

CNN +

GRU

96.72 39.99 1.430 63.19 3.34 0.092 93.75 48.38 0.058b 87.48 48.39 0.058b

ViT 96.53 273.10 10.580 67.72 9.28 0.106 93.75 501.64 1.052 76.84 501.64 1.054
aBest.
bSecond best.
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The testing accuracy of ResNet-101 is observed to undergo

greater fluctuation than that of ResNet-18, whereas other net-

works (i.e., MLP, CNN, GRU) converge more easily with more

stable testing accuracies. This indicates that very-deep net-

works are prone to overfitting in cross-domain tasks in WiFi

sensing. Thus, they may not be a good choice for current

WiFi-sensing applications because of their performance and

computational overhead. The varied performances of very-

deep models also make the selection of an appropriate model

for practical deployment more challenging.

Evaluation of more deep models. In addition to the aforemen-

tioned networks mentioned in our benchmark, some more

commonly used models that are used in deep-learning applica-

tions are also evaluated on NTU-Fi Human-ID and Widar. These

models include the first deep CNN (AlexNet),87 deepmodels with

intermediary depth (VGG-16 and VGG-19),88 an inception model

(GoogleNet),89 and a small network tailored for low-computa-

tional devices (EfficientNet-b0).90 The results are listed in Table 7.

These models achieve accuracies exceeding 93% on NTU-Fi

Human-ID and exceeding 63% on Widar. It is noteworthy that

EfficientNet-b0 performs satisfactorily on both datasets with

small numbers of flops and parameters. This conclusion rein-

forces a previous one—very large models may not be necessary

for WiFi-sensing applications.

Choices of optimizer. Although the adoption of the Adam opti-

mizer hastens the convergence of models during training, it also

leads to considerable training instability, especially for very-deep

neural networks. As depicted in Figure 10A, ResNet-18 con-

verges stably, but ResNet-50 and ResNet-101 exhibit fluctuating

losses every 20–30 epochs. This may be attributed to the rapidly

changing values of WiFi data and Adam’s adaptive learning

rate.91 As an alternative to Adam, the more stable optimizer, sto-

chastic gradient descent (SGD), is considered. As is evident from

Figure 10B, this makes the training procedure more stable. This

implies that SGD is a better choice when very-deep models are

implemented in WiFi sensing. On the other hand, the Adam opti-

mizer improves and hastens the convergence of simple models

that are sufficient for sensing tasks.
DISCUSSION

Summary of benchmarks and recommendations
Based on the analysis of the empirical results and characteristics

of deep-learning models in the context of WiFi sensing, the

following experiences and observations are summarized that

are expected to facilitate future research on model design,

model training, and real-world applications.

d Model choices. We recommend CNN, GRU, and BiLSTM

due to their high performance, low computational cost,

and small number of parameters. These shallow models

are observed to achieve remarkable results in activity

recognition, gesture recognition, andHuman-ID, in contrast

to very-deep models, which are affected by overfitting,

especially in cross-domain scenarios.

d Optimization. We recommend using the Adam or SGD opti-

mizer. The Adam optimizer can help the model converge

quickly, but it causes instability during training in some

cases. In such cases, SGD is a more secure option, but

the hyperparameters of SGD (i.e., the learning rate and mo-

mentum) require manual specification and tuning.

d Recommended transfer-learning applications. We recom-

mend utilizing transfer learning when the task is similar to

existing applications and when a single CSI sensing plat-

form is used. The pre-trained parameters provide good

initialization and better generalizability. CNN, MLP, and

BiLSTM exhibit superior transferability.

d Recommendations regarding unsupervised learning. We

recommend applying unsupervised learning to initialize

the model for similar tasks since it extracts more generaliz-

able features than transfer learning. In general, CNN, MLP,

and ViT are more suitable in the unsupervised learning

framework.
Grand challenges and future directions
Deep learning continues to thrive in many research fields and

is constantly empowering more challenging applications and
Patterns 4, 100703, March 10, 2023 9



Figure 5. The performance comparison across four datasets
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scenarios in WiFi sensing. Based on the new progress, we look

into the future directions of deep-learning-empowered WiFi

sensing and summarize them as follows.

Data-efficient learning

As CSI data are expensive to collect, data-efficient learning

methods should be further explored. Existing works have utilized

few-shot learning, transfer learning, and domain adaptation,

which yield satisfactory results in a new environment with limited

training samples. However, since the testing scenarios are sim-

ple, the transferability of these models cannot be well evaluated.

In the future, meta-learning and zero-shot learning could further

help learn robust features across environments and tasks.

Model compression or lightweight model design

In the future, it is necessary to achieve real-time computation for

certain applications of WiFi sensing, such as vital sign moni-
Table 4. Evaluations on transfer learning

Method Accuracy (%) Flops (M) Params (M)

MLP 84.46 175.24 175.240

CNN-5 96.35a 28.24b 0.478

ResNet18 85.94b 54.19 11.190

ResNet50 79.21 90.67 23.570

ResNet101 68.88 166.85 42.590

RNN 57.84 13.09a 0.027a

GRU 75.89 39.39 0.079

LSTM 71.98 52.54 0.105

BiLSTM 80.20 105.09 0.210

CNN + GRU 51.73 48.39 0.059b

ViT 66.20 501.64 1.054
aBest.
bSecond best.
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toring.92 Therefore, model compression techniques will play a

crucial role, such as model pruning,85 quantization?, and distilla-

tion,93 which decrease the model size via an extra learning step.

The design of lightweight model, such as the EfficientNet90 for vi-

sual recognition, is also favorable. It aims to construct a model

from scratch by balancing network depth, width, and resolution.

Multimodal learning

WiFi sensing is ubiquitous, cost effective, and privacy preser-

ving and can work without the effect of illumination and part

of occlusion, which is complementary to existing visual sensing

techniques. To achieve robust sensing 24/7, multiple modalities

of sensing data should be fused using multimodal learning.

WiVi7 pioneers HAR by integrating WiFi sensing and visual

recognition. Multimodal learning can learn joint features from
Table 5. Evaluations on unsupervised learning

Method

Accuracy (%)

Flops (M) Params (M)Classifier1 Classifier2

MLP 90.48a 89.12a 175.24 175.240

CNN-5 96.26b 97.62b 28.24a 0.478

ResNet18 85.03b 82.99 54.19 11.190

ResNet50 47.28 45.58 90.67 23.570

ResNet101 36.05 35.37 166.85 42.590

RNN 53.74 51.36 13.09b 0.027b

GRU 65.99 64.63 39.39 0.079

LSTM 53.06 55.10 52.54 0.105

BiLSTM 51.36 55.78 105.09 0.210

CNN + GRU 50.34 53.40 48.39 0.059a

ViT 78.91 84.35 501.64 1.054
aSecond best.
bBest.



A B

C D

Figure 6. The training losses of MLP, CNN, transformer, and RNN for the four datasets

(A) UT-HAR.

(B) Widar.

(C) NTU-Fi HAR.

(D) NTU-FI Human-ID.
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multiple modalities and make decisions by choosing reliable

modalities.

Cross-modal learning

Cross-modal learning aims to supervise or reconstruct one

modality from another modality, which helps WiFi truly ‘‘see’’

the environment and visualize it in othermodalities.Wi2Vi94 man-

ages to generate video frames from CSI data by transferring

knowledge from video to WiFi. The human pose is then esti-

mated by supervising the model with the results of pose estima-

tion, such as OpenPose.95 In the future, cross-modal learning

may enable the WiFi model to learn from other supervision sour-

ces such as radar and Lidar.

Model robustness and security for trustworthy sensing

When deploying WiFi-sensing models in the real world, the

model should be secure to use. Adversarial attacks have

received attention in video-based human sensing.96 However,

existing WiFi-sensing works study the accuracy of models, but

few pay attention to the security issue. First, during communica-

tion, the sensing data may leak the privacy of users. Second, if

any adversarial attack is made on the CSI data, the model can

perform incorrectly and trigger the wrong actions of smart appli-

ances. SecureSense68 seeks to overcome adversarial attacks

through augmentation and adversarial training. EfficientFi39 pro-
poses a variational autoencoder to quantize the CSI for efficient

and robust communication.WiFi-ADG97 protects user privacy by

enforcing that the data are not recognizable by general classi-

fiers. More work should be focused on the safety of WiFi sensing

and trustworthy models for large-scale sensing, such as feder-

ated learning.

Complicated human activities and behaviors analytics

While current methods have shown good recognition accuracy

for single activities or gestures, human behavior is depicted by

more complicated activities. For example, to indicate if a patient

may have a risk of Alzheimer’s disease, the model should record

the routine and analyze the anomaly activity, which is still

difficult for existing approaches. Precise user behavior analysis

can contribute to daily healthcare monitoring and behavioral

economics.

Model interpretability for a physical explanation

Model-based and learning-based methods are developing

quickly, but in different ways. In WiFi sensing, there could be a

connection between the data-driven model and the physical

model based on model interpretability research, which may

inspire us to develop new theories of physical models for WiFi

sensing. In contrast, the existing model (e.g., Fresnel Zone)

may enable us to propose new learning methods based on
Patterns 4, 100703, March 10, 2023 11
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Figure 7. The training losses of RNN-based models for the four datasets

(A) UT-HAR.

(B) Widar.

(C) NTU-Fi HAR.

(D) NTU-Fi Human-ID.
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physical models. It is hoped that these two directions ofmethods

can be unified theoretically and practically.

Concluding remarks
Deep-learning methods have been shown to be effective for chal-

lenging applications in WiFi sensing, but these models exhibit

different characteristics onWiFi-sensing tasks, and a comprehen-

sive benchmark is highly needed. To this end, this work illustrates

the recent progress in deep learning for WiFi human sensing and

benchmarks current deep neural networks and deep-learning

strategies on WiFi CSI data across different platforms. We sum-

marize the conclusions drawn from the experimental observa-

tions, which provide valuable experiences for model design in

practical WiFi-sensing applications. Finally, we propose grand

challenges and future directions to address the research issues

emerging from future large-scale WiFi-sensing scenarios.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and materials should be

directed to and will be fulfilled by the lead contact, Dr. Jianfei Yang

(yang0478@ntu.edu.sg).
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Materials availability

All the well-trainedmodel weights in this benchmark have been deposited in an

online drive.

Data and code availability

d The codes generated during this study have been deposited in GitHub

and Zenodo, and a tutorial is provided to guide the users. Any additional

information required to reproduce this work is available on Github,

https://github.com/xyanchen/WiFi-CSI-Sensing-Benchmark. The Zen-

odo link is https://doi.org/10.5281/zenodo.7501869.

d The article analyzes existing public data and releases new data. All the

processed datasets and well-trained model parameters are available in

https://data.mendeley.com/datasets/dzvgyxkx2f/draft?a=9ff61de8-

9565-4543-8278-8072329a0a16.

Method details of deep models in benchmarks

In the following, we introduce these key architectures and how they are applied

to WiFi-sensing tasks. To better instantiate these networks, we first formulate

the normal WiFi CSI sensing task. The CSI data are defined as x˛RNa3Ns3T ,

where Na denotes the number of antennas, Ns denotes the number of subcar-

riers, and T denotes the duration. TheCSI data of each pair of antennas are rela-

tively independent and are thus regarded as one channel of CSI, similar to the

RGB channels of image data. The deep-learning model fð $Þ aims to map the

data to the corresponding label: y = fðxÞ, according to different tasks. We

denote Fið $Þ and zi as the i-th layer of the deep model and the feature of the

i-th layer, respectively. After feature extraction, the classifier is trained to seek

a decision boundary in the feature space. In deep learning, the feature extractor

is the key module that reduces the feature dimension while preserving the

mailto:yang0478@ntu.edu.sg
https://github.com/xyanchen/WiFi-CSI-Sensing-Benchmark
https://doi.org/10.5281/zenodo.7501869
https://data.mendeley.com/datasets/dzvgyxkx2f/draft?a=9ff61de8-9565-4543-8278-8072329a0a16
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Figure 8. The training losses of all baseline models on NTU-Fi Human-ID with pre-trained parameters of NTU-Fi HAR
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manifold.44 With a discriminative feature space, the choices of classifiers are

flexible and can be either deep classifiers (e.g., MLP) or traditional classifiers

(e.g., KNNs, SVM, and random forest). In addition to this illustration, we visualize

the intuition of how to feed these CSI data into various networks in Figure 3.

MLP

MLP71 is one of the most classic architectures and has played the role of clas-

sifier in most deep classification networks. It typically consists of multiple fully

connected layers followed by activation functions. The first layer is called the

input layer, which transforms the input data into the hidden latent space, and

after several hidden layers, the last layer maps the latent feature into the cat-

egorical space. Each layer is calculated as

Fiðzi� 1Þ = sðWizi� 1Þ; (Equation 3)

whereWi is the parameter of Fi and sð $Þ is the activation function that aims to

increase the non-linearity of the MLP. The input CSI has to be flattened to a

vector and then fed into the MLP such that x˛RNsT . This process mixes the

spatial and temporal dimensions and damages the intrinsic structure of the

CSI data. Despite this, the MLP can still work with a large amount of labeled

data because the MLP has a fully connected structure with a large number

of parameters. However, this leads to slow convergence and high computa-

tional costs. Therefore, although the MLP can achieve satisfactory perfor-

mance, it is not common to stack many layers in an MLP for feature learning,

which makes the MLP typically serve as a classifier. In WiFi sensing, MLP is

commonly used as a classifier.5,7,34,37,50,52

CNN

CNN was first proposed for image recognition tasks by LeCun.98 It ad-

dresses the drawbacks of MLP through weight sharing and spatial pooling.
Table 6. Evaluations of traditional methods on UT-HAR

Method Accuracy (%)

Support vector machines 86.95a

K-nearest neighbors 84.04

Decision tree 64.56

Random forest 87.75b

Multinomial naive Bayes 33.94

Gaussian naive Bayes 46.39

Complement naive Bayes 30.62

Bernoulli naive Bayes 29.42
aSecond best.
bBest.
CNN models have achieved remarkable performances in classification prob-

lems of 2D data in computer vision99,100 and sequential data in speech recog-

nition101 and natural language processing.102 CNN learns features by stacking

convolutional kernels and spatial pooling operations. The convolution opera-

tion refers to the dot product between a filter k˛Rd and an input vector

v˛Rd , defined as follows:

k5 v = s
�
kTv

�
: (Equation 4)

The pooling operation is a down-sampling strategy that calculates the

maximum (max pooling) or mean (average pooling) inside a kernel. CNNs typi-

cally consist of several convolutional layers, max-pooling layers, and an MLP

classifier. In general, increasing the depth of CNNs can lead to better model

capacity. However, when the depth of CNN is too large (e.g., greater than 20

layers), the gradient vanishing problem leads to degrading performance.

This degradation is addressed by ResNet,72 which uses residual connections

to reduce the difficulty of optimization.

In WiFi-sensing tasks, the convolution kernel can operate on a 2D patch

of CSI data (i.e., Conv1D) that includes a spatial-temporal feature or on a 1D

patch of each subcarrier of CSI data (i.e., Conv2D). For Conv2D, a 2D convo-

lution kernel k2D ˛Rh3w operates on all patches of the CSI data via the sliding

window strategy to obtain the output of the feature map, while Conv1D only

extracts the spatial feature along the subcarrier dimension. Conv2D can be

applied independently as it considers both spatial and temporal features, while

Conv1D is usually used with other temporal feature-learning methods. To

enhance the capacity of CNN, multiple convolution kernels with random initial-

ization are used. The advantages of CNNs for WiFi sensing include fewer

training parameters and the preservation of the subcarrier and time dimension

in CSI data. However, the disadvantage is that CNN has a small receptive field

due to the limited kernel size and thus fails to capture dependencies that

exceed the kernel size. Another drawback is that CNN stacks all the feature

maps of kernels equally, which has been revamped by an attentionmechanism

that assigns different weights at the kernel or spatial level while stacking fea-

tures. For CSI data, due to the varying locations of human motions, the pat-

terns of different subcarriers should have different importance, which can be

depicted by spatial attention.65More attention techniques have been success-

fully developed to extract temporal-, antenna-, and subcarrier-level features

for WiFi sensing.54,103,104

RNN

RNN is one of the deepest network architectures that can memorize arbitrary-

length sequences of input patterns. The unique advantage of RNN is that it

enables multiple inputs and multiple outputs, making it very effective for

time sequence data, such as video105 and CSI.5,106,107 Its principle is to create

an internal memory to store historical patterns, which are trained via backpro-

pagation through time.73
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Figure 9. The training procedures of deep learning models on Widar data in terms of training and testing accuracy

(A) ResNet series.

(B) Other models.
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For a CSI sample P, we denote a CSI frame at the t as xt ˛RNs . The vanilla

RNN uses two sharing matrices Wx ;Wh to generate the hidden state ht :

ht = sðWxxt + Whht� 1Þ; (Equation 5)

where the activation function sð $Þ is usually tanh or sigmoid functions. RNN is

designed to capture temporal dynamics, but it suffers from the vanishing

gradient problem during backpropagation and thus cannot capture long-

term dependencies of CSI data.

Variants of RNN (LSTM)

To tackle the problem of long-term dependencies of RNN, LSTM108 is pro-

posed by designing several gates with varying purposes and mitigating the

gradient instability during training. The standard LSTM sequentially updates

a hidden sequence by a memory cell that contains four states: a memory state
Table 7. Evaluations of more deep models using supervised

learning

Dataset NTU-Fi Human-ID Widar

Method

Acc

(%)

Flops

(M)

Params

(M)

Acc

(%)

Flops

(M)

Params

(M)

MLP 93.91 175.24 175.240 67.24 9.15 9.150

CNN-5 97.14 28.24a 0.478 70.19 3.38 0.299

AlexNet 95.92 736.25 57.060 68.74 64.70 23.350

VGG16 95.61 15.52k 134.320 66.10 317.09 14.740

VGG19 93.32 19.69k 139.630 63.67 402.13 20.050

EfficientNet 93.95 422.44 4.030 71.14a 34.08 3.610

GoogLeNet 96.13 1.54k 9.970 64.31 1.54k 6.180

ResNet18 96.42 54.19 11.190 73.49b 38.39 11.250

ResNet50 93.21 90.67 23.570 69.40 69.70 23.640

ResNet101 92.89 166.85 42.590 67.59 145.87 42.660

RNN 89.77 13.09b 0.027b 46.77 0.66b 0.031b

GRU 98.96a 39.39 0.079 62.50 1.98a 0.091a

LSTM 97.17 52.54 0.105 63.35 2.64 0.121

BiLSTM 99.38b 105.09 0.210 63.43 5.28 0.240

CNN + GRU 90.82 48.39 0.058a 61.21 3.34 0.092

ViT 78.27 501.64 1.054 64.85 9.28 0.106
aSecond best.
bBest.
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ct, an output gate ot that controls the effect of output, an input gate it, and a

forget gate ft that decides what to preserve and forget in the memory. The

LSTM is parameterized by weight matrices Wi ;Wf ;Wc;Wo;Ui ;Uf ;Uc;Uo and

biases bi ;bf ;bc;bo, and the whole update is performed at each t˛ f1;.;Tg:

it = s
�
Wixt + Uiht� 1 + bi

�
; (Equation 6)

ft = s
�
Wfxt + Ufht� 1 + bf

�
; (Equation 7)

~ct = tanhðWcxt + Ucht� 1 + bcÞ; (Equation 8)

ct = it1~ct + ft1ct� 1; (Equation 9)

ot = sðWoxt + Uoht� 1 + boÞ; and (Equation 10)

ht = ot1tanhðctÞ; (Equation 11)

where s is a sigmoid function.

In addition to the LSTM cell,109–111 the use of a multilayer and bidirectional

structure can further increase the model’s capacity. The BiLSTM model pro-

cesses the sequence in two directions and concatenates the features of the

forward input x
‘
and backward input �x. It has been demonstrated that

BiLSTM performs better than LSTM in Chen et al.51 and Kadir et al.112

Recurrent CNN

While LSTMaddresses long-term dependencies, it can lead to a large computa-

tion overhead. To address this issue, the GRU was introduced. GRU combines

the forget and input gates into one gate and does not use the memory state pre-

sent in LSTM, simplifying the model while still being able to capture long-term

dependencies. GRU is considered a simple yet effective version of LSTM. By us-

ing a simple recurrent network, we can integrate Conv1D and GRU to extract

spatial and temporal features, respectively. Studies in Dua et al.113 and Chen

et al.114 have shown that a CNN + GRU model is effective for HAR. In WiFi

sensing, DeepSense5 was the first to propose using Conv2D with LSTM for

HAR. CNN +GRU has also been used for CSI-based human gesture recognition

in Widar.37 SiaNet9 further proposed using Conv1D with BiLSTM for few-shot

gesture recognition. As these models perform similarly, we use the CNN +

GRU model with fewer parameters as a benchmark in this article.

Transformers

Transformer74 was initially proposed for natural language processing (NLP) ap-

plications to extract sequence embeddings using attention between words

and was later extended to the computer vision field where each patch is

treated as a word and an image is composed of multiple patches.115 The

vanilla transformer consists of an encoder and a decoder used for machine

translation, but we only need the encoder. The transformer block consists of

a multihead attention layer, a feedforward neural network (MLP), and layer
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Figure 10. The training procedures of ResNet-18/50/101 using Adam and SGD optimizers on UT-HAR

(A) Training using Adam.

(B) Training using SGD.
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normalization. SinceMLPwas explained in the previous section, we will mainly

introduce the attention mechanism in this section. For a CSI sample P, we

divide it into P patches xp ˛Rh3w, of which each patch has contained

spatial-temporal features. Then, these patches are concatenated and added

by positional embeddings that infer the spatial position of patches, which

makes the input matrix ˛Rdk , where dk = P3 hw. This matrix is transformed

into three different matrices via linear embedding: the query Q, the key K, and

the value V . The self-attention process is calculated by

AttentionðQ;K;VÞ = softmax

�
Q$KTffiffiffiffiffi

dk

p
�
$V : (Equation 12)

Intuitively, this process calculates the attention between any two patches

using the dot product (i.e., cosine similarity) and then normalizes the weights

to improve gradient stability during training. Multihead attention simply repeats

the self-attention process several times to increase the diversity of attention.

The transformer architecture can connect with every patch of CSI, making it

strong when given sufficient training data, such as in Li et al.62 However, the

transformer has a large number of parameters that can make training expen-

sive, and it is difficult to collect large amounts of labeled CSI data, making it

less attractive for supervised learning.

Generative models

Unlike the aforementioned discriminative models that primarily conduct clas-

sification, generative models aim to capture the distribution of CSI data.

Generative adversarial network (GAN)116 is a classic generative model that

learns to generate data that appears real through an adversarial game be-

tween a generative network and a discriminator network. In WiFi sensing,

GAN can help deal with environmental dependency by generating labeled

samples in the new environment from based on a well-trained model in a

different environment.53,64 GAN has also inspired domain-adversarial

training, which enables deep models to learn domain-invariant representa-

tions for both the training and real-world testing environments.27,117–119 Vari-

ational network120 is another common generative model that maps the input
Table 8. Optimizer and hyperparameters of the experiments

Training stage Ba

Supervised learning – 64

– 64

Unsupervised learning self-supervised training 64

supervised training 64

Transfer learning encoder training 64

classification header training 64
variable to a multivariate latent distribution. Variational autoencoder (VAE)

learns the data distribution by a stochastic variational inference and learning

algorithm120 and has been used in CSI-based localization121,122 and CSI

compression.39 For instance, EfficientFi39 leverages a quantized variational

model to compress the CSI transmission data for large-scale WiFi sensing

in the future.
Datasets

We use two public CSI datasets (UT-HAR36 and Widar37) collected using Intel

5300 NICs and two new datasets (NTU-Fi HAR and NTU-Fi Human-ID)

collected using Atheros CSI Tool35 and our embedded Internet of Things

(IoT) system25 to validate the effectiveness of deep-learning models on CSI

data from different platforms. The statistics of these datasets are summarized

in Table 2.

UT-HAR36 is a public CSI dataset for HAR that consists of seven categories.

It was collected using an Intel 5300NICwith three pairs of antennas that record

30 subcarriers per pair. All the data were collected in the same environment,

but they were collected continuously and do not have golden labels for activity

segmentation. Following existing works,62 the data were segmented using a

sliding window, which inevitably leads tomany repeated data among samples.

Although the total number of samples reaches around 5,000, it is a small data-

set with intrinsic limitations.

Widar37 is the largest WiFi-sensing dataset for gesture recognition,

consisting of 22 categories and 43,000 samples. It was collected using an In-

tel 5300 NIC with a 333 array of antenna pairs in many distinct environments.

To eliminate environmental dependencies, the data were processed into

the BVP.

NTU-Fi is our proposed dataset for this benchmark, including both HAR and

Human-ID tasks. Different from UT-HAR andWidar, our dataset was collected

using the Atheros CSI Tool and has a higher resolution of subcarriers (114 per

pair of antennas). Each CSI sample is segmented by a threshold and a specific

time duration to ensure that the entire activity is included. For the HAR dataset,
tch size Optimizer lr weight_decay

SGD 1e�03 0

Adam 1e�03 0

AdamW 1e�03 1.5e�06

Adam 1e�03 1e�05

Adam 1e�03 0

Adam 1e�03 0
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Figure 11. The network architectures used in UT-HAR experiments
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we collected data in three different layouts. For the Human-ID dataset, we

collected human walking gaits in three situations: wearing a t-shirt, a coat,

or a backpack, which presents many challenges. The NTU-Fi data were

collected simultaneously in Wang et al.12 and Yang et al.39 which provide

detailed descriptions of the data collection layouts.
Figure 12. The network architectures used in NTU-Fi HAR experiment
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Implementation details

We normalize the data for each dataset using min-max normalization and

implement all the aforementioned methods using the PyTorch framework.123

To ensure convergence, we train the models on UT-HAR, Widar, and NTU-Fi

for 200, 100, and 30 epochs, respectively. As the vanilla RNN is hard to
s



Figure 13. The network architectures used in NTU-Fi Human-ID experiments
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converge due to the gradient vanishing, we train it formore epochs.We use the

Adamoptimizer with a learning rate of 0.001 and betas of 0.9 and 0.999, as rec-

ommended in the original Adam paper.91 The ratio of training and testing splits

is 8:2 for all datasets, using stratified sampling. We present all the hyperpara-

meters in Table 8. The results reported in the benchmark are all obtained using

the benchmark codes, and the accuracy is the mean value of three indepen-

dent runs with random seeds.
Figure 14. The network architectures used in Widar experiments
Baselines and criterion

As baselines, we design the MLP, CNN, RNN, GRU, LSTM, BiLSTM, CNN +

GRU, and transformer networks based on experiences from existing works

(in Table 1). The CNN-5 is modified from LeNet-5,98 and we also introduce a

series of ResNets72 with deeper layers. The transformer network is based on

the ViT115 and allows each patch to contain spatial and temporal dimensions.

It is found that, given sufficient parameters and reasonable depth of layers,
Patterns 4, 100703, March 10, 2023 17
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these networks can converge to more than 98% accuracy on the training split.

Since the data sizes of UT-HAR,Widar, and NTU-Fi are different, we use a con-

volutional layer to map them to a unified size, enabling us to use the same

network architecture for all datasets. The specific network architectures for

all models are illustrated in Figures 11, 12, 13, and 14. The hyperparameters

of the networks have been tuned to ensure satisfactory convergence, i.e.,

over 98% training accuracy. To compare the baseline models, we use three

criteria: accuracy (Acc), which evaluates the prediction ability; Flops, which

evaluates the computational complexity; and the number of parameters (Par-

ams), which measures the requirement for GPU memory. In WiFi sensing,

which is usually performed on edge devices, Flops and Params also matter

due to limited resources. Achieving good accuracy with fewer Flops and Par-

ams represents a good trade-off between accuracy and efficiency.

ACKNOWLEDGMENTS

This research is supported by NTU Presidential Postdoctoral Fellowship,

‘‘Adaptive Multi-modal Learning for Robust Sensing and Recognition in Smart

Cities’’ project fund (020977-00001), at the Nanyang Technological University,

Singapore.

AUTHOR CONTRIBUTIONS

Conceptualization, J.Y. and L.X.; methodology, J.Y. and X.C.; investigation,

J.Y.; validation, J.Y. and X.C.; data curation, J.Y., X.C., and D.W.; writing –

original draft, J.Y.; writing – review & editing, H.Z., C.X.L., S.S., and L.X.; visu-

alization, J.Y. and X.C.; funding acquisition, J.Y.

DECLARATION OF INTERESTS

The authors declare no competing interests.

INCLUSION AND DIVERSITY

We support inclusive, diverse, and equitable conduct of research. We worked

to ensure gender balance in the recruitment of human subjects. We worked to

ensure ethnic or other types of diversity in the recruitment of human subjects.

While citing references scientifically relevant for this work, we also actively

worked to promote gender balance in our reference list.

Received: September 30, 2022

Revised: November 23, 2022

Accepted: February 6, 2023

Published: February 28, 2023

REFERENCES

1. Halperin, D., Hu, W., Sheth, A., and Wetherall, D. (2011). Tool release:

gathering 802.11 n traces with channel state information. SIGCOMM

Comput. Commun. Rev. 41, 53. https://doi.org/10.1145/1925861.

1925870.

2. Wu, C., Wang, B., Au, O.C., and Liu, K.R. (2022). Wi-fi can do more: to-

ward ubiquitous wireless sensing. IEEE Comm. Stand. Mag. 6, 42–49.

https://doi.org/10.1109/MCOMSTD.0001.2100111.

3. Zou, H., Jiang, H., Yang, J., Xie, L., and Spanos, C. (2017). Non-intrusive

occupancy sensing in commercial buildings. Energy Build. 154, 633–643.

https://doi.org/10.1016/j.enbuild.2017.08.045.

4. Wang, Y., Liu, J., Chen, Y., Gruteser, M., Yang, J., and Liu, H. (2014).

E-eyes: device-free location-oriented activity identification using fine-

grained wifi signatures. In Proceedings of the 20th annual international

conference on Mobile computing and networking, pp. 617–628.

https://doi.org/10.1145/2639108.2639143.

5. Zou, H., Zhou, Y., Yang, J., Jiang, H., Xie, L., and Spanos, C.J. (2018).

Deepsense: device-free human activity recognition via autoencoder

long-term recurrent convolutional network. In 2018 IEEE International

Conference on Communications (ICC) (IEEE), pp. 1–6. https://doi.org/

10.1109/ICC.2018.8422895.
18 Patterns 4, 100703, March 10, 2023
6. Yang, J., Zou, H., Jiang, H., and Xie, L. (2018). Carefi: sedentary behavior

monitoring system via commodity wifi infrastructures. IEEE Trans. Veh.

Technol. 67, 7620–7629. https://doi.org/10.1109/TVT.2018.2833388.

7. Zou, H., Yang, J., Prasanna Das, H., Liu, H., Zhou, Y., and Spanos, C.J.

(2019). Wifi and vision multimodal learning for accurate and robust de-

vice-free human activity recognition. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition Workshops.

https://doi.org/10.1109/CVPRW.2019.00056.

8. Wang, H., Zhang, D., Wang, Y., Ma, J., Wang, Y., and Li, S. (2017). Rt-fall:

a real-time and contactless fall detection systemwith commodity wifi de-

vices. IEEE Trans. Mob. Comput. 16, 511–526. https://doi.org/10.1109/

TMC.2016.2557795.

9. Yang, J., Zou, H., Zhou, Y., and Xie, L. (2019). Learning gestures from

wifi: a siamese recurrent convolutional architecture. IEEE Internet

Things J. 6, 10763–10772. https://doi.org/10.1109/JIOT.2019.2941527.

10. Zou, H., Zhou, Y., Yang, J., Jiang, H., Xie, L., and Spanos, C.J. (2018).

Wifi-enabled device-free gesture recognition for smart home automation.

In 2018 IEEE 14th international conference on control and

automation (ICCA) (IEEE), pp. 476–481. https://doi.org/10.1109/ICCA.

2018.8444331.

11. Zou, H., Zhou, Y., Yang, J., Gu, W., Xie, L., and Spanos, C.J. (2018). Wifi-

based human identification via convex tensor shapelet learning. In Thirty-

Second AAAI Conference on Artificial Intelligence, pp. 1711–1718.

https://doi.org/10.5555/3504035.3504244.

12. Wang, D., Yang, J., Cui, W., Xie, L., and Sun, S. (2022). Caution: a robust

wifi-based human authentication system via few-shot open-set gait

recognition. IEEE Internet Things J. 9, 17323–17333. https://doi.org/10.

1109/JIOT.2022.3156099.

13. Deng, L., Yang, J., Yuan, S., Zou, H., Lu, C.X., and Xie, L. (2023). Gaitfi:

robust device-free human identification via wifi and vision multimodal

learning. IEEE Internet Things J. 10, 625–636. https://doi.org/10.1109/

JIOT.2022.3203559.

14. Zou, H., Zhou, Y., Yang, J., and Spanos, C.J. (2018). Device-free occu-

pancy detection and crowd counting in smart buildings with wifi-enabled

iot. Energy Build. 174, 309–322. https://doi.org/10.1016/j.enbuild.2018.

06.040.

15. Zou, H., Zhou, Y., Yang, J., Xie, L., and Spanos, C. (2017). Freecount: de-

vice-free crowd counting with commodity wifi. In 2017 IEEE Global

Communications Conference (GLOBECOM) (IEEE), pp. 1–6. https://doi.

org/10.1109/GLOCOM.2017.8255034.

16. Yang, J., Zhou, Y., Huang, H., Zou, H., and Xie, L. (2022). Metafi: device-

free pose estimation via commodity wifi for metaverse avatar simulation.

Preprint at arXiv. https://doi.org/10.48550/arXiv.2208.10414.

17. Restuccia, F. (2021). Ieee 802.11 bf: toward ubiquitous wi-fi sensing.

Preprint at arXiv. https://doi.org/10.48550/arXiv.2103.14918.

18. Wu, D., Zhang, D., Xu, C., Wang, H., and Li, X. (2017). Device-free wifi

human sensing: from pattern-based to model-based approaches.

IEEE Commun. Mag. 55, 91–97. https://doi.org/10.1109/MCOM.2017.

1700143.

19. Wang, H., Zhang, D., Ma, J., Wang, Y., Wang, Y., Wu, D., Gu, T., and Xie,

B. (2016). Human respiration detection with commodity wifi devices: do

user location and body orientation matter? In Proceedings of the 2016

ACM International Joint Conference on Pervasive and Ubiquitous

Computing, pp. 25–36. https://doi.org/10.1145/2971648.2971744.

20. Wang, P., Guo, B., Xin, T., Wang, Z., and Yu, Z. (2017). Tinysense: multi-

user respiration detection using wi-fi csi signals. In 2017 IEEE 19th

International Conference on e-Health Networking, Applications and

Services (Healthcom), pp. 1–6. https://doi.org/10.1109/HealthCom.

2017.8210837.

21. Xu, Y.T., Chen, X., Liu, X., Meger, D., and Dudek, G. (2020). Pressense:

passive respiration sensing via ambient wifi signals in noisy environ-

ments. In 2020 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pp. 4032–4039. https://doi.org/10.1109/

IROS45743.2020.9341474.

https://doi.org/10.1145/1925861.1925870
https://doi.org/10.1145/1925861.1925870
https://doi.org/10.1109/MCOMSTD.0001.2100111
https://doi.org/10.1016/j.enbuild.2017.08.045
https://doi.org/10.1145/2639108.2639143
https://doi.org/10.1109/ICC.2018.8422895
https://doi.org/10.1109/ICC.2018.8422895
https://doi.org/10.1109/TVT.2018.2833388
https://doi.org/10.1109/CVPRW.2019.00056
https://doi.org/10.1109/TMC.2016.2557795
https://doi.org/10.1109/TMC.2016.2557795
https://doi.org/10.1109/JIOT.2019.2941527
https://doi.org/10.1109/ICCA.2018.8444331
https://doi.org/10.1109/ICCA.2018.8444331
https://doi.org/10.5555/3504035.3504244
https://doi.org/10.1109/JIOT.2022.3156099
https://doi.org/10.1109/JIOT.2022.3156099
https://doi.org/10.1109/JIOT.2022.3203559
https://doi.org/10.1109/JIOT.2022.3203559
https://doi.org/10.1016/j.enbuild.2018.06.040
https://doi.org/10.1016/j.enbuild.2018.06.040
https://doi.org/10.1109/GLOCOM.2017.8255034
https://doi.org/10.1109/GLOCOM.2017.8255034
https://doi.org/10.48550/arXiv.2208.10414
https://doi.org/10.48550/arXiv.2103.14918
https://doi.org/10.1109/MCOM.2017.1700143
https://doi.org/10.1109/MCOM.2017.1700143
https://doi.org/10.1145/2971648.2971744
https://doi.org/10.1109/HealthCom.2017.8210837
https://doi.org/10.1109/HealthCom.2017.8210837
https://doi.org/10.1109/IROS45743.2020.9341474
https://doi.org/10.1109/IROS45743.2020.9341474


ll
OPEN ACCESSArticle

Please cite this article in press as: Yang et al., SenseFi: A library and benchmark on deep-learning-empowered WiFi human sensing, Patterns (2023),
https://doi.org/10.1016/j.patter.2023.100703
22. Wang, X., Yang, C., and Mao, S. (2017). Tensorbeat: tensor decomposi-

tion for monitoring multiperson breathing beats with commodity wifi.

ACM Trans. Intell. Syst. Technol. 9, 1–27. https://doi.org/10.1145/

3078855.

23. Nakamura, T., Bouazizi, M., Yamamoto, K., and Ohtsuki, T. (2020). Wi-fi-

csi-based fall detection by spectrogram analysis with cnn. In

GLOBECOM 2020 - 2020 IEEE Global Communications Conference,

pp. 1–6. https://doi.org/10.1109/GLOBECOM42002.2020.9322323.

24. Nakamura, T., Bouazizi, M., Yamamoto, K., and Ohtsuki, T. (2022). Wi-fi-

based fall detection using spectrogram image of channel state informa-

tion. IEEE Internet Things J. 9, 17220–17234. https://doi.org/10.1109/

JIOT.2022.3152315.

25. Yang, J., Zou, H., Jiang, H., and Xie, L. (2018). Device-free occupant ac-

tivity sensing using wifi-enabled iot devices for smart homes. IEEE

Internet Things J. 5, 3991–4002. https://doi.org/10.1109/JIOT.2018.

2849655.

26. Zou, H., Zhou, Y., Yang, J., Gu, W., Xie, L., and Spanos, C. (2017).

Multiple kernel representation learning for wifi-based human activity

recognition. In 2017 16th IEEE International Conference on Machine

Learning and Applications (ICMLA) (IEEE), pp. 268–274. https://doi.org/

10.1109/ICMLA.2017.0-148.

27. Zou, H., Yang, J., Zhou, Y., Xie, L., and Spanos, C.J. (2018). Robust wifi-

enabled device-free gesture recognition via unsupervised adversarial

domain adaptation. In 2018 27th International Conference on Computer

Communication and Networks (ICCCN) (IEEE), pp. 1–8. https://doi.org/

10.1109/ICCCN.2018.8487345.

28. Voulodimos, A., Doulamis, N., Doulamis, A., and Protopapadakis, E.

(2018). Deep learning for computer vision: a brief review. Comput.

Intell. Neurosci. 2018. https://doi.org/10.1155/2018/7068349.

29. Shu, X., Zhang, L., Sun, Y., and Tang, J. (2021). Host–parasite: graph lstm-

in-lstm for group activity recognition. IEEE Trans. Neural Netw. Learn.

Syst. 32, 663–674. https://doi.org/10.1109/TNNLS.2020.2978942.

30. Zhu, G., Zhang, L., Yang, L., Mei, L., Shah, S.A.A., Bennamoun, M., and

Shen, P. (2020). Redundancy and attention in convolutional lstm for

gesture recognition. IEEE Trans. Neural Netw. Learn. Syst. 31, 1323–

1335. https://doi.org/10.1109/TNNLS.2019.2919764.

31. Otter, D.W., Medina, J.R., and Kalita, J.K. (2021). A survey of the usages

of deep learning for natural language processing. IEEE Trans. Neural

Netw. Learn. Syst. 32, 604–624. https://doi.org/10.1109/TNNLS.2020.

2979670.

32. Wang, D., Jing, B., Lu, C., Wu, J., Liu, G., Du, C., and Zhuang, F. (2021).

Coarse alignment of topic and sentiment: a unified model for cross-

lingual sentiment classification. IEEE Trans. Neural Netw. Learn. Syst.

32, 736–747. https://doi.org/10.1109/TNNLS.2020.2979225.

33. Bu, Q., Ming, X., Hu, J., Zhang, T., Feng, J., and Zhang, J. (2021).

Transfersense: towards environment independent and one-shot wifi

sensing. Pers. Ubiquitous Comput. 26, 555–573. https://doi.org/10.

1007/s00779-020-01480-6.

34. Zhang, J., Tang, Z., Li, M., Fang, D., Nurmi, P., and Wang, Z. (2018).

Crosssense: towards cross-site and large-scale wifi sensing. In

Proceedings of the 24th Annual International Conference on Mobile

Computing and Networking, pp. 305–320. https://doi.org/10.1145/

3241539.3241570.

35. Xie, Y., Li, Z., and Li, M. (2015). Precise power delay profiling with com-

modity wifi. In Proceedings of the 21st Annual International Conference

on Mobile Computing and Networking (ACM), pp. 53–64. https://doi.

org/10.1109/TMC.2018.2860991.

36. Yousefi, S., Narui, H., Dayal, S., Ermon, S., and Valaee, S. (2017). A

survey on behavior recognition using wifi channel state information.

IEEE Commun. Mag. 55, 98–104. https://doi.org/10.1109/MCOM.

2017.1700082.

37. Zhang, Y., Zheng, Y., Qian, K., Zhang, G., Liu, Y., Wu, C., and Yang, Z.

(2021). Widar3. 0: zero-effort cross-domain gesture recognition with

wi-fi. IEEE Trans. Pattern Anal. Mach. Intell. 1. https://doi.org/10.1145/

3307334.3326081.
38. Gringoli, F., Schulz, M., Link, J., and Hollick, M. (2019). Free your csi: a

channel state information extraction platform for modern wi-fi chipsets.

In Proceedings of the 13th International Workshop on Wireless Network

Testbeds, Experimental Evaluation & Characterization (WiNTECH ’19),

pp. 21–28. https://doi.org/10.1145/3349623.3355477.

39. Yang, J., Chen, X., Zou, H.,Wang, D., Xu, Q., and Xie, L. (2022). Efficientfi:

towards large-scale lightweight wifi sensing via csi compression. IEEE

Internet Things J. 9, 13086–13095. https://doi.org/10.1109/JIOT.2021.

3139958.

40. Sharma, A., Li, J., Mishra, D., Batista, G., and Seneviratne, A. (2021).

Passive wifi csi sensing based machine learning framework for covid-

safe occupancy monitoring. In 2021 IEEE International Conference on

Communications Workshops (ICC Workshops) (IEEE), pp. 1–6. https://

doi.org/10.1109/ICCWorkshops50388.2021.9473673.

41. Sch€afer, J., Barrsiwal, B.R., Kokhkharova, M., Adil, H., and

Liebehenschel, J. (2021). Human activity recognition using csi informa-

tion with nexmon. Appl. Sci. 11, 8860. https://doi.org/10.3390/

app11198860.

42. Liu, J., Teng, G., and Hong, F. (2020). Human activity sensing with wire-

less signals: a survey. Sensors 20, 1210. https://doi.org/10.3390/

s20041210.

43. Zeng, Y., Wu, D., Xiong, J., Yi, E., Gao, R., and Zhang, D. (2019).

Farsense: pushing the range limit of wifi-based respiration sensing

with csi ratio of two antennas. Proc. ACM Interact. Mob. Wearable

Ubiquitous Technol. 3, 1–26. https://doi.org/10.1145/3351279.

44. LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521,

436–444. https://doi.org/10.1038/nature14539.

45. Schuster, M., and Paliwal, K.K. (1997). Bidirectional recurrent neural net-

works. IEEE Trans. Signal Process. 45, 2673–2681. https://doi.org/10.

1109/78.650093.

46. Jordan, M.I., and Mitchell, T.M. (2015). Machine learning: trends, per-

spectives, and prospects. Science 349, 255–260. https://doi.org/10.

1126/science.aaa8415.

47. Chen, K., Zeng, Z., and Yang, J. (2021). A deep region-based pyramid

neural network for automatic detection andmulti-classification of various

surface defects of aluminum alloys. J. Build. Eng. 43, 102523. https://doi.

org/10.1016/j.jobe.2021.102523.

48. Liu, W.,Wang, Z., Liu, X., Zeng, N., Liu, Y., and Alsaadi, F.E. (2017). A sur-

vey of deep neural network architectures and their applications.

Neurocomputing 234, 11–26. https://doi.org/10.1016/j.neucom.2016.

12.038.

49. Liu, S., Zhao, Y., and Chen, B. (2017). Wicount: a deep learning approach

for crowd counting using wifi signals. In 2017 IEEE International

Symposium on Parallel and Distributed Processing with Applications

and 2017 IEEE International Conference on Ubiquitous Computing and

Communications (ISPA/IUCC) (IEEE), pp. 967–974. https://doi.org/10.

1109/ISPA/IUCC.2017.00148.

50. Jiang,W., Miao, C., Ma, F., Yao, S., Wang, Y., Yuan, Y., Xue, H., Song, C.,

Ma, X., Koutsonikolas, D., et al. (2018). Towards environment indepen-

dent device free human activity recognition. In Proceedings of the 24th

Annual International Conference on Mobile Computing and Networking

(ACM), pp. 289–304. https://doi.org/10.1145/3241539.3241548.

51. Chen, Z., Zhang, L., Jiang, C., Cao, Z., and Cui, W. (2019). Wifi csi based

passive human activity recognition using attention based blstm. IEEE

Trans. Mob. Comput. 18, 2714–2724. https://doi.org/10.1109/TMC.

2018.2878233.

52. Wang, F., Gong, W., and Liu, J. (2019). On spatial diversity in wifi-based

human activity recognition: a deep learning-based approach. IEEE

Internet Things J. 6, 2035–2047. https://doi.org/10.1109/JIOT.2018.

2871445.

53. Xiao, C., Han, D., Ma, Y., and Qin, Z. (2019). Csigan: robust channel state

information-based activity recognition with gans. IEEE Internet Things J.

6, 10191–10204. https://doi.org/10.1109/JIOT.2019.2936580.
Patterns 4, 100703, March 10, 2023 19

https://doi.org/10.1145/3078855
https://doi.org/10.1145/3078855
https://doi.org/10.1109/GLOBECOM42002.2020.9322323
https://doi.org/10.1109/JIOT.2022.3152315
https://doi.org/10.1109/JIOT.2022.3152315
https://doi.org/10.1109/JIOT.2018.2849655
https://doi.org/10.1109/JIOT.2018.2849655
https://doi.org/10.1109/ICMLA.2017.0-148
https://doi.org/10.1109/ICMLA.2017.0-148
https://doi.org/10.1109/ICCCN.2018.8487345
https://doi.org/10.1109/ICCCN.2018.8487345
https://doi.org/10.1155/2018/7068349
https://doi.org/10.1109/TNNLS.2020.2978942
https://doi.org/10.1109/TNNLS.2019.2919764
https://doi.org/10.1109/TNNLS.2020.2979670
https://doi.org/10.1109/TNNLS.2020.2979670
https://doi.org/10.1109/TNNLS.2020.2979225
https://doi.org/10.1007/s00779-020-01480-6
https://doi.org/10.1007/s00779-020-01480-6
https://doi.org/10.1145/3241539.3241570
https://doi.org/10.1145/3241539.3241570
https://doi.org/10.1109/TMC.2018.2860991
https://doi.org/10.1109/TMC.2018.2860991
https://doi.org/10.1109/MCOM.2017.1700082
https://doi.org/10.1109/MCOM.2017.1700082
https://doi.org/10.1145/3307334.3326081
https://doi.org/10.1145/3307334.3326081
https://doi.org/10.1145/3349623.3355477
https://doi.org/10.1109/JIOT.2021.3139958
https://doi.org/10.1109/JIOT.2021.3139958
https://doi.org/10.1109/ICCWorkshops50388.2021.9473673
https://doi.org/10.1109/ICCWorkshops50388.2021.9473673
https://doi.org/10.3390/app11198860
https://doi.org/10.3390/app11198860
https://doi.org/10.3390/s20041210
https://doi.org/10.3390/s20041210
https://doi.org/10.1145/3351279
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/78.650093
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1016/j.jobe.2021.102523
https://doi.org/10.1016/j.jobe.2021.102523
https://doi.org/10.1016/j.neucom.2016.12.038
https://doi.org/10.1016/j.neucom.2016.12.038
https://doi.org/10.1109/ISPA/IUCC.2017.00148
https://doi.org/10.1109/ISPA/IUCC.2017.00148
https://doi.org/10.1145/3241539.3241548
https://doi.org/10.1109/TMC.2018.2878233
https://doi.org/10.1109/TMC.2018.2878233
https://doi.org/10.1109/JIOT.2018.2871445
https://doi.org/10.1109/JIOT.2018.2871445
https://doi.org/10.1109/JIOT.2019.2936580


ll
OPEN ACCESS Article

Please cite this article in press as: Yang et al., SenseFi: A library and benchmark on deep-learning-empowered WiFi human sensing, Patterns (2023),
https://doi.org/10.1016/j.patter.2023.100703
54. Xue, H., Jiang, W., Miao, C., Ma, F., Wang, S., Yuan, Y., Yao, S., Zhang,

A., and Su, L. (2020). Deepmv: multi-view deep learning for device-free

human activity recognition. Proc. ACM Interact. Mob. Wearable

Ubiquitous Technol. 4, 1–26. https://doi.org/10.1145/3380980.

55. Li, C., Liu, M., and Cao, Z. (2020). Wihf: Enable user identified gesture

recognition with wifi. In IEEE INFOCOM 2020-IEEE Conference on

Computer Communications (IEEE), pp. 586–595. https://doi.org/10.

1109/INFOCOM41043.2020.9155539.

56. Xiao, C., Lei, Y., Ma, Y., Zhou, F., and Qin, Z. (2021). Deepseg: deep-

learning-based activity segmentation framework for activity recognition

using wifi. IEEE Internet Things J. 8, 5669–5681. https://doi.org/10.

1109/JIOT.2020.3033173.

57. Sheng, B., Xiao, F., Sha, L., and Sun, L. (2020). Deep spatial–temporal

model based cross-scene action recognition using commodity wifi.

IEEE Internet Things J. 7, 3592–3601. https://doi.org/10.1109/JIOT.

2020.2973272.

58. FardMoshiri, P., Shahbazian, R., Nabati, M., and Ghorashi, S.A. (2021). A

csi-based human activity recognition using deep learning. Sensors 21,

7225. https://doi.org/10.3390/s21217225.

59. Ding, X., Jiang, T., Zhong, Y., Wu, S., Yang, J., and Xue, W. (2021).

Improving wifi-based human activity recognition with adaptive initial

state via one-shot learning. In 2021 IEEE Wireless Communications

and Networking Conference (WCNC) (IEEE), pp. 1–6. https://doi.org/

10.1109/WCNC49053.2021.9417590.

60. Gu, Y., Yan, H., Dong, M., Wang, M., Zhang, X., Liu, Z., and Ren, F.

(2021). Wione: one-shot learning for environment-robust device-free

user authentication via commodity wi-fi in man–machine system. IEEE

Trans. Comput. Soc. Syst. 8, 630–642. https://doi.org/10.1109/TCSS.

2021.3056654.

61. Ma, Y., Arshad, S., Muniraju, S., Torkildson, E., Rantala, E., Doppler, K.,

and Zhou, G. (2021). Location-and person-independent activity recogni-

tion with wifi, deep neural networks, and reinforcement learning. ACM

Trans. Internet Things 2, 1–25. https://doi.org/10.1145/3424739.

62. Li, B., Cui, W., Wang, W., Zhang, L., Chen, Z., and Wu, M. (2021). Two-

stream convolution augmented transformer for human activity recogni-

tion. Proc. AAAI Conf. Artif. Intell. 35, 286–293. https://doi.org/10.1609/

aaai.v35i1.16103.

63. Zhang, X., Tang, C., Yin, K., and Ni, Q. (2022). Wifi-based cross-domain

gesture recognition via modified prototypical networks. IEEE Internet

Things J. 9, 8584–8596. https://doi.org/10.1109/JIOT.2021.3114309.

64. Wang, D., Yang, J., Cui, W., Xie, L., and Sun, S. (2021). Multimodal csi-

based human activity recognition using gans. IEEE Internet Things J. 8,

17345–17355. https://doi.org/10.1109/JIOT.2021.3080401.

65. Ding, X., Jiang, T., Zhong, Y., Wu, S., Yang, J., and Zeng, J. (2022). Wi-fi-

based location-independent human activity recognition with attention

mechanism enhanced method. Electronics 11, 642. https://doi.org/10.

3390/electronics11040642.

66. Gu, Y., Zhang, X., Wang, Y., Wang, M., Yan, H., Ji, Y., Liu, Z., Li, J., and

Dong, M. (2022). Wigrunt: wifi-enabled gesture recognition using dual-

attention network. IEEE Trans. Hum. Mach. Syst. 52, 736–746. https://

doi.org/10.1109/THMS.2022.3163189.

67. Zhuravchak, A., Kapshii, O., and Pournaras, E. (2022). Human activity

recognition based on wi-fi csi data-a deep neural network approach.

Procedia Comput. Sci. 198, 59–66. https://doi.org/10.1016/j.procs.

2021.12.211.

68. Yang, J., Zou, H., and Xie, L. (2022). Securesense: defending adversarial

attack for secure device-free human activity recognition. IEEE Trans.

Mob. Comput. 1–11. https://doi.org/10.1109/TMC.2022.3226742.

69. Wang, D., Yang, J., Cui, W., Xie, L., and Sun, S. (2022). Airfi: empowering

wifi-based passive human gesture recognition to unseen environment via

domain generalization. IEEE Trans. Mob. Comput. 1–12. https://doi.org/

10.1109/TMC.2022.3230665.
20 Patterns 4, 100703, March 10, 2023
70. Yang, J., Chen, X., Zou, H., Wang, D., and Xie, L. (2022). Autofi: towards

automatic wifi human sensing via geometric self-supervised learning.

IEEE Internet Things J. 1. https://doi.org/10.1109/JIOT.2022.3228820.

71. Gardner, M.W., and Dorling, S. (1998). Artificial neural networks (the

multilayer perceptron)—a review of applications in the atmospheric sci-

ences. Atmos. Environ. 32, 2627–2636. https://doi.org/10.1016/S1352-

2310(97)00447-0.

72. He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for

image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pp. 770–778. https://doi.org/10.1109/

CVPR.2016.90.

73. Lipton, Z.C., Berkowitz, J., and Elkan, C. (2015). A critical review of recur-

rent neural networks for sequence learning. Preprint at arXiv. https://doi.

org/10.48550/arXiv.1506.00019.

74. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,

A.N., Kaiser, q., and Polosukhin, I. (2017). Attention is all you need.

Adv. Neural Inf. Process. Syst. 30. https://doi.org/10.48550/arXiv.

1706.03762.

75. Pan, S.J., and Yang, Q. (2010). A survey on transfer learning. Knowledge

and Data Engineering. IEEE Trans. Knowl. Data Eng. 22, 1345–1359.

https://doi.org/10.1109/TKDE.2009.191.

76. Yang, J., Yang, J., Wang, S., Cao, S., Zou, H., and Xie, L. (2023).

Advancing imbalanced domain adaptation: cluster-level discrepancy

minimization with a comprehensive benchmark. IEEE Trans. Cybern.

53, 1106–1117. https://doi.org/10.1109/TCYB.2021.3093888.

77. Yang, J., Qian, H., Zou, H., and Xie, L. (2021). Learning decomposed hi-

erarchical feature for better transferability of deep models. Inf. Sci. 580,

385–397. https://doi.org/10.1016/j.ins.2021.08.046.

78. Yang, J., Zou, H., Zhou, Y., and Xie, L. (2020). Towards stable and

comprehensive domain alignment: max-margin domain-adversarial

training. Preprint at arXiv. https://doi.org/10.48550/arXiv.2003.13249.

79. Zou, H., Yang, J., and Wu, X. (2021). Unsupervised energy-based adver-

sarial domain adaptation for cross-domain text classification. In Findings

of the Association for Computational Linguistics: ACL-IJCNLP 2021,

pp. 1208–1218. https://doi.org/10.18653/v1/2021.findings-acl.103.

80. Arshad, S., Feng, C., Yu, R., and Liu, Y. (2019). Leveraging transfer

learning in multiple human activity recognition using wifi signal. In 2019

IEEE 20th International Symposium on ’’A World of Wireless, Mobile

and Multimedia Networks’’ (WoWMoM), pp. 1–10. https://doi.org/10.

1109/WoWMoM.2019.8793019.

81. Li, L., Wang, L., Han, B., Lu, X., Zhou, Z., and Lu, B. (2021). Subdomain

adaptive learning network for cross-domain human activities recognition

using wifi with csi. In 2021 IEEE 27th International Conference on Parallel

and Distributed Systems (ICPADS), pp. 1–7. https://doi.org/10.1109/

ICPADS53394.2021.00006.
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