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A fundamental computational problem is to
find a shortest non-zero vector in Euclidean
lattices, a problem known as the Shortest Vec-
tor Problem (SVP). This problem is believed
to be hard even on quantum computers and
thus plays a pivotal role in post-quantum cryp-
tography. In this work we explore how (ef-
ficiently) Noisy Intermediate Scale Quantum
(NISQ) devices may be used to solve SVP.
Specifically, we map the problem to that of
finding the ground state of a suitable Hamil-
tonian. In particular, (i) we establish new
bounds for lattice enumeration, this allows us
to obtain new bounds (resp. estimates) for the
number of qubits required per dimension for
any lattices (resp. random q-ary lattices) to
solve SVP; (ii) we exclude the zero vector from
the optimization space by proposing (a) a dif-
ferent classical optimisation loop or alterna-
tively (b) a new mapping to the Hamiltonian.
These improvements allow us to solve SVP in
dimension up to 28 in a quantum emulation,
significantly more than what was previously
achieved, even for special cases. Finally, we
extrapolate the size of NISQ devices that is re-
quired to be able to solve instances of lattices
that are hard even for the best classical algo-
rithms and find that with ≈ 103 qubits such
instances can be tackled.

1 Introduction
Cryptography studies the limits of computing: what
can and cannot efficiently be computed. In 1976
Diffie and Hellman significantly expanded the realm of
the possible by inventing public key cryptography [1]
which allows two parties to agree on a shared secret
over a public channel in the presence of a wiretap-
ping adversary.1 Since its invention public-key cryp-
tography has seen widespread adoption and is now a
crucial building block for securing, say, the Internet.
However, this advance was not unconditional but re-

1If the public channel is authenticated, the adversary may
even actively interact with both parties.

lies on the presumed hardness of some computational
problem. Virtually all currently deployed public-key
encryption schemes rely on the difficulty of one of two
computational problems: the discrete logarithm prob-
lem and the problem of factoring large integers.

Everything changed in 1994 when Peter Shor’s sem-
inal work [2] showed that quantum computers could
effectively solve those two central problems. While
the timeline for when sufficiently big quantum com-
puters may be available is uncertain, the proposed
such timelines and the threat of “collect-now-decrypt-
later”-style attacks provoked global efforts to develop
“post-quantum cryptography”, cryptographic schemes
that run on classical computers but resist attacks with
quantum computers. The centre of these international
efforts is the Post-Quantum Standardisation Process
(NIST PQC) by the US National Institute of Stan-
dards and Technology (NIST) [3]. To date, there
are several candidates for post-quantum cryptography,
mainly lattice-based, code-based, hash-based, multi-
variate cryptography and supersingular elliptic curve
isogeny cryptography. Lattice-based cryptography
seems to be a prime contender for large scale adaption:
among the winners the NIST PQC process, three out
of four are based on lattices.

While, of course, all post-quantum candidates are
conjectured to be hard also on a quantum computer,
a pressing question for adoption is “how hard?”. That
is, in order to pick parameters that are both efficient
in practice but quantifiably resist attacks, the research
community studies the quantum resources required to
solve the underlying hard problems.

On the other hand, it is expected that the transition
to quantum computers will start with a phase referred
to as Noisy Intermediate Scale Quantum (NISQ), fea-
turing devices that consist of at most one thousand
erroneous qubits. This low number of qubits makes
use of any known error-correction technique infeasi-
ble, something that also puts stringent restrictions on
the depth a quantum computation can have before
the noise becomes dominant leading to essentially ran-
dom outcomes. To overcome this limitation of these
devices, hybrid classical-quantum algorithms are de-
signed specifically for these devices while most of
the famous quantum algorithms like Grover’s search,
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Quantum Fourier Transform or Shor’s algorithms are
impracticable. A natural question is thus “how hard
are lattice problems on NISQ devices?”2. This ques-
tion sheds light on the performance of these devices
on a natural and central computational problem.

Contributions. After some preliminaries (Sec-
tion 2), we determine a suitable mapping of the cen-
tral hard problem on lattices, the Shortest Vector
Problem (SVP) into the ground state of a Hamiltonian
operator, the form required by the classical-quantum
optimisation algorithms of our interest. In Section 3,
we introduce Ising spin Hamiltonian operators and
explain how to map SVP to an optimisation problem
in this framework. We discuss the challenges that
arise with this formulation and give a solution to the
“zero vector problem” for VQE.3 Our problem for-
mulation requires to know a priori bounds for each
coordinate of a shortest vector in a given basis B of
the lattice. In Section 4 we thus analyse the cost
of solving SVP in a non-adaptive exhaustive search
which allows us to quantify the search space. In par-
ticular, we show that the size of the search space de-
pends on the norms of the vectors forming the “dual

basis” B̂ := (B ·BT )−1 ·B. This allows us to obtain
a NISQ quantum algorithm to compute an HKZ re-
duced basis, one of the strongest notion of reduction,
using 3

2n log2 n+O(n) qubits and thus solving SVP in
passing. This cost of non-adaptive enumeration was
previously known only for a special class of lattices.
We also perform extensive classical numerical experi-
ments to study the average case behaviour of lattice
reduction in the context of our NISQ quantum enu-
meration algorithm. In Section 5 we then show that
our bounds allow us to run quantum emulation ex-
periments that using up to 28 qubits are able to solve
SVP in dimension 28 which is considerably more than
prior literature. Extrapolating our experimental data
we find that between 1, 000 and 1, 600 qubits suffice to
encode SVP for a dimension 180 lattice, the current
record dimension for “Darmstadt SVP Challenge” [4].
For the avoidance of doubt, our results do not vio-
late any previous claims on the hardness of lattice
problems on quantum computers because in general
we may hope for a running time at best 2λ/2+o(λ) for

2By NISQ devices, in this paper, we mean devices with
limited number of qubits and using algorithms with limited
depth of quantum computation in each iteration. Of course,
the limitation in the depth comes from the existence of “noise”
but the effects of noise extend further, e.g. by reducing the
probability that the classical optimisation loop ends-up with
the correct solution. Since we mainly focus on the qubit-count
and do not address the scaling of the probability of success even
in the noiseless case, we also leave the full analysis of the effects
of noise to a future publication.

3In Appendix A we outline a less efficient solution to impose
the constraint at the Hamiltonian level adding new variables.
That approach is applicable to QAOA, quantum annealing and
adiabatic quantum computing thus extending our method.

instances encoded in λ = 3
2n log2 n+O(n) qubits.4

2 Preliminaries
Lattices. A (Euclidean) lattice L is a discrete sub-
group of Rd, or equivalently the set L(b1, . . . , bn) =
{
∑n
i=1 xi · bi : xi ∈ Z} of all integer combinations of

n linearly independent vectors b1, . . . , bn ∈ Rd. Such
bi form a basis of L. We say that a matrix B forms
a basis of L if its rows form a basis of L. All the
bases have the same number n of elements, called the
dimension or rank of L. The dual L̂ of a lattice L is
the set of all vectors x ∈ span(L) such that 〈x,y〉 is
an integer for all y ∈ L. If B is a basis of L then

B̂ := (B ·BT )−1 ·B is a basis of L̂. We call B̂ the
“dual basis” of B. Lattice algorithms often involve the
orthogonal projections πi : Rn 7→ span (b1, . . . , bi−1)⊥
for i = 1, . . . , n. The Gram–Schmidt orthogonalisa-
tion (GSO) of B is B∗ = (b∗1, . . . , b

∗
n), where the

Gram–Schmidt vector b∗i is πi(bi).
One of the fundamental algorithmic problems re-

lated to lattices is to find a shortest non-zero element
of an arbitrary lattice (with respect to its Euclidean
norm), given an arbitrary basis of this lattice. This
problem is referred to as the shortest vector prob-
lem (SVP) and the length of such a vector denoted
by λ1(L). It is a central premise of lattice-based
cryptography that solving SVP (and its decision vari-
ant GapSVP) within a polynomial factor takes super-
polynomial time also on a quantum computer [5]. It
is well-known that the hardness of the SVP is related
to the “quality” of the input basis which informally
quantifies the length of the vectors in the basis and the
angles between. Intuitively, a basis with short and rel-
atively orthogonal vectors is of higher quality. There-
fore, a fundamental problem in lattice-based cryptog-
raphy is to increase the quality of a given basis, a
process known as lattice reduction. The celebrated
LLL algorithm [6] was the first polynomial-time algo-
rithm that computes a reduced basis of guaranteed
quality, namely the first vector is at most exponen-
tially longer than the shortest vector of the lattice.
The BKZ algorithm [7] is a generalisation of LLL to
obtain more strongly reduced basis at the expense of
a higher running time. More precisely, the BKZ algo-
rithm requires us to choose a so-called block size β:
the larger the β, the stronger the reduction but the
higher the running time (which is at least exponen-
tial in β). BKZ internally uses an algorithm to solve
(near) exact SVP in lower-dimensional lattices. There-
fore, understanding the complexity of SVP is critical
to understanding the complexity of BKZ and lattice
reduction. This, in turns, is critical to choosing secu-
rity parameters of cryptographic primitives [8].

4Classically, SVP can be solved in time n1/(2e)n+o(n) and
poly(n) memory or 20.292 n+o(n) time and memory.

2



When β = n we recover the HKZ algorithm produc-
ing HKZ reduced bases, which one of the strongest no-
tion of reduction [9]. The first vector of such a basis is
always a shortest vector of the lattice. Furthermore,
HKZ basis naturally lend themselves to be computed
recursively and enjoy many good properties (see Sec-
tion 4.2 for more details), especially in conjunction
with enumeration [10]. Enumeration algorithms list
all of the lattice points within a ball of prescribed ra-
dius r. One of the most important aspect of enumer-
ation is to correctly chose the enumeration radius r
so that it is larger than λ1(L), but not too large since
the running time increases rapidly with r. For ran-
dom lattices, the so-called Gaussian Heuristic gives a

good estimate of λ1(L) as gh(L) :=
√

n
2πe · det(L)1/n

.

The fastest known (heuristic) quantum algo-
rithm [11] for solving SVP is a “sieving algorithm”
runs in time 20.257n+o(n), uses QRAM [12] of max-
imum size 20.0767n+o(n), a quantum memory of
size 20.0495n+o(n) and a classical memory of size
20.2075n+o(n). The second main class of quantum al-
gorithms for solving SVP are “lattice-point enumer-
ation” algorithms which combine exhaustive search
with projections [13]. These algorithms run in time
nn/(4e)+o(n) and poly(d) memory. In many cryptogra-
phy applications nn/16+o(n) seems plausible [14]. On
classical computers, the current record computation
solved the “Darmstadt SVP Challenge”, which asks
to solve a slightly relaxed version of SVP, in dimen-
sion 180 [4] using sieving on GPUs. Both classes
of algorithms rely on Grover’s algorithm or random
walks which require long running computations on
fault-tolerant quantum computers and thus are not
suitable on quantum devices of the next decade, the
NISQ era.

Variational Quantum Algorithms. (VQA)s [15]
are hybrid classical-quantum algorithms that can
solve a variety of problems, including optimisation
problems. VQAs are believed to be one of the most
promising approaches to use and possibly offer quan-
tum advantage on near-term quantum devices – also
known as Noisy Intermediate-Scale Quantum (NISQ)
devices. The quantum devices that currently exist
and those that will become available in the coming
2-5 years are expected to have at most 1000 qubits
(intermediate-scale) and have imperfections (noisy).
Since the number of qubits is limited, to run com-
putations of interest one cannot “afford” to perform
quantum error-correction since this would require an
overhead in the order of ≈ 103 physical qubits for ev-
ery useful logical qubit. VQAs mitigate the effects
of noise by a different approach. A computationally
expensive subroutine is solved by the quantum device
that amounts in estimating the “energy” of a quan-
tum state that arises as the output of a parameterised
quantum circuit of short depth (avoiding the exces-
sive accumulation of errors). The preparation and

measurement is run multiple times and the output
is fed to a classical optimisation part that essentially
off-loads part of the computation to a classical device.
VQAs appear to offer advantages over classical algo-
rithms in various areas of quantum chemistry [16, 17]
and is a promising approach for many other areas in-
cluding combinatorial optimization [18], quantum ma-
chine learning [19] and quantum metrology [20].

Since SVP can be formulated as an optimisation
problem, we focus on two most widely used VQAs
for combinatorial optimisation, namely Variational
Quantum Eigensolver (VQE) [21, 22] and Quantum
Approximate Optimisation Algorithm (QAOA) [23].
The first step for both of them, as well as for quantum
annealing [24], is to encode the problem (SVP here)
to the ground state (smallest eigenvalue) of a Hamilto-
nian operator H. For QAOA and quantum annealing,
the Hamiltonian needs to be an Ising spin Hamilto-
nian (i.e. involving only Z spins and up to quadratic
interaction terms) and for quantum annealing extra
limitations due to the connectivity of the spins ap-
ply. For VQE the Hamiltonian can take more general
form (including higher order terms and/or X spins).
The second step, once the Hamiltonian is chosen, is
to select an ansatz state |ψ(θ)〉 – a family of quantum
states, parameterised by θ, that are the output of a
simple parameterised circuit. Ideally, we would like
to ensure that elements of the family considered are
close to the ground state of the problem’s Hamilto-
nian. The two classes of ansätze that exist are the
hardware efficient ones that are essentially chosen for
the ease that can be implemented at a given quantum
hardware, and the problem specific that are ansätze
that use information about the problem for example
using the problem’s Hamiltonian. The former are less
prone to errors and can be used with any Hamiltonian
but have no guarantee to be “dense” around the true
ground state, while the latter are more sensitive to
noise and can be used with specific classes of Hamil-
tonians but are designed to have states close to the
true ground state. The third step is to prepare a state
from the ansatz and measure it where this step is re-
peated multiple times. From these repetitions an es-
timate of the expectation 〈ψ(θ)|H|ψ(θ)〉 is calculated
and passed as the cost value for the choice of param-
eters to a classical optimiser.

The optimiser then calculates new parameter θ and
the procedure repeats until some stopping criterion
is reached and an estimate for the ground state is
produced. For our VQE runs we used hardware ef-
ficient ansätze. QAOA is by definition a problem
specific ansatz since the family is constructed as a
discretised version of Quantum Adiabatic Computa-
tion. This puts a constraint on the form of the Hamil-
tonian (which makes it harder to solve SVP with
fewer qubits see Section 3.2), but has the theoreti-
cal guarantee that for sufficiently deep circuits the
solution should be found. Specifically, for Hamiltoni-

3



ans that involve only spin Z terms, to compute the
energy/cost C(θ) of a quantum state |ψ(θ)〉 we pre-
pare the state and measure in the computational ba-
sis N times. Each run gives outcomes (bit-strings)
xi, and for every outcome we compute the related
cost mi(xi). Our estimate of the cost of the state

is C(θ) = 〈ψ(θ)|H|ψ(θ)〉 ≈ 1
N

∑N
i=1 mi and is used

by the classical optimiser. For classical combinatorial
optimization problems one can find that other meth-
ods are performing better. The Conditional Vale at
Risk (CVaR) [25] and the Ascending-CVaR [26] are
two methods that give better results and in this work
we will use the former. In [25] instead of computing
the cost taking the average of the values mi, they
considered ordering the values from the smallest to
the larger and counting the α-tail of the distribution.
Specifically, α is to be chosen heuristically and the
cost is calculated as an average of dαNe lowest mea-
surements outcomes. Suppose {m̃i}i=1,...,N is a sorted
set of {mi}i=1,...,N in non-decreasing order. Then the

cost is calculated as: CCV aRα(θ) = 1
dαNe

∑dαNe
i=1 m̃i.

We note that finding a ground state of a Hamil-
tonian is QMA-complete in general, but for specific
Hamiltonians the ground can be found efficiently –
adiabatic quantum computing is a universal model,
that finds efficiently the ground state of those Hamil-
tonians that correspond to BQP problems. Indeed,
in our case, since SVP is believed to be outside BQP
we do not expect to find the solution efficiently. On
the other hand, obtaining a polynomial speed-up is
valuable for the cryptanalysis – after all Grover’s al-
gorithm also provides such a moderate speed-up. In
particular, we do not expect to do better than Grover
– query complexity bounds indicate that for our prob-
lem we can get at most a small constant improve-
ment to Grover. However, due to the fact that our
approach is heuristic, we may still be able to get con-
siderable (larger) speed-up for certain (but not the
hardest) instances. To properly analyse the time-
complexity of a variational quantum algorithm, one
needs to bound the scaling of the probability that the
algorithm (at the end of the classical-quantum itera-
tions) returns the correct solution – viewed differently,
to bound the overlap of the output quantum state
with the true shortest-vector. Then by repeating the
algorithm sufficient5 number of times, one is guaran-
teed to find the correct solution with high probability.
While such bounds have been found for certain prob-
lems [27, 23, 28], in the general case it is hard to
obtain them (or even impossible), so this is left for
future work. Note that the classical time-complexity
scales exponentially, therefore even if this probabil-
ity vanishes exponentially fast (as expected) our solu-
tion may still give competitive results offering similar
performance to other “fault-tolerant” quantum algo-

5Here sufficient scales inversely with the probability of success
of a single run

rithms.

2.1 Related Work

There have been several works focusing on translat-
ing SVP into Hamiltonian H where the ground state
corresponds to the shortest lattice vector. Note that
we can trivially achieve encodings where the corre-
sponding eigenvalues of H define the order of lattice
vector lengths. The resulting variational quantum for-
mulation is thus capable of solving the approximate
SVP, a relaxation of SVP, on which the security of
most lattice-based protocols is relied upon. In [29]
the energy gaps between the first three excited states
of the problem Hamiltonian are analysed when solv-
ing low dimensional SVP via adiabatic computation.
The ground state is by their construction a zero state
and hence the first excited state is sought. The re-
sults suggest the existence of “Goldilocks” zones. In
such zones the adiabatic evolutions are slow enough
that there is a high probability of sampling any of
the first three excited states without any strong dom-
inance of any of them. As a consequence, in this
case it is possible to obtain the shortest non-zero
vector with a small number of measurement samples.
This motivates the use of QAOA to find the ground
state as it mimics the adiabatic computation. How-
ever, the experiments were performed only for lattices
up to 4 dimensions. Moreover, as SVP is an integer
optimisation problem, bounds on the ranges of the
(integer) variables need to be defined prior to map-
ping the problem into a binary optimisation problem.
The authors make an experimental guess that each of
them grows linearly with lattice dimension resulting
in guess of O(n logn) qubit requirement. The qubit re-
quirement was later proved in [30] for special lattices
with what they called “an optimal Hermite Normal
Form (HNF)”. The density of such lattices is around
44% for lattices generated with entries selected “uni-
formly at random” [31, Section 5.1]. For such lattices,
they show that 3

2n log2 n+n+ log (det(L)) qubits are
enough to guarantee that the shortest vector is an
eigenvector of the hamiltonian. To confirm the ap-
proach, experiments for up to 7-dimensional instances
of SVP were performed on D-Wave quantum annealer
making use of up to 56 logical qubits. The proof of
their bound crucially relies on the special shape of the
HNF namely that it has at most one nontrivial col-
umn. However, q-ary lattices (which are ubiquitous
in cryptography, see Section 5.1) almost never have
such a special Hermite Normal Form since6 they have
k nontrivial colums, where k is the rank of the under-
lying linear code and typically linear in the dimension
(such as n/2).

6Indeed, the matrix of a q-ary lattice is
[

In−k X
0 qIk

]
, where

X ∈ Z(n−k)×k
q has rank k, is already in HNF.
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3 Direct approaches to SVP with Vari-
ational Quantum Algorithms

Recall that the starting point for VQE and QAOA
(but also for quantum annealing) is to encode the
problem to the ground state of a Hamiltonian H.
As in other combinatorial optimisation problems, one
first needs to turn the problem to a quadratic uncon-
strained binary (QUBO) form and then there is a stan-
dard method to obtain an Ising Hamiltonian (i.e. a
Hamiltonian that involves only Z operators and the
interaction terms involve just pairs of qubits). Note
that to run VQE one can have more general Hamilto-
nians and as we will see later, in some cases it is sim-
ple to include constraints (or even higher order terms).
Coming back to QUBO formulatons the general form
of the cost is C(s1s2...sn) = c+

∑
i ciisi+

∑
i 6=j cijsisj ,

for string binary variables s1s2 · · · sn, for some coeffi-
cients c, {cij}1≤i,j≤n. Since Pauli-Z operators have ±1
eigenvalues one maps each binary variable si to Ii−Zi

2
leading to the Ising Hamiltonian, H =

∑
i cii

Ii−Zi
2 +∑

i 6=j cij
Ii−Zi

2 ⊗ Ij−Zj
2 where Zi and Ii are the Pauli-

Z and identity operators respectively, acting on i-th
qubit.

3.1 Mapping the Shortest Vector Problem into
QUBO formulation

A first approach (also starting point of [29, 30]), is
to consider as variables the coefficients of the basis
vectors. Each choice of the coefficients determines a
vector in the lattice, and its length can be easily cal-
culated using the basis matrix. There are two major
challenges with this approach. The first one is that
the coefficients are integers while we want to use a
finite number of binary variables. Recall that each bi-
nary variable will result to a qubit so we can only use
a finite number while making this number as small
as possible is crucial to run it in a NISQ device. We
therefore need to truncate (limit) the possible coef-
ficients, but in a way that the shortest vector is in-
cluded in our possible solutions. The second challenge
is that if the variables are the coefficients then a pos-
sible vector is the all zero vector, a vector that clearly
is shorter than the shortest (non-zero) vector we are
searching. We would therefore need to impose the
constraint x 6= 0 at some level.

Going back to the formulation, given an n-
dimensional full-rank row-major lattice basis matrix
B, we define lattice L(B) = {x ·B|x row vector,x ∈
Zn}. The shortest vector problem (SV P ) finds the
solution λ1 := miny∈L(B)\{0} ‖y‖. Let x be a row

vector of coefficients and G = B · BT a Gram ma-
trix of the basis. Then y = x · B =⇒ ‖y‖2 =
x ·B ·BT ·xT = x ·G ·xT which allows us to reformu-
late it as a quadratic constrained integer optimisation

problem:

λ2
1 = min

y∈L(B)\{0}
‖y‖2 (1)

= min
x∈Zn\{0}

n∑
i=1

xi ·Gii + 2
∑

1≤i<j≤n
xi · xj ·Gij .

As a consequence of rank-nullity theorem, we have
λ1 6= 0 as required. In order to convert (1) into a
binary optimisation problem, we need bounds |xi| ≤
ai for all i = 1, ..., n. This has been the core problem
of all approaches to map the SVP into a Hamiltonian
and we provide tighter and more general bounds in
Section 4.

We now define new binary variables
{x̃ij}0≤j≤blog 2ac using the initial integer variables xi
and the bound ai

|xi| ≤ a =⇒ (2)

xi = −a+
blog 2ac−1∑

j=0

2j x̃ij + (2a+ 1− 2blog 2ac) · x̃i,blog 2ac

where the last term ensures we do not enlarge the
search space. By substituting into (1) and ignoring
the x 6= 0 constraint, the resulting QUBO becomes
(3) where c, cij and dij,kl are calculated constants re-
sulting from the substitution.

min
x̃1,0,...,x̃1,blog 2a1c...
x̃n,0,...,x̃n,blog 2anc

c+
∑
x̃i,j

ci,j ·x̃i,j+
∑

x̃ij ,x̃k,`

di,j,k,`·x̃i,j ·x̃k,`

(3)

3.2 Encoding the x 6= 0 constraint
In deriving Equation (3) we ignored the x 6= 0 condi-
tion in the definition of SVP. The true minimum is
zero and is obtained by setting all the integer variables
x1, . . . , xn to zero. Instead we want to obtain the sec-
ond smallest value. In other words, we are seeking the
first excited state of the corresponding Hamiltonian,
with the extra information that the “true” ground
state (zero vector) is known. There are three ways
to address this. First is to ignore the constraint, run
the optimisation to find the ansatz state with great-
est overlap with the zero vector, and hope that it
has an (ideally large) overlap with the first excited
state [29]. Even if this approach succeeds in finding
SVP for small dimensions it is unlikely to work well
at large scales. The second solution is to exclude the
zero vector by imposing it in a form of a constraint
that “penalises” the zero vector. To map the problem
back to a QUBO, however, requires introducing extra
variables (n − 2 in our case), making this approach
less practical. Since this approach can work both for
QAOA and quantum annealing where the last and
more practical approach does not work, we give the
details of this mapping in Appendix A.

5



The third approach, that we will analyse here and
used in our numerical experiments, can be used in
VQE. One directly targets the first excited state by
modifying the classical loop of the VQE i.e. modify-
ing the way that the cost is evaluated. In the general
form, assuming that |ψ0〉 is the ground state, instead
of using the expression C(ψ) = 〈ψ|H|ψ〉 for the cost,
we use C(ψ) = 〈ψ|H|ψ〉 1

1−|〈ψ|ψ0〉|2 , where the mul-

tiplicative factor is the inverse of the probability of
not being in the ground state. This gives infinite cost
to the ground state, and in general penalises states
with greater overlap with the ground state. It is easy
to see that this cost is minimised at the first excited
state of the original Hamiltonian. Note that other ap-
proaches to find the first excited state exist (see for
example [32]).

In our case the ground state is the zero vector. Let
Ñ be the cardinality of mi’s (measured bit-strings)
that are non-zero. Then N

Ñ
is the numerical estimate

of the inverse of the probability not being the zero
vector. Therefore we will be using the modified cost

C ′(θ) =
(
N
Ñ

)
1
N

∑N
i=1 mi. Equivalently, this means

that to compute the cost of a state, we disregard the
zero-vector outcomes taking the average value over
all the other outcomes. In the measurements of the
final ansatz state, at the end of the optimisation, we
output the measurement sample with the lowest non-
zero energy. The advantage of this approach is that
the quantum part (states and measurements) are iden-
tical to the unconstrained one, and the only difference
is in the way that the measurement outcomes are used
to assign a cost to different states in the classical op-
timisation part of the VQE.

3.3 Handling approximate solutions

As the dimension of the lattice increases, the probabil-
ity that the algorithm converges to a shortest vector
might become vanishingly small. Instead, the system
might return a short-but-not-shortest vector. In this
case, one approach would be to replace a vector of
the basis by the newly obtained one, making the basis
more reduced, and restart. This approach has been ex-
perimentally observed to work in [33]. In the classical
setting, the use of tightly controlled approximate SVP
oracles was shown to provide an exponential speed-
up over enumeration with exact SVP oracles [34], but
here we likely do not get to choose the looseness of
our oracles. In principle, if we could characterise the
distribution of the output of the algorithm and quan-
tify the expected size of the vector, we could estimate
the number of times the algorithm needs to be re-run
before obtaining a shortest vector with good probabil-
ity. We leave this analysis as future work since it is
nontrivial to estimate the distribution of the output
of the algorithm.

4 Bounds on lattice enumeration and
application to variational quantum algo-
rithms for solving SVP
In the previous section we gave a map of SVP to a
QUBO formulation that is suitable for VQE. This
map, however, relies on bounds on each |xi|. In this
section, we obtain worst case bounds on the |xi| based
on the orthogonality defect of the dual basis. We
then give two applications of this result. First, we
show how to obtain a recursive algorithm to compute
a HKZ reduced basis and thus solving the SVP in
passing. This method gives us the best asymptoti-
cal bound on the number of qubits required. Second,
we estimate the number of qubits required to directly
solve the SVP by reducing the dual basis with recur-
sive or classical preprocessing and then applying the
NISQ enumeration.

4.1 General bounds on lattice enumeration
As we have seen in Section 3.1, we need to choose a
bound on each of the |xi| to obtain a finite optimi-
sation problem. This bound will then determine the
number of qubits required. In order to be sure to find
a solution, we first derive a general bound on all the
xi that correspond to lattice points in a ball of radius
A. We then use the Gaussian heuristic to choose the
radius A so as to ensure that this ball contains at least
one nonzero vector for most lattices and therefore a
shortest vector.

Lemma 1. Let x1, . . . , xn be such that
‖x1 · b1 + · · ·+ xn · bn‖ 6 A, then for all i = 1, . . . , n
we have |xi| 6 A · ‖b̂i‖ where b̂1, . . . , b̂n are the rows
of B̂, a dual basis of B which is the matrix whose
rows are b1, . . . , bn.

Proof. Let δi,j denote the Kronecker delta. Observe
that

〈
bj , b̂i

〉
= δi,j for all i, j. Indeed,

〈
bj , b̂i

〉
=

(B · B̂
T

)i,j = (In)i,j = δi,j . Now let v = x1 ·b1 + · · ·+
xn · bn for some x1, . . . , xn ∈ Z be such that ‖v‖ 6 A.
Then for any i, we have that

∣∣∣〈v, b̂i

〉∣∣∣ = |xi|. But on

ther other hand,
∣∣∣〈v, b̂i

〉∣∣∣ 6 ‖v‖ · ‖b̂i‖ which proves
the result.

If we now make use of the Gaussian heuristic to
choose the radius A and take A := gh(L) =

√
n/2πe ·

vol(L)1/n
. The total number of qubits that we need

will be

N =
n∑
i=1

(blog2(2mi)c+ 1) 6 2n+ log2

n∏
i=1

mi (4)

where mi is the bound on the |xi|. Using the bound
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of Lemma 1 we obtain

n∏
i=1

mi 6

(√
n

2πe

)n
· vol(L) ·

n∏
i=1

∥∥∥b̂i

∥∥∥
=
(√

n

2πe

)n
·

∏n
i=1

∥∥∥b̂i

∥∥∥
vol(L̂)

=
(√

n

2πe

)n
· δ(L̂)

where L̂ is the dual of L = L(b1, . . . , bn) and δ(·)
denotes the orthogonality defect. This suggest that
the critical factor for the enumeration is the reduction
of the dual of the lattice and not the lattice itself.

Corollary 1. The number of qubits required for the
enumeration on the basis B, assuming the Gaussian

heuristic is bounded by 2n+ log2

((
C2·n
2πe

)n/2
· δ(B̂)

)
where δ(·) denotes the orthogonality defect and C the
multiplicative factor used with the Gaussian heuristic7.

4.2 Bound on the number of qubits for produc-
ing a HKZ basis
In this section, we show that our NISQ enumeration
procedure can be used to HKZ reduce a basis in a re-
cursive way using only 3

2n log2(n) +O(n) qubits, thus
solving SVP in passing. This is asymptotically the
same as the algorithm in [30]. However, our algorithm
works for any lattice, whereas the algorithm in [30]
only works for lattices that have what they called “an
optimal Hermite Normal Form”. See Section 2.1 for
more details.

Recall that the notion of HKZ-reduced basis can
be defined inductively as follows. Any vector b is a
HKZ-reduced basis of L(b). A basis B = (b1, . . . , bk),
for k > 2, is HKZ-reduced if

• b1 is a shortest vector in L(B),

• (π2(b2), . . . , π2(bk)) is HKZ-reduced, where π2(·)
is the projection on b⊥1 ,

• |〈b1, bi〉| 6 1
2 |〈b1, b1〉|.

Intuitively, the first two conditions mean that b1 is
a shortest vector of the lattice L(b1, . . . , bk), and af-
ter projecting on b⊥1 , π2(b2) is a shortest vector of
the projected lattice L(π2(b2), . . . , π2(bk)), and so on.
This notion of reduction is much stronger than LLL-
reduced basis and BKZ-reduced basis. The third con-
dition is equivalent to the notion of size-reduction
which is also required by LLL-reduced basis and is
a technical condition.

We say that a basis B = (b1, . . . , bn) is pseudo-
HKZ-reduced if it is an LLL basis on which we apply

7The enumeration is done with a radius of C · gh(L).

an HKZ reduction to the first n− 1 vectors. This in-
tuitively means that the basis is almost HKZ-reduced,
except for the last vector, and the last vector is still
controlled by the fact it comes from an LLL-reduction.
In particular, the last vector is guaranteed to be at
most exponentially longer than a shortest vector of
the lattice.

Our algorithm is a variant of the classical algo-
rithm for producing a HKZ reduced basis due to Kan-
nan [9]. The main difference is that Kannan’s algo-
rithm exclusively works on the (primal) basis whereas
our algorithm has to reduce both the primal and the
dual basis to control the number of qubits required in
the enumeration steps. This difference requires us to
work slightly differently. In particular, Kannan’s algo-
rithm works by recursively producing a “quasi-HKZ”
reduced basis, and then applying enumeration on this
basis to obtain a full HKZ basis. A quasi-HKZ reduced
basis is essentially a LLL basis on which we apply an
HKZ reduction to the projection of the last n − 1
vectors (orthogonally to the first). In contrast, our
algorithm first produces a pseudo-HKZ basis, i.e. an
LLL-reduced basis on which we apply an HKZ reduc-
tion to the first n − 1 vectors. Our algorithm then
runs enumeration on the dual.

input : A basis (b1, . . . , bn)
output : An HKZ basis of the same lattice

1 L := L(b1, . . . , bn)
2 (d1, . . . ,dn) := dual basis of (b1, . . . , bn)
3 (d1, . . . ,dn) := LLL-reduce (d1, . . . ,dn)
4 (d1, . . . ,dn−1) := HKZ-reduce (d1, . . . ,dn−1)

/* the basis is (n− 1)-dimensional */
5 (b1, . . . , bn) := dual basis of (d1, . . . ,dn)
6 Call the NISQ enumeration procedure proposed

in Section 3 on (b1, . . . , bn) using the bounds
established in Lemma 1 and keep a shortest
vector v

7 (b1, . . . , bn) := LLL-reduce (v, b1, . . . , bn)
/* extract a basis from n+ 1 vectors
*/

8 Compute the orthogonal projections
(b′2, . . . , b

′
n) of (b2, . . . , bn) on b⊥1

9 (b′2, . . . , b
′
n) := HKZ-reduce (b′2, . . . , b

′
n)

/* the basis is (n− 1)-dimensional */
10 For each i, set bi := b′i + αib1 where

αi ∈
(
− 1

2 ,
1
2
]

is such that bi belongs to L
11 return (b1, b2, . . . , bn)

Algorithm 1: HKZ-reduction algorithm using
quantum enumeration

We will require the following well-known result
about HKZ basis.

Proposition 1 ([35]). The orthogonality defect of a
HKZ basis is bounded by γn/2

n ·
∏n
i=1 ·

√
i+3
2 where γn is

Hermite’s constant in dimension n, and γn < 1
8n+ 6

5 .

Corollary 2. The orthogonality defect of a HKZ basis
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is 6 2
n log2 n−

(
5
2 + 1

2 log2 e

)
n+O(logn)

.

Proof. See Appendix D.

Theorem 1. Assuming the Gaussian heuristic, Al-
gorithm 1 produces an HKZ basis with 3

2n log2(n) −
2.26n+O(logn) qubits.

Proof. We first show that the algorithm is correct by
induction on n. Let L = L(b1, . . . , bn) at the begin-
ning of the algorithm. First note that at the beginning
of line 6, the basis (b1, . . . , bn) is still a basis of the
original lattice L since all the previous operations
preserve that property. Assuming the Gaussian heuris-
tic is true (or true with a multiplicative factor8 C),
the enumeration algorithm will indeed find a shortest
nonzero vector v at line 6. The reduction at line 7 will
allow to extract a basis of L among the n+ 1 vectors
v, b1, . . . , bn. Since v is a shortest vector, the LLL re-
duction will ensure that b1 is a shortest vector of L at
the beginning of line 8. Let L′ = L(b′2, . . . , b

′
n) be the

projected lattice obtained after line 8. The reduction
at line 9 does not change the lattice spanned by the
b′i which is now a HKZ basis. The lifting operation at
line 10 ensures that (b1, . . . , bn) is a basis of L at the
end of the algorithm. Since b1 is a shortest vector of
L and (b′2, . . . , b

′
n) is HKZ and a basis of the projected

lattice, it follows that the returned basis is HKZ.
We now analyse the qubits requirement of the al-

gorithm. Let (d̄1, . . . , d̄n) be the basis obtained after
line 3 and (d̄∗1, . . . , d̄

∗
n) be its Gram-Schmidt orthog-

onalisation. By the properties of the LLL-reduction,
we have

∥∥d̄n
∥∥2

6 2n−1 ·
∥∥∥d̄
∗
n

∥∥∥2
[37]. Let (d1, . . . ,dn)

be the basis obtained after line 4 and (d∗1, . . . ,d
∗
n) be

its Gram-Schmidt orthogonalization. Clearly dn = d̄n
since this vector was not touched by the HKZ reduc-
tion. It follows that d∗n = d̄

∗
n because d∗n (resp. d̄

∗
n)

is the projection of dn = d̄n on the orthogonal of
span(d1, . . . ,dn) = span(d̄1, . . . , d̄n) which are equal
because the HKZ reduction does not change the span.
As a result, we have ‖dn‖2 6 2n−1 · ‖d∗n‖

2 after line 4
and therefore

δ(d1, . . . ,dn) = δ(d1, . . . ,dn−1) · ‖dn‖
‖d∗n‖

= 2
n log2 n−

(
2+ 1

2 log2 e

)
n+O(logn)

by Corollary 2. Taking the dual of this basis at
line 5 means at line 6, we are in a position to run the
enumeration algorithm on a basis (b1, . . . , bn) whose
dual (d1, . . . ,dn) has a small orthogonality defect. By
Corollary 1, the number of qubits required for this

8Many papers and the SVP challenge [36], typically use
the GH with a multiplicative factor C ≈ 1.05. For large n,
Minkowski’s bound on the shortest vector implies that C =√

2πe actually holds but this is a much worse bound.

enumeration step is bounded by

2n+ log2

[(
C2n

2πe

)n/2

δ(d1, . . . ,dn)
]

6 3
2n log2 n

−
( 1

2 log2 π + log2 e− log2 C
)
n+O(logn)

Denote by Q(n) the number of qubits necessary to run
the algorithm in dimension n. Since we run the enumer-
ations sequentially, Q(n) = max(Q(n− 1), n log2(n) +
O(n)) and therefore Q(n) = 3

2n log2(n) − 2.26n +
O(logn) for C = 1.

4.3 Solving the SVP directly in the NISQ era
As we have seen in the previous sections, the bound on
the xi and thus the running time of the enumeration
fundamentally depend on the quality of the dual basis.
The algorithm of the previous section takes advantage
of this fact by recursively reducing the primal and
dual basis and always running the enumeration on a
dual quasi-HKZ reduced basis, one of the strongest
notion of basis reduction. Unfortunately, the bound
on the number of qubits that we obtained relies on
worst case bounds on the orthogonality defect of such
basis. In particular, the linear term in the bound of
Theorem 1 is quite pessimistic for most bases.

In this section, we perform numerical experiments
to understand the number of qubits necessary to run
the quantum enumeration depending on the quality
of the dual basis. As mentioned above, the cost of
enumeration is affected by the quality of the input ba-
sis. We thus consider input bases preprocessed with
LLL or BKZ-β. Using Corollary 1, we draw Figure 1a
which shows the number of qubits needed when the
dual basis is LLL reduced or BKZ-β reduced with dif-
ferent β. We choose the maximum value of β = 70,
since the running time becomes prohibitively long for
larger β. We also performed experiments with dual
pseudo-HKZ reduced basis to understand the prac-
tical behavior of the algorithm in the previous sec-
tion9. The graph was obtained by generating ran-
dom q-ary lattices (for q = 65537 and k = n/2),
reducing them and then computing N as in (4) us-
ing the bounds in Lemma 1. Each experiment was
repeated 5 times10 and the average was taken. We
also performed regression using quadratic polynomi-
als for LLL and BKZ reduced basis. This type of
regression is expected to fit well since the number of
qubits can be shown to be quadratic. On the other

9Given the high cost of computing HKZ reduced basis, our
experiments are limited to dimension 80.

10The q-ary lattices that we generate have fixed determinant,
hence the number of qubits only depends on the orthogonality
defect. We observed that the orthogonality defect of LLL and
BKZ reduced basis varies little between runs, hence the small
number of runs.
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hand, as shown in Theorem 1, for pseudo-HKZ re-
duced dual basis, the number of qubits should grow
as Θ(n log2(n)) asymptotically. Hence, we fitted with
a curve of form 3

2n log2(n) + an+ b.
In order to solve the current lattice approximate

SVP record (dimension 180), we need approximately
1157 qubits when the dual is sufficiently reduced (β =
70 for example). This is considered to be achievable
in the not so far future. We stress, however, that this
does not imply such an algorithm will converge on a
good solution efficiently but only that it can be run.

5 Experimental results
We run quantum emulation of the VQE algorithm on
a classical computer to assess the performance of our
SVP solver. Due to the limited number of emulable
qubits we considered lattices with rank up to 28, much
smaller than the cryptographically relevant ranks but
much bigger than prior quantum attempts. While we
estimated the space-complexity required to solve large
dimensions, we cannot reliably extrapolate the perfor-
mance (accuracy/time) due to the heuristic nature of
VQE. The effects of noise and error-mitigation are be-
yond the scope of this work and are left for future
explorations.

5.1 Experimental framework
For our experiments we first sample

A :=
(

Id−k Ã
0 q · Ik

)
∈ Zd×d

where Ã←$Z(d−k)×k
q and Ix ∈ Zx×x is the identity.

We then consider the lattice L(A) spanned by the
rows of this matrix. In particular, we first LLL re-
duce the entire lattice basis and then consider the
sublattice of rank n spanned by the first rows of the
reduced basis. Our choice of q-ary lattices L(A) is
partly motivated by their ubiquity in cryptography
and by their connection to worst-case lattice problems.
For example, finding short vectors in the dual of a
random q-ary lattice is as hard as finding short vec-
tors in any lattice [38]. We preprocess these lattices
using the polynomial-time LLL algorithm for numer-
ical stability reasons. We extract a n-rank sublattice
in dimension d rather than considering full-rank lat-
tices with n = d since LLL will succeed in solving
SVP for such small dimensions directly. The VQE re-
ceives a n × d matrix as input and this “leaves some
work” for the quantum algorithm to do. Note that
even though many instances of these sub-lattices were
“almost” solved by the described procedure, it is lit-
tle advantage for the VQE as the size of the search
space was not reduced. Therefore, by using a ran-
dom guess for initial optimization parameters of an
ansatz circuit, our experiments represent scaled-down

Figure 1: Experimental results
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x     y       y-      y+  repeat_nr
20 41.000000 1.000000 2.000000 5
30 89.600000 1.600000 0.400000 5
40 124.800000 2.800000 2.200000 5
50 199.600000 0.600000 0.400000 5
60 241.400000 1.400000 1.600000 5
70 345.600000 7.600000 3.400000 5
80 400.400000 0.400000 1.600000 5
90 494.600000 35.600000 28.400000 5
100 599.200000 1.200000 0.800000 5
110 670.400000 10.400000 20.600000 5
120 807.400000 27.400000 25.600000 5
130 910.000000 1.000000 1.000000 5
140 1009.600000 29.600000 57.400000 5
150 1192.000000 8.000000 7.000000 5
160 1280.000000 0.000000 0.000000 5
170 1416.400000 52.400000 57.600000 5
180 1615.800000 13.800000 4.200000 5



x     y       y-      y+  repeat_nr
20 40.000000 0.000000 0.000000 5
30 89.800000 0.800000 0.200000 5
40 120.200000 0.200000 0.800000 5
50 186.200000 5.200000 4.800000 5
60 240.000000 0.000000 0.000000 5
70 280.400000 0.400000 0.600000 5
80 377.400000 7.400000 5.600000 5
90 449.800000 0.800000 0.200000 5
100 500.000000 0.000000 0.000000 5
110 579.400000 16.400000 11.600000 5
120 714.000000 4.000000 3.000000 5
130 780.000000 0.000000 0.000000 5
140 841.400000 1.400000 1.600000 5
150 996.600000 9.600000 22.400000 5
160 1118.600000 2.600000 1.400000 5
170 1190.000000 0.000000 0.000000 5
180 1264.000000 3.000000 4.000000 5



x     y       y-      y+  repeat_nr
20 41.400000 1.400000 1.600000 5
30 90.000000 0.000000 0.000000 5
40 120.000000 0.000000 0.000000 5
50 181.400000 8.400000 5.600000 5
60 238.200000 1.200000 1.800000 5
70 280.000000 0.000000 0.000000 5
80 339.600000 3.600000 4.400000 5
90 432.800000 2.800000 3.200000 5
100 499.200000 0.200000 0.800000 5
110 550.000000 0.000000 0.000000 5
120 625.600000 9.600000 5.400000 5
130 757.000000 2.000000 3.000000 5
140 835.200000 1.200000 0.800000 5
150 900.000000 0.000000 0.000000 5
160 968.000000 4.000000 4.000000 5
170 1132.600000 9.600000 5.400000 5
180 1248.800000 2.800000 5.200000 5



x     y       y-      y+  repeat_nr
20 43.200000 1.200000 1.800000 5
30 86.000000 3.000000 2.000000 5
40 123.400000 3.400000 2.600000 5
50 177.600000 2.600000 2.400000 5
60 237.400000 1.400000 1.600000 5
70 280.400000 0.400000 0.600000 5
80 331.200000 4.200000 2.800000 5
90 413.200000 3.200000 4.800000 5
100 495.600000 3.600000 3.400000 5
110 550.200000 0.200000 0.800000 5
120 605.800000 3.800000 4.200000 5
130 698.400000 4.400000 7.600000 5
140 818.400000 4.400000 5.600000 5
150 898.000000 1.000000 2.000000 5
160 960.000000 0.000000 0.000000 5
170 1028.800000 2.800000 1.200000 5
180 1157.800000 4.800000 4.200000 5



x     y       y-      y+  repeat_nr
20 63.200000 3.200000 2.800000 5
30 97.400000 1.400000 1.600000 5
40 139.800000 3.800000 3.200000 5
50 196.400000 2.400000 1.600000 5
60 245.800000 0.800000 0.200000 5
70 288.800000 1.800000 2.200000 5
80 348.200000 2.200000 1.800000 5
90 431.800000 5.800000 3.200000 5




real instances. Consequently, the hardness of SVP for
VQE is in our experiments not even lowered if the
shortest vector is already present in the given basis.
The search space is defined by bounds on the coeffi-
cient vector as discussed in Section 4.1. However, the
bounds there are worst-case and asymptotic. In con-
trast, lattice algorithms tend to perform much bet-
ter on average than in the worst case, especially in
small dimensions. Indeed, Figure 1a illustrates the
same phenomenon here. We hence present a different
qubit mapping strategy for which we compute proba-
bilities of the shortest lattice vector lying within these
bounds and in our quantum experiments we evaluate
the probability of finding the ground state of problem
Hamiltonian. The advantage is that the two problems:
choosing an appropriate qubit mapping and finding
the ground state of the problem Hamiltonian, can be
tackled separately. The overall success probability of
the variational SVP solver is then a product of the
probability of encoding the shortest non-zero lattice
vector in the search space and the probability of find-
ing the Hamiltonian’s ground state.

Naive qubit mapping approach. Given an n-
rank sublattice we assign one qubit per coefficient of
the coefficient vector, i.e. |xi| ≤ 1 for 1 ≤ i ≤ n. Us-
ing this approach we found that the shortest non-zero
lattice vector was included in the search space with
the following probabilities: rank 15 : 80%, rank 16 :
75%, rank 17 : 75%, rank 18 : 74%, rank 19 : 71%,
rank 20 : 70%, rank 21 : 64%, rank 22 : 62%, rank 23 :
57%, rank 24 : 55%, rank 25 : 50%. See Appendix B
for analysis of naive qubit mappings with ranks up to
50 that also considers different naive mapping strate-
gies. The results presented in the appendix can be
of an interest for all experimental approaches to the
SV P that use a Hamiltonian formulation.

Quantum emulation setup. We developed dis-
tributed variational quantum algorithms emulation
software framework11 by modification of parts of Xacc
[39] library to utilize implementations of variational
quantum algorithms and useful classical optimisers
and we use QuEST [40] for the underlying quantum
emulation. The experiments have been run on Ngio
5, a distributed computer provided by Edinburgh Par-
allel Computing Centre featuring 2x Xeon Platinum
8260 24C 2.4GHz with 12x 16GB DRAM modules.
The emulations use state-vector representation of in-
termediate quantum states and do not consider any
effects of noise. Noise would affect the probability of
finding the ground state (uncertainty of cost makes
the classical optimization harder) (Figure 1b Top),
but it would not affect the time requirements (Fig-
ure 1b Bottom), neither the number of qubits. As it

11https://github.com/Milos9304/FastVQA, https:
//github.com/Milos9304/LattiQ

has been noted, extrapolating our results to lattice di-
mensions of cryptographic interest is infeasible from
our experiments, because the way the probability of
success decays cannot be extrapolated (among other
reasons because we cannot anticipate the effects that
barren plateaus would have). This is why for our cur-
rent contribution adding noise would not add much
in our analysis, beyond perhaps, bringing lower the
probabilities of solving the problem in the very low
qubit experiments that are possible to emulate.

5.2 Experimental results
To improve the performance in our experiments we
used CV aRα cost for VQE. We chose α = 0.175
since this gave better results (see also Appendix C).
We were able to solve the SVP with our emulator for
lattices with rank up to 28. Our experiments with
128 instances suggest that the success probability of
finding the shortest non-zero lattice vector remains
roughly constant for lattice instances with ranks not
much larger than 28. Figure 1b (top) depicts the aver-
aged overlap of the final ansatz state with the ground
state corresponding to the shortest non-zero lattice
vector found by a classical enumeration. The over-
lap represents the probability of sampling the shortest
lattice vector with a single measurement of the final
ansatz state. From the figure we see that we need
≈ 25 samples to obtain the solution. Moreover, we
observed linear time scaling (see Figure 1b bottom).
We note, however, that the ranks of cryptographically
relevant lattices are larger (≈ 400) and we cannot ex-
trapolate our observations with confidence.
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excited state of problem Hamiltonian
Section 3.1 shows that an Ising spin Hamiltonian
whose eigenstates correspond to lattice vectors in a
certain region can be constructed in a straightforward
manner. However this implicitly encodes the zero vec-
tor as the ground state of the Hamiltonian. Since the
output of the SVP problem is expected to be non-
zero, a technique to essentially find the Hamiltonian’s
first excited state must be utilised. Note that this is
equivalent with finding a new Hamiltonian that has
as ground state the first excited state of our initial
Hamiltonian. In the case of VQE there exists a natu-
ral solution to the problem that can be accommodated
fully at the classical loop (classical post-processing)
of the optimization. This happens by defining a cost
function that excludes the contribution of the zero vec-
tor eigenstate and consequently guides the optimiser
towards the first excited state. However, such modifi-
cation cannot be done to QAOA nor can be executed
on a quantum annealer as the cost function is strictly
defined by the optimization strategy itself.

The first approach one might consider is ignoring
the x 6= 0n and proceed with trying to optimise for
the ground state. There is a chance that the overlap
of the first excited state with final ansatz state (aimed
to match closely the ground state/zero-vector) is non-
zero and that it gets sampled during the final ansatz
measurements. This approach does not increase any
requirements on quantum resources, however, espe-
cially as the number of qubits increases, it is not ex-
pected to yield satisfiable results. The difference in
cost between the zero vector and the first excited state
(the SVP) increases and the probability of obtaining
the first excited state while targeting the ground state
decays possibly exponentially fast.

Instead, a more accurate and in the long term, vi-
able solution is to modify the Hamiltonian and impose
a penalty for reaching the zero vector (ground state of
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the “naive” Hamiltonian). Introducing the extra con-
straint, and ensuring that the new Hamiltonian is still
QUBO (so that we can run QAOA or quantum anneal-
ing) requires to introduce auxiliary variables and thus
requires more qubits. In our case, we succeed to ob-
tain a theoretical guarantee that the optimization re-
sult converges to the shortest lattice vector in the limit
of optimization parameters for the cost of introducing
extra n− 2 qubits for a lattice with rank n. Such ap-
proach hence roughly reduces the abilities of QAOA
algorithm or quantum annealer device by a half com-
pared to the VQE algorithm but allows us to benefit
from a wider range of quantum variational approaches
and hence we include it here for the reference. A triv-
ial solution would be to penalise certain assignment of
QUBO binary variables that makes the QUBO formu-
lation zero. As we will argue below, given m QUBO
binary variables, the approach would require to intro-
duce m− 2 new binary variables. Note that m ≥ n is
the number of binary variables in QUBO. If we let n
be rank of a lattice we can see that m ≥ n as shown
in Section 3.1 where m ≈ n log(2a) if each xi has
the same variable range 2a assigned. Suppose that
instead of the mapping presented in Equation 2 we
instead map each integer variable as

|xi| ≤a =⇒ (5)

xi =− a+ ζia+ ωi(a+ 1) +
blog(a−1)c−1∑

j=0
2j x̃ij

+ (a− 2blog(a−1)c)x̃i,blog(a−1)c

by introducing new binary variables ζi, ωi and
{x̃ij}0≤j≤blog ac for eachi xi.The encoding (5) allows
us to encode penalization of zero state with much less
qubits. It is easy to observe that for the last two terms
of (5) it holds that

0 ≤

blog(a−1)c−1∑
j=0

2j x̃ij + (a− 2blog(a−1)c)x̃i,blog(a−1)c ≤ a− 1

and consequently

xi = 0 =⇒ ζi = 1

Hence the penalization of the case where all integer
variables are penalised for being zero ∀xi = 0 is equiv-
alent to penalization of the case where the same num-
ber of binary variables are one ∀ζi = 1. The penaliza-
tion term then becomes (6)

P
∏

ζi (6)

where P is the penalty value. The term (6) can
be encoded as (7) where {zi}1≤i≤n are extra auxil-
iary binary variables with bijective correspondence to
{ζi}0≤i≤n.

P ·

(
1 +

n∑
i=1

zi ·

(
−(1− ζi) +

n∑
k=i+1

(1− ζk)
))

. (7)

(7) encodes constraint (6). Let xi = 1−ζi, τi = −xi+∑
k=i+1 xk and let zi = 1 ⇐⇒ τi < 0. Then it is

easy to see that values of z1, . . . , zn minimise (7). If
∀xi = 0, the whole expression is equal to P as required.
Otherwise, let j1, ..., jm be positions of m ≤ n binary
ones in the bitstring x1x2 . . . xn sorted in the increasing
order. Then τjm = −1 and τjl ≥ 0 for 1 ≤ l < m.
Hence ∀i6=jmzi = 0, zjm = 1 and the whole expression
is 0, hence no penalty is imposed.

Observe that setting zn = 1 and zn−1 = ζn does not
change the global minimum of (7). Hence n− 2 addi-
tional binary variables {zi}1≤i≤n−2 are needed to en-
code the penalization term for an n-rank lattice. The
quadratic unconstrained binary optimization problem
formulation that can be trivially mapped to Ising spin
Hamiltonian hence becomes

min
x1,...,xn
z1,...,zn−2

n∑
i=1

xi ·Gii (8)

+ 2
∑

1≤i<j≤n
xi · xj ·Gij

+ L ·

(
1 +

n∑
i=1

zi ·

(
−(1− ζi) +

n∑
k=i+1

(1− ζk)
))

where xi is encoded as in Equation (5). Number of
binary variables needed to represent xi bounded by
ai is blog aic + 3. Hence the total number of binary
variables in Equation (8) is

nbin vars constrained

=
n∑
i=1

(blog aic+ 3) + (n− 2) = 4n− 2 +
n∑
i=1
blog aic.

B Probability of including the shortest
lattice vector in the search space using
naive qubit mapping strategies
As discussed in Sections 4 and 5.1, the bounds de-
termined in Section 4.1 are not the best choice for
small lattice instances. Given n dimensional lattice L
and m available qubits, choosing a uniform distribu-
tion of qubits over elements of the coefficient vector
x turns out to achieve a high probability of encod-
ing the shortest non-zero lattice vector as the ground
state of a problem Hamiltonian when m is sufficiently
large. Figure 2 depicts the probabilities of encoding
the shortest non-zero lattice vector as a Hamiltonian’s
ground state given the number of available qubits and
the lattice rank. The results were averaged over 1024
instances prepared using the same methodology as for
the quantum emulation experiments described in Sec-
tion 5.1. Three approaches have been compared:

blue distributing
⌊
m
n

⌋
qubits to each of the coeffi-

cient of x,
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red randomly distributing
⌊
m
n

⌋
qubits to n ×

⌊
m
n

⌋
,

coefficients of x and distributing
⌊
m
n

⌋
+ 1 to the

remaining coefficients of x

green using Lemma 1 with A = gh(L) to obtain a dis-
crete distribution of the bounds over coefficients
of x; the distribution is then scaled such that at
most m qubits were distributed.

C Conditional value at risk experiment
data
We chose the value of α = 0.175 to use in the CV aRα
VQE algorithm in our quantum emulation experi-
ments in Section 5. Based on an experiment involving
1024 instances of rank 16 lattices prepared as in Sec-
tion 5.1 this value gave the best results. The value of
α was varied incrementally in small steps. Figures 3a
and 3b depict the mean and the median overlaps of the
final ansatz state with Hamiltonian’s ground state re-
spectively. We can observe that despite positive linear
correlation between the mean overlap and parameter
α, the median overlap peaks sharply at α ≈ 0.175, an
indication of a rightly-skewed distribution. In other
words, we have seen significantly less instances with
high overlap as α >≈ 0.4 tends towards one, although
when such overlaps happen, they are high enough so
that their mean increases with α. The inverse of the
overlap is the expected number of measurement sam-
ples of the final ansatz state to obtain the ground
state. Hence a compromise must have been made
to achieve as many as possible overlaps which were
sufficiently high in the sense that the ground state
could be obtained from them by a reasonable number
of measurements. In order to make a fair compari-
son, we considered the probabilities of sampling the
ground state if 5000 measurements of the final ansatz
were to be performed as depicted in Figure 3c. We
chose the value α = 0.175 as it achieved around 78%
probability of finding the Hamiltonian’s ground state
and at the same time it achieves the highest median of
overlaps (around 0.006). Note that the non-CV aRα
VQE version, i.e. when α = 1 resulted in only 21%
probability of finding the Hamiltonian’s ground state.

A final thing to note is that when one uses CVaR,
the optimiser has incentive to find a quantum state
that has α overlap with the true ground state, but
no incentive to increase the overlap to higher values
than α, since anything above the α-tail is irrelevant
for computing the cost. Therefore, while it has been
demonstrated that small values of α may increase the
chances of finding the solution after a fixed number
of shots/measurements of the final state is carried
out, the actual (mean) overlap does not necessarily
increase (at least not to values above α). This was
one of the motivation to look modify CVaR and de-
fine an Ascending-CVaR [26].

D Proof of Corollary 2
Let δ be the orthogonality defect. Then

log2 δ 6
n
2 log2 γn + 1

2 log2
(n+3)!

3! − n
6 n

2 log2( 1
8n+ 6

5 )− n+ 1
2 log2(n+ 3)! +O(1)

= n
2 log2(n)− 5

2n+ 1
2 log2(n+ 3)! +O(1)

= n
2 log2(n)− 5

2n+ 1
2 log2 n! +O(logn)

6 n
2 log2(n)− 5

2n+ 1
2 log2

(√
2πn

(
n
e

)n
e

1
12n

)
+O(logn)

= n
2 log2(n)− 5

2n+ n
2 log2 n− n

2 log2 e+O(logn)

where we used [41] at the second to last line.
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Figure 2: Probability of encoding the shortest lattice vector as an eigenvector of problem Hamiltonian using blue: uniform
distribution of qubits, red: uniform distribution of qubits and random distribution of the remaining qubits, green: scaled
distribution of qubits according to Lemma 1 with A being a gaussian heuristics corresponding to the lattice instance
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Figure 3: Experimental determination of CVaR’s parameter α
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(a) Averaged overlap with the shortest lattice vector as a function of
parameter α with standard deviations.

0 0.2 0.4 0.6 0.8 10

0.002

0.004

0.006

Parameter α

O
ve

rla
p

(b) Median overlap with the shortest lattice vector as a function of
parameter α.
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(c) Probability of sampling the ground state in 5000 samples using CVaR version of VQE as a function of parameter α. Note that α = 1
corresponds to the standard non-CVaR version of VQE.
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