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for Monitoring Alzheimer’s Disease Using
Electromagnetic Radar Data
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Siddharthan Chandran

Abstract—Alzheimer’s and Parkinson’s disease are two neu-
rodegenerative brain disorders affecting more than 50 million
people globally. Early diagnosis and appropriate assessment of
disease progression are critical for treatment and improving
patient’s health. Currently, the diagnosis of these neurodegen-
erative diseases is based primarily on mental status exams and
neuroimaging scans, which are costly, time-consuming, and some-
times erroneous. A novel, cost-effective, and precise diagnostic
tools and techniques are thus urgently required, particularly for
early detection and prediction. In the recent decade, electromag-
netic imaging has evolved as a cost-effective and non-invasive
alternative approach for studying brain diseases. These studies
focus on wearable and portable devices and imaging algorithms.
However, microwave imaging can not detect minimal changes in
the brain at early stages accurately due to its lower resolution.
This paper investigates machine learning techniques for the early
diagnosis of acute neurological diseases, especially Alzheimer’s
disease. A machine-learning-based classification method is pro-
posed. Simulations are performed on realistic numerical brain
phantoms using the CST studio suite to get the scattered signals.
A novel data augmentation method is proposed to generate
synthetic data required for machine learning algorithms. A
deep neural network-based autoencoder extract features to train
various machine learning algorithms. The classification results
are compared with raw data and manual feature extraction. The
study shows that the proposed machine learning-based method
could be used to monitor Alzheimer’s disease at its early stages.

Index Terms—Alzheimer’s disease (AD), classification, data
augmentation, microwave sensing, machine learning, radar data.

I. INTRODUCTION

LZHEIMER’S disease (AD) induces physiological and
pathological changes in the human brain, including brain
atrophy, lateral ventricle enlargement, increase in the Cere-
brospinal fluid (CSF), and the accumulation of plaques and
tangles. Current approaches for monitoring neurodegenerative
diseases, such as magnetic resonance imaging (MRI) and
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positron emission tomography (PET), are bulky, costly, and un-
comfortable for elderly patients [1]. Microwave-based image
reconstruction techniques are getting attention to be used as an
alternative imaging modality. The advantages over traditional
imaging modalities include their portable and wearable nature.
Microwave-based imaging techniques are being investigated
for breast cancer and brain stroke detection [2]. These tech-
niques have recently been investigated to detect AD-related
pathological and physiological changes in the brain [3]. The
imaging-based studies can detect significant pathological and
physiological changes in the brain. However, it is essential to
detect the disease at its early stages. Due to their low spatial
resolution, small pathological and physiological changes can
not be detected using microwave imaging techniques.

AD can be detected at the early stages by observing CSF
and brain atrophy changes even before the onset of symptoms.
Current machine and deep learning methods use images from
different imaging modalities such as MRI and PET scans.
The algorithms are trained using various features such as
brain volume, grey matter densities, and cerebral amyloid
accumulation in the hippocampus [4]. All these approaches
need images from imaging modalities. Recently, a novel,
lightweight, non-invasive microwave imaging device for di-
agnosing neurodegenerative diseases has been proposed. [5]
However, the device has low Noise to Signal Ratio, which
leads to low-resolution images. This is due to the radiation
pattern of a wideband antenna that leads to spatial blurring
and signal scattering in tissues. More sophisticated signal
processing techniques are needed for accurate monitoring or
detection of the early stages of AD.

Machine learning (ML) has already shown potential in neu-
roimaging data analysis for various diseases [6] and applica-
tions for classifying stroke types[7] [8]. Different classification
methods are proposed to distinguish intracerebral haemorrhage
(ICH) from ischemic stroke (IS) and healthy volunteers by
classifying high-frequency microwave data [9][8]. However,
the potential of ML in predicting AD using microwave data
has yet to be thoroughly exploited. The data obtained from
pathological phantoms using simulations were used to classify
different stages of AD [10]. The paper utilises ML to analyse
the RF data (reflection coefficients) simulated in CST to
train the model for AD progression tracking. The reflection
coefficients from all antennas were integrated and treated as
one sample, which increases pre-processing overhead. Our
previous work used the raw data from both physiological



and pathological phantoms to train various ML algorithms
[11]. The presented results show a reasonable accuracy of
the proposed method. However, due to the limited and un-
realistic data used in training, the accuracy is questionable
for a more accurate prediction. In this work, first, data from
both pathological and physiological changes are used. In our
previous work, multiple phantoms were created based on the
dielectric properties obtained from postmortem tissues [12].
Multiple compositions of mesh cells for each phantom are used
to accommodate various head sizes. Furthermore, a new data
augmentation technique is proposed to overcome the scarcity
of data. A more realistic form of augmented data is generated,
and an integrated data set is created. Furthermore, previous
studies use raw data directly without feature extraction, which
is susceptible to redundant data. This paper uses a neural
network-based feature extraction technique to extract various
features from the integrated data set.

Conversely, a number of works based on deep learning have
already been introduced intensively in inverse scattering[13]
[14] [15]. For example, a deep learning network-based system
for mapping a scattered field of objects to high-resolution
images is presented in [16]. A two-stage training strategy is
used to lower the training difficulty. In the first step, an auto-
encoder consisting of an encoder and a decoder is constructed
to identify compact representations for high-resolution images.
In the second step, a neural network maps microwave signals
to the extracted feature. Similarly, a deep learning approach
based on the deep convolutional encoder-decoder structure
is proposed to solve the electromagnetic inverse scattering
problem [17]. The model is built using a complex-valued
deep convolutional neural network consisting of an encoder
and decoder network. The proposed network rebuilds the
permittivity of dielectric objects based on scattering data. A
direct inversion scheme based on a neural network is proposed
for the quantitative imaging of highly nonlinear profiles [18].
A neural network with complete connectivity is deployed in
the training phase to estimate the object’s complex permittivity
profile under test. Similarly, deep learning is proposed to
classify breast tomographic microwave and ultrasound tissue
types. The method employs a CNN with U-net architecture
to assess pixel categorization uncertainty. The training set
consists of quantitative tomographic reconstructions of dielec-
tric properties and ultrasonic properties, along with tissue-
type classification. The proposed deep learning-based meth-
ods provide promising results. However, these techniques are
computationally expensive [19].

In microwave imaging, learning approaches have also been
used to solve the inverse scattering problem. Artificial neural
networks [14] and support vector machines [20] were pre-
viously used to extract different parameters from microwave
scattering signals. These deep learning methods are divided
into three categories; the direct learning method, the learning-
assisted objective function approach, and the physics-assisted
learning approach. The direct inversion scheme presented in
[21] is part of the direct learning strategy that uses CNN
as a “black box” and directly calculates the relative permit-
tivity from scattered signals. The direct learning method is
straightforward but typically results in low image quality. The

learning-assisted objective-function approach uses networks to
learn some components of conventional iterative solvers, such
as the descent learning methodology [22], the learning-assisted
multimodality method [23], and the deep learning embedding
method [24]. Finally, physics-assisted learning methodologies,
such as ICLM [25] DeepNIS [15], physics embedded deep
learning method [26], incorporate physical knowledge into
either the inputs or internal network structures.

A machine learning-based approach was proposed for breast
lesion detection based on clinical data in [27]. The microwave
scattering signal obtained using a moving transmitting and
receiving antenna are used. Traditional radiologist research
on the same participants is used to pre-process microwave
scattering data. The labelled data are used to train and anal-
yse supervised machine learning methods, including nearest
neighbour, multi-layer neural network, and support vector ma-
chine (SVM). According to statistical analyses, the SVM can
recognise breast data with 98% accuracy. In the study, a total
of 36 frequency samples are used, which leads to overfitting.
Detecting different stages of AD is more complex than breast
cancer and brain stroke detection due to the complicated brain
structure, and slight differences in the dielectric properties of
adjacent brain tissue layers [28]. Microwave imaging methods
that are successful in breast cancer detection can not be used
for brain imaging due to the heterogeneous nature of brain
tissues [8]. Therefore, the microwave detection method based
on feature extraction and classification can potentially be a
promising alternative solution for monitoring AD.

There are several challenges in classification methods for
microwave-based imaging. The main challenge is the scarcity
of data, as these systems are still being investigated, and
only a few systems are clinically used. Most studies rely on
simulations or experimental data obtained from numerical or
fabricated phantoms. In a recent study, the scarcity of data was
addressed by employing a graph-based method [7]. A total
of 256 reflected and received signals are collected from each
phantom. Each collected signal is converted to a graph, and
the relationship between each pair of graphs is established by
calculating mutual information. The results of mutual infor-
mation between graphs are sent to a support vector machine
to determine the stroke subtype. The results demonstrated that
the accuracy of detecting ICH from IS and vice versa is 84%;
however, the proposed method is compute-intensive. Second,
microwave imaging systems require an antenna array usually
erected around the brain to acquire scattered signals. A switch-
ing circuit is used to change the signal source. Having dozens
of antennas and cables adds weight to the system and generates
noise due to antenna couplings, cable movement, and antenna
fabrication inconsistencies. Third, microwave signals contain
many dimensions, leading to issues such as redundant data
unrelated to the intrinsic characteristics and data singularity
[29]. All these challenges contribute to the non-effectiveness
of ML-based classification methods. The scattered signal from
the target is submerged in the noise, making it difficult to de-
tect due to the subtle difference between the object under test
and surrounding tissues. Therefore extensive and integrated
scattered data, using less number of antennas and effective
feature learning, is required for more accurate classification.



This paper investigates ML-based methods to detect these
small changes that will help monitor different stages of AD us-
ing radar-based electromagnetic sensor data. The first and most
crucial step for any ML-based method is to have a reliable data
source. Since ML techniques are being investigated, getting a
huge amount of data that could be used to train ML models is
challenging. A novel data augmentation method is proposed
to generate synthetic data that solve the data scarcity problem.
The proposed ML-based classification method requires fewer
antennas to alleviate the challenge of constructing an ultra-
wideband (UWB) antenna array used by microwave imaging
systems [8]. The paper has the following main contributions.

o More realistic brain phantoms having multiple layers such
as skin, skull, CSF, grey matter and white matter are cre-
ated. Multiple phantoms with different compositions of
mesh cells are created in the CST studio suite to accom-
modate different head sizes. Simulations are performed
to generate data from numerical phantoms mimicking
different stages of AD. These phantoms mimic the brain’s
physiological and pathological changes associated with
various AD stages.

o A novel data augmentation method based on statistical
measurements is proposed to generate synthetic data for
both physiological and pathological phantoms, producing
an integrated data set.

o Two feature extraction strategies have been stipulated
and compared. This includes the statistical features (e.g.
mean, standard deviation) manually extracted from the
samples and the latent features automatically extracted by
the developed deep neural network-based Stacked Auto-
encoder (SAE).

o Multiple ML techniques are trained using raw data
manually extracted features, and automatically extracted
features. The results are evaluated for accuracy and
compared with raw data and manually extracted features.

The results indicated that the proposed method significantly
increases accuracy compared to raw data and manually ex-
tracted features from the RF scattered data. Moreover, unlike
the previous studies, [11][10], the proposed method eliminates
the need for integrating data from multiple antennas for each
case. Instead, the data obtained from a single antenna could
be used to monitor different stages of AD.

The paper is organised as follows. Section II contains
the proposed ML-based classification method. The Imaging
system setup used to collect data, data processing, including
data augmentation and prepossessing techniques, feature ex-
traction and classification algorithms, is described. Section III
contains results and analysis, including the dataset, feature
extraction and classification accuracy. Section IV includes a
detailed discussion and comparisons of different algorithms
and their accuracy and suitability for monitoring AD. Finally,
a summary and future work are presented in Section V.

II. PROPOSED ML-BASED CLASSIFICATION METHOD

The proposed ML-based classification method consists of
four major steps, as shown in Figure 1. Each of these steps has
sub-steps, from data acquisition to classification. This section
describes these steps in detail.

A. Data Acquisition

Data collection is a significant problem for any ML prob-
lem. Since machine and deep learning algorithms require a
large amount of data for better results in terms of accuracy,
therefore using PET and CT images to train models is easy to
find. However, getting microwave-scattered data is challenging
since the technology is still in the testing and evaluation phase.
In this paper, simulations are performed using realistic human
brain phantoms that mimic the brain’s physiological and patho-
logical changes due to AD. CST Microwave Studio Suite was
used to develop these simulation models. CST Studio Suite
is a specialised tool for three-dimensional electromagnetic
simulation. Various brain phantoms are created to mimic
different stages of AD, mainly physiological (brain atrophy)
and pathological changes (caused by beta-amyloid plaques and
tau tangles) in the human brain. Multiple variations of mesh
cells are used to accommodate different head sizes.

1) Phantoms Used: Phantoms are often created for human
tissue imaging, such as the breast and the brain, using sub-
stances that mimic the surrounding tissue’s properties and the
object of interest, such as a tumour or stroke. It provides more
consistent results, avoids exposure towards a living human, and
is mainly used for experimental studies and ex-vivo validation
of antennas and imaging algorithm results. In this work, mul-
tiple numerical phantoms are created to mimic physiological
and pathological changes in the brain caused by AD. CST
microwave studio is used to create these realistic human head
phantoms. Phantoms with different compositions of mesh cells
were first developed to accommodate various head sizes based
on a realistic human head voxel model presented in [30]. These
head models contained different layers of tissue, such as the
skull, skin, blood, white matter, and grey matter. These layers
have different dielectric properties that change with frequency.
The frequency-dependent dielectric properties (conductivity
and relative permittivity) of grey matter, white matter, and
CSF can be found online [31]. Fig. 2 shows the conductivity
and relative permittivity of grey matter, white matter and CSF
from 0.5 GHz to 5 GHz.

Two different changes are reflected in these phantoms, i.e.
physiological and pathological. For physiological models, the
size of grey matter and white matter were uniformly reduced in
the original head model to simulate brain atrophy. As a result
of shrinking the size of these objects in the model, there is a
resulting gap [32]. In reality, when brain atrophy occurs, the
resulting gap due to the shrinkage of brain tissues is filled with
CSF [33], [34], [35]. As a result, an additional CSF layer was
added to the brain models to emulate the characteristics of
brain atrophy more realistically. The other layers, such as the
skin and skull, were kept constant, and changes were made
only to the grey matter, white matter and CSF. The mild and
severe case phantoms mimic different stages of AD in terms of
brain atrophy levels and increase in CSF thickness. To imitate
the mild case of the AD, a decrease in the white matter and
grey matter from 2.23 x 10 mm? by 20% to 1.78 x 108
mm?® was made. As mentioned earlier, the brain’s area after
neurodegeneration is accumulated with CSE. Likewise, the
CSF layer volume was increased by 20%, from 1.79 x 10°
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tions.

Dielectric properties of major brain tissues model used for simula-

mm? to 1.97 x 10° mm?.

For pathological models, pathological changes need to be
mimicked in the numerical phantoms. The dielectric charac-
teristics of biological tissues influence how electromagnetic
signals propagate, reflect, and are absorbed. Our previous
study on postmortem tissue found a significant change in the
dielectric properties in healthy and AD-affected brains [12].
The study measured the relative permittivity and conductivity
of brain tissue samples with the severe form of AD and
compared them to those of healthy brain tissue. Two main
categories of tissue samples were considered: the brain’s grey
matter and white matter. The experiments were performed at
frequencies from 20 MHz to 3 GHz on defrosted samples.
The results indicated that the relative permittivity for the grey
matter at 770 MHz in a healthy and AD-affected brain is 53.3
and 45.3, respectively. It showed that the relative permittivity
of the AD-affected brain had decreased by 15%. Similarly,
at 770 MHz, the conductivity of grey matter is 0.8906 S/m
in the healthy brain and 1.6253 S/m in the AD-infected
brain, indicating an increase of 82.5 percent. The impact of
plaque and tangle on the white matter has similar outcomes.
For example, at 770 MHz, the relative permittivity for white
matter in healthy and AD-infected brains is 39.35 and 32.57,
respectively, indicating a decrease of about 17.61%. Similarly,
at 770 MHz, white matter conductivity is 0.554 S/m in the

The proposed classification method for monitoring different stages of AD.

healthy brain and 0.702 S/m in the AD brain, showing a 26.72
percent increase in conductivity.

These findings show that monitoring changes in plaque and
tangle in the early stages of AD may be a way to detect the
disease. The accumulation of beta-amyloid plaques and tau
tangles, which impede the transfer of nutrients within brain
cells, is one of the significant changes in the brain during
AD [36]. This leads to pathological changes in the brain
tissue composition with the progression of AD. Different voxel
models are developed based on the evolution of plaques and
tangles in the brain to appropriately depict the brain regions
affected by the spread of AD pathology.

For this study, three different stages are considered: 1)
Healthy, 2) Mild AD, and 3) Severe AD. Fig. 3 shows the CST
head models used to represent the different AD cases for both
physiological and pathological changes in the brain [11]. The
first row shows the models that reflect the brain’s physiological
changes, i.e. brain atrophy and CSF thickness. The second
row shows models reflecting the pathological changes caused
by the accumulation of plaques and tangles in the brain as
AD progresses. A healthy human brain model was created
in CST to compare the results with AD (mild and severe)
brain models. This detailed phantom creation, while time-
consuming, enables the investigation of both physiological and
pathological changes associated with different stages of AD.

(@

Fig. 3. CST head models used to simulate the physiological and pathological
changes in the brain [11] (a) Healthy, (b) Mild AD (10% brain atrophy),
(c) Severe AD (25% brain atrophy), (d) Healthy model, (e) Mild model for
pathological changes and (f) Severe model for pathological changes.

2) Antenna Used: An array of six monopole directional
antennas is used. These antennas are evenly spaced around



the models to cover the head. The antenna design is based on
a rectangular planar monopole structure. Far-field simulations
were used to calculate the front-to-back (FTB) ratio, ensuring
the antenna’s directionality. The simulated FTB ratio of the
utilised antenna is 6 dB at its central frequency of 2.5 GHz,
which validates its directional nature. The lower frequency
range allows more penetration into the bio phantom with the
loss of resolution. While at higher frequencies, better resolu-
tion can be achieved with less penetration of the signals into
the phantom. The UWB performance of the antenna allows
good penetration and resolution for the radar-based imaging
application. Furthermore, the E-field distribution reveals a
good penetration depth into the head. This is necessary for
the antenna to probe into the head and detect minor changes.
Further information about the antennas used can be found in
[37].

Several simulation cases are performed to investigate the
effects of the head phantom on the antenna performance. Fig.
4 shows the S7; simulation results of four cases: the absence
of the head phantom, with a head phantom at a distance of 0
mm, 5 mm, and 10 mm from the antenna, respectively. The
simulation result indicates a shift in operating frequency when
a head phantom is added. The distance between the antenna
and the bio phantom is chosen at 0 mm to allow better signal
penetration at a lower frequency range.

S11(dB)

without phantom
......... 0 mm from phantom
= = +5mm from phantom

10 mm from phantom

i 05 1 15 2 25 3 35 4 45 5

Frequency / GHz
Fig. 4. The Si1 plot for the designed antenna for different separation

distances between the antenna and skull model with and without phantom.
Smaller separation distance leads to better penetration.

3) Data Collection: These phantoms were used in electro-
magnetic simulations. For each case, simulation models were
run with multiple compositions of mesh cells to accommo-
date various head sizes. The simulations are performed in a
multi-static manner, where the microwave signal is sent by
each antenna, one at a time, and all other antennas capture
the scattered signals. This procedure is carried out for each
antenna until the required signal samples for all antennas are
collected. The reflection and transmission coefficient data were
stored. However, only the reflection coefficient data is used in
the proposed method. A model along with six surrounding
antennas can be seen in Fig. 5.

(a) (b)

Fig. 5. (a) Front view and (b) Top View of Brain phantom and six surrounding
antennas.

B. Data Processing

Simulations were performed to capture the reflected signals
(S11) for all antennas and all cases. These reflected signals
are the base for the proposed method to differentiate and
classify stages of AD. The raw data for healthy, mild and
severe cases of both physiological and pathological changes
can be seen in Fig. 6. The figure illustrates the S-parameters of
a single antenna when measuring a specific phantom that has
been designed to mimic three different stages of AD; healthy,
mild, and severe. It is important to note that the size of the
phantom remains constant across all three versions. However,
the internal composition of the different tissues within the
phantom is modified to mimic the different stages of AD.
Additionally, the S-parameters are dependent on the location
of the antenna within the phantom. Thus, the same antenna
location is used for all three versions of the phantom. This
allows for a fair comparison of the S-parameters between
the different stages of AD at that specific location within the
phantom. To mimic the pathological changes in brain tissue, a
different set of phantoms are used. It is important to note that
the S-parameters are dependent on the internal composition of
the tissues and not just the size of the phantom.

The figures indicate a clear difference between different
stages for both physiological and pathological phantoms. For
Physiological changes, a shift in signal and drastic drop in
the magnitude from healthy to mild and severe cases is
observed and can be seen in the figure. This showed that
there is a target with different sizes in the skull model. For
Pathological changes, It was found that between 3 to 5 GHz,
the electromagnetic wave reaches the region associated with
plaques and tangles in the brain. Furthermore, significant
variations among the reflected signals can be seen due to the
change in the dielectric properties. This raw data obtained from
simulations of multiple phantoms were pre-processed before
data augmentation.

1) Data Restructuring: A total number of 201 frequency
points were stored in complex form for each antenna. This
data was first converted to absolute form. Each sample consists
of 1206 discrete points (201 for each antenna), as shown in
Table I. Nine different compositions of mesh cell phantoms for
each stage (healthy, mild and severe) are used to accommodate
multiple head sizes and dimensions. This gives 9 samples
for each of the three stages. The final data for each stage
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Fig. 6. Comparison of data for healthy, mild and severe stages of data for both physiological and pathological changes.

consists of 9 x 1206 points. Based on the antenna’s location,
this data was restructured to 54 x 201 points for each stage.
This data is merged together, and the final data consists of
162 x 201 data points. It is essential to restructure the data
before data augmentation to ensure that augmented values are
created based on antenna locations around the head. The data
for pathological models are restructured in the same way.

TABLE I
RAW DATA RESTRUCTURED FOR DATA AUGMENTATION

Raw Data Composition Restructured Final Data
of mesh cells Data
Healthy 1 x 1206 9 x 1206 54 x 201
Mild 1 x 1206 9 x 1206 54 x 201 162 x 201
Severe 1 x 1206 9 x 1206 54 x 201

2) Data Augmentation: Since ML algorithms require more
data for better results in terms of accuracy, therefore using
images to train models is easy to find. However, getting
microwave-scattered data is challenging since the technology
is still in the testing and evaluation phase. The experiments
required phantoms and fabricated antennas. However, these
phantoms could not be used for longer because their dielectric
properties change over time. On the other hand, simulations

are time-consuming, especially for multi-layer phantoms that
contain a huge amount of mesh cells for more accurate brain
representation.

Therefore, synthetic data was used to train different ML
algorithms to classify AD stages based on pathological and
physiological changes in the brain. Data augmentation is a
technique for artificially increasing the size of a small training
set by generating new samples out of the ones present on the
actual training set [38]. This technique has been widely used
for SAR imaging [39][40]. A new data augmentation method
based on statistical learning is employed to create synthetic
data for a hundred cases of each AD stage. The values of
the reflected signal for individual antennas were statistically
analysed to find the approximate difference between different
levels of atrophy for physiological data. A similar technique
was employed for pathological data.

The proposed data augmentation method consists of mul-
tiple steps, as shown in Fig. 7. First, the absolute values of
obtained S parameters for each stage, i.e. healthy, mild and
severe, and multiple variations of these cases are arranged into
vectors. The second step is to restructure the data based on
the location of antennas due to the homogeneous nature of
brain tissue in all cases. In the third step, the data is divided
into multiple subsets in the step of 5 values for each antenna



similar to [41]. For each subset of S parameters, maximum
and minimum values among themselves are calculated for
all antennas. A random number with a 10% difference is
generated between this calculated maximum and minimum
value. This new number is added as a new data point in
the same column of the same output. The new vectors are
reused to calculate the successive vectors, making them more
comprehensive. This process is repeated for all cases and
antennas to generate augmented data for a hundred cases.

Input data

Y
Restructure data

based on antennas

Final Dataset

A 4

Divide data into
subsets of 5

More
Antennas ?

A
Calclate the MAX

and MIN of each
subset of data

Generate data for
one antenna

Generate a random

Is there more
number between subsets of data?

MAX and MIN

Augment data for Generate a new

each subset value subset of data

Fig. 7. The proposed data augmentation method to generate synthetic data
for one case. The same method is used to generate data for 100 cases.

These steps augment data for hundred cases for each stage
and feed it to the ML algorithms for training and testing. For
the training and the performance assessment, 600 cases are
generated. 80% were used as the training set and 20% as the
test set.

C. Feature Extraction

1) Manual Feature Extraction: The manually extracted
features are calculated from the statistical characteristics of
the raw data (features). The mean, standard deviation, quartile
deviation, range, skewness and kurtosis are calculated as the
manually extracted features for each sample. The details can
be found in Table II.

2) Automatic Feature Extraction: Auto-encoders are
utilised to reduce the dimensionality of data when a non-
linear function determines the relationship between depen-
dent and independent features. Auto-encoders are a form
of unsupervised artificial neural networks. Auto-encoders are

TABLE I
INTRODUCTION OF THE MANUALLY EXTRACTED FEATURES

Symbol Feature

Mean
Standard deviation
Quartile deviation

Range

Skewness
Kurtosis

RO *=

employed to extract data features automatically. It is one of
the most promising feature extraction technologies used for
similar applications, such as human gesture detection [42].
The stacked auto-encoders are multiple encoders placed on
top of one another. The microwave scattering dataset has
very complex patterns; thus, a single auto-encoder cannot
reduce the dimensions of the data. Therefore, a stacked auto-
encoder is used. The stacked auto-encoder (SAE) is DNN-
based feature extraction and dimension reduction method. It
has been proven to be more powerful and effective than the
traditional algorithm, such as Principal Component Analysis
(PCA). The two parts compose its symmetrical structure:
encoder and decoder, as shown in Figure 8.

Fig. 8. The components and data flow of Stacked auto-encoder

The encoder aims to learn and extract features from the
input data, while the decoder is required to reconstruct the
encoder’s output to be the same as the original input data.
The final output of the decoder & can be expressed by:

x=g(f(x)) 1)

where f(-) and g(-) denote the operation in encoder and
decoder, respectively. To evaluate the difference between the
output z and the input x, mean squared error (MSE) is applied
as the cost function:

1
J=-) (x-%)7? 2)
i=1
The parameters in this network are then updated during the
training session. A well-trained SAE is able to extract the
features y from the input using the encoder:

Y= fnew(x) 3)

where frew(+) is the operation of the well-trained encoder.

In this paper, we designed three SAEs with different struc-
tures for comparison. All SAEs are constructed of 5 dense
layers (fully connected layers). As the structure of the SAE
is shown in Figure9, from left to right, the structures of the
SAEs are 128-64-32-64-128, 128-64-16-64-128 and 128-64-
128, respectively. The original features of z are fed to the
network as input. Once the training process finishes, the well-
trained encoder will be disconnected from the network, and
the automatically extracted four features will be used for



classification in the next step. More details about the network
can be found in Table III.

Encoder

Decoder

Fig. 9. Structure of the SAE for feature extraction.

TABLE III
DETAILS OF THE NEURAL NETWORK

Activation function tanh
Batch size 4
Learning rate 0.0001
Epocht 100
Early stopping patience 10
Optimizer Adam

Loss function mean squared error

T This is a pre-set epoch number. As an early stopping strategy is applied,
the network usually stops training earlier.

D. Machine Learning-based Classification Algorithms

The choice of ML algorithm for classification is challenging
because there are many ML-based classifiers, each with its
learning method. There is no one-size-fits-all solution. These
algorithms need to be tested before they can be used to
solve a classification problem. However, algorithm selection
is influenced by the size and complexity of the problem, the
type of data, the expected results and how the results will be
used.

For the classification of different stages of AD, based
on microwave scattering data, the following algorithms are
exploited. The multi-class classification will require ML al-
gorithms that classify one or more class labels. In multi-
classification problems, each training point is classified into
one of the N classes. The goal is to create a function that will
accurately forecast the class to which a new data point belongs
when given a new data point.

1) KNN (K-nearest neighbours): The KNN algorithm is a
supervised ML technique that can address classification and
regression problems. It is one of the most basic yet effective
algorithms. It memorises the training data rather than learning
a discriminative function from the input.

The K-nearest neighbour approach uses a distance measure
between the two data points to define them as similar and
then produces a majority vote between the K most similar
instances. The most popular choice is Euclidean distance,
which is expressed as:

d(u,v) = \/((ul — 1)+ (uz —v2)? + o+ (up — Un)2>
“)

The hyperparameter K in KNN needs to be chosen carefully
to acquire the best fit for the dataset. For the minimum value
for K, i.e. K=1, the model will have low bias but significant
variance due to overfitting. A higher value of K, such as K=10,
will undoubtedly smooth the decision border, resulting in low
variance but significant bias. As a result, the bias-variance
trade-off, always exists.

KNN is a nonparametric classifier since it makes no as-
sumptions about the distribution of classes. It is one of the
multi-class classification algorithms that can be widely used.

2) Random Forest: A random forest comprises numerous
separate decision trees that act as an ensemble. The random
forest generates a class prediction for each tree, and the
class with the most votes becomes the model’s prediction. It
produces a “forest” from a collection of decision trees that are
often trained using the “bagging” method. The main idea of the
bagging method is that combining different learning models
enhances overall output. The random forest combines boosting
and bagging, resulting in a neither overfitted nor inefficient
model. A random forest’s hyperparameters are similar to a
decision tree or a bagging classifier. The random forest adds
more randomness to the model; as the trees grow. Instead of
looking for the important feature when dividing a node, it
seeks the best feature from a random group of features. As
a result, the approach only considers a random subset of the
features when dividing a node in a random forest.

The random sampling strategy is used for feature selection
for classifying the RF signals. Assuming the training set
comprises total F' features, the potential split feature set is
f =logaF 4+ 1. The Gini index [43] is a widely used metric
for determining the best split feature. The Gini index aims
to allocate balanced examples to the same class within each
partition. Let D stand for the training set with m different
labels C; (i = 1,2, ...,m), | D] for the data set size, and |C;, D|
for the number of labels C; in D. Eq 5 may then be used to
calculate the Gini index.

Gini(D) =1-) p? (5)
i=1

Where p; is the probability that instances in D belong to
class C; is . If D is divided into D; and D, by a binary
partition divided by feature A, the relevant Gini index is
obtained using the following eq:

D1l i (D) + 22l Gini (D) 0)

Ginis(D) =
A(D) =5 D]

As a result, selecting the maximum Gini factor is the best
way to identify the best partition features. The majority win
was used. All the classifier’s votes were added to the basic
random forest classifier, and the highest vote signifies the
highest chance that the test data sample belongs to this class.



3) Classification And Regression Tree (CART): CART is
a nonparametric statistics approach that assumes the decision
tree as a binary tree. The anticipated values are determined
by dividing the input feature space into finite units, i.e. the
predicted output values are mapped to the provided circum-
stances. The CART contains three primary steps. A decision
tree is created using the training data set in the first step. In
the second step, the decision tree is pruned according to some
constraints, such as the maximum depth of the tree, minimum
sample number of the leaf node, and minimum node impurity
for optimisation. In the last step, the data is predicted in the
test set. The advantages of CART include its ability to deal
with both continuous and categorical data simultaneously and
handle multi-class classification problems.

Several methods can be used in CART to identify the best
splits. The Gini impurity method, similar to the random forest,
is used. The weighted sum of Gini Impurity is calculated for
both child nodes to get the optimal split. This is repeated for
all potential divides, with the best split being the one with the
lowest Gini Impurity.

ITII. RESULTS AND ANALYSIS

The ML algorithms were performed on the dataset using a
Python environment. SciPy, which is an ecosystem of Python
libraries such as NumPy (work with data in arrays), Matplotlib
(generate 2D graphs), and Pandas (tools to organise and
analyse data), were used. In addition, the sci-kit-learn library
was declared for ML model evaluation. The following ML
algorithms were employed: 1) K-Nearest Neighbours (KNN),
2) Random forest, and 3) Classification and Regression Trees.

The final RF dataset was used to test each ML method.
Some data from the dataset was kept back to ensure that the
algorithms were not biased during their training phase. Later,
statistical methods were used to estimate the models’ accuracy
on data that had never been seen before (or validation data).
This method provides an independent estimate of the accuracy
of each model.

The final RF dataset was divided into two sets; roughly
80% of the dataset was used to train the models (e.g. training
dataset). The remaining 20% was used to create a validation
dataset. The dataset was split using a random number generator
in Python. A test harness was developed to measure the
accuracy of the models on the training dataset using k-fold
cross-validation. The model’s skill is summarised with the help
of an evaluation score. The resulting accuracy metric is then
used to evaluate the models. The next stage is to test the best
ML algorithm’s performance on the validation dataset set aside
to evaluate how well the chosen model can classify AD based
on previously unknown data.

A. Dataset

The proposed data augmentation method generates realistic
synthetic data for each AD stage. A comparison of the original
and augmented data for a healthy brain (all six antennas)
is shown in Fig. 10. It can be observed that the augmented
data follows the distribution of original data for all antennas.
This is due to the small subsets of data utilised during data

augmentation. The graph for original data shows a few outliers
due to the location of the antenna and different compositions
of brain tissue on each side, for example, the front and back of
the head. In contrast, the augmented data have more outliers
due to the 10% difference in generating each new value within
the subset. The value of 10% is chosen to accommodate more
realistic scenarios as the current data is based on simulation.
The value range in augmented data is slightly increased. This
accommodates realistic scenarios where the experimental data
may contain noise from other sources.

In order to ensure that the statistical properties of the
original data set are captured and transferred to the augmented
dataset, statistical measurements are performed. The statistical
comparison based on the mean and standard deviation for each
antenna of one case (healthy brain) can be found in Fig. 11. It
can be seen that there is a subtle difference in both the mean
and standard deviation in original and augmented data. As
mentioned earlier, this difference is based on the 10% different
in each subset of 5 values used for data augmentation. This
comparison is useful to ensure that each antenna’s augmented
data follows the original data’s underlying structure.

The Grubb’s test is performed to ensure that the proposed
method is not generating outliers. The Grubb’s test statistics
is defined as [44]

_max|Yi—Y|
-

(7

with Y and s denote the sample mean and standard de-
viation, respectively. The Grubbs’ test statistic measures the
largest absolute deviation from the sample mean in units of
the sample standard deviation. The hypothesis of no outliers
is rejected if [45]

(N-1) (tajeryn—2)”
VN N =2+ (tajonyn-2)’

with £, /2N, N—2 denoting the critical value of the ¢ distri-
bution with (IV — 2) degrees of freedom. The Origin software
[46] was used to conduct the test on multiple samples of
original and augmented data. The resulting value of G is
2.18, with a critical value of 3.61. These test results show that
there are no significant outliers at the 0.05 level. Furthermore,
the paired t-test is performed to test the mean difference
between the original and augmented data pair. Calculating a
t-test requires three fundamental data values that include the
mean difference, the standard deviation of each group, and
the number of data values of each group. The standard error
of mean (SEM) measures the discrepancy between a sample
mean to the population mean. A large t-score, or t-value,
indicates that the groups are different, while a small t-score
indicates that the groups are similar. A sample of the original
and augmented can be found in Fig. 12. The average t-score
based on multiple samples of original and augmented data
0.90, indicating that the difference of the population means is
not significantly different. These tests ensure the robustness of
the proposed data augmentation method.

The final data for all antennas and 100 cases are organised
as a matrix and labelled according to known changes made to

G > ®)
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phantoms. The number of discrete frequency points for each
antenna is 201. The total number of original samples for all
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Fig. 12. A sample of the original and augmented data used for statistical
analysis.

stages of physiological models are 162 x 201. The data for
pathological models contains the same number of samples.
One data point from the beginning was removed to create
subsets of 5 values for data augmentation. This does not affect
the signal as the signal, in the beginning, are skull and antenna
reflections. In clutter rejection techniques, these values, in the
beginning, are filtered out or subtracted to eliminate clutter
effects [47]. The purpose of removing one discrete point was



not to remove the skull reflections but rather to make the subset
of equal size (5 values) required for the proposed augmentation
method. Each of these samples contains six antenna data (200
each). The restructured data contain 162 x 200 points, as shown
in Table IV. These data were used to generate data for 100
cases for all stages. The augmented data for all three stages of
physiological models contain 1800 x 200. The data for each
antenna in the antenna array is treated as a separate sample.
Therefore the final matrix contains 3600 x 200 sets of data for
all cases of both physiological and pathological models. The
data is then labelled for three cases and all six antennas. This
multi-label data is then used to train various ML algorithms.

TABLE IV
DATA USED TO TRAIN ML ALGORITHMS

Restructured ~ Augmented

Data Data Final Data
Physiological
Data 162 x 200 1800 x 200 3600 x 200
Pathological =65 900 1800 x 200
Data

B. Feature extraction with SAE

This paper uses three SAEs to extract key features from
the raw RF measurements. To select the optimum SAE, we
supervise the training loss curves and the final loss of the
network. It can be seen from the Figure 13 that both training
loss and validation loss of all three SAEs drop very fast and
turn to convergence after about 30 epochs. In detail, it can be
seen from Table V that the 128-64-16-64-128 SAE shows the
largest training loss among the three SAEs. This is because
such a network loses much information as it extracts only
16 features from the original data, which makes the network
unable to recover the 16 extracted features back to the original
features during the training process. The 128-64-32-64-128
SAE extracts more features and hence provides lower training
loss; however, the network shows even a bit higher validation
loss. Therefore, the 128-64-128 SAE is designed to extract
more features (64) with fewer hidden nodes (less computation
complexity). Such SAE provides both the lowest training loss
and validation loss among the three SAEs; hence, the 128-64-
128 structure is adopted for feature extraction in this study.

TABLE V
TRAINING PERFORMANCE OF THE THREE SAES

Structure Training loss ~ Validation loss ~ Epochs number
128-64-32-64-128  9.87 x 107°  4.60 x 10~* 86
128-64-16-64-128 142 x 1074  4.34 x 10~* 96

128-64-128 711 x 1075  3.40 x 10~* 97

After applying the well-trained encoder to the raw RF
measurements, 64 core features are extracted from the raw
200 features. As observed from Figure 14a, the value of most
of the original features is around -20 to O dB. Such a sparse
distribution of the features could be detrimental to ML models’
learning/training process to learn the connection between the

features and labels. On the contrary, it can be seen from Figure
14b that the features extracted from the SAE are uniformly
distributed between -1 and 1. It is expected that the ML model
could have better learning results with such extracted core
features.

C. Classification Accuracy

In this subsection, the classification accuracy is calculated
to evaluate the performance of the proposed method. The
proposed method is compared to two other methods for
analysis, including:

« Raw features: applying the ML algorithms to the raw data

(features) for classification.

o Manually extracted features: applying the ML algorithms

to the manually extracted features for classification.

The ML algorithms were trained on raw data, manually
extracted features and automatic feature extraction using SAE.
The comparison results can be found in Table VI and Figure
15. It can be noted that raw data gives reasonable accuracy,
with the random forest having the highest accuracy of 76.8%.
The KNN and CART classify these stages with similar accu-
racy. In comparison with the manual feature extraction, the
overall accuracy reduces. However, the accuracy of CART
increased by 3%. This is due to the ability of Cart to segment
different variables thoroughly to come up with a decision
model that it can rely on for classification.

TABLE VI
CLASSIFICATION ACCURACY OF DIFFERENT ALGORITHMS AND FEATURES

Raw Manual  Automatic (SAE)
KNN 71.8%  71.4% 79.0%
Random Forest  76.8% T4.7% 83.2%
CART 71.1%  73.1% 81.0%

On the other hand, the extracted feature using the SAE
significantly improves the overall accuracy compared to the
raw data and manually extracted features. The random forest
has the highest accuracy of approximately 83.2%, while CART
follows up with an accuracy of 81%. These results indicated
that the proposed SAE method is best suited to extract features
and train ML algorithms. The classification results show that
all these algorithms perform well on the multi-class nature of
the data. The overall accuracy of 81% is promising for using
ML on the RF dataset to monitor early-stage AD detection.

To further evaluate the robustness of the proposed method
with Random Forest, which shows the highest classification
accuracy in the previous test, we added different levels of
Gaussian noise to the data and re-conducted the evaluation
process. We choose to evaluate the accuracy by adding dif-
ferent levels of Gaussian noise based on the results reported
in [48]. As the results are listed in Table VII, the classifica-
tion accuracy decreases when the data is noisy in all three
situations. Especially, the noise varies the data distribution
and shows a significant impact on the manually extracted
features. However, the automatically extracted features from
SAE perform the best in all cases. Although there is some
expected degradation as the noise level rises, the automatically
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extracted features can always provide 3% to 20% higher
accuracy than either using the raw data or manually extracted
features.

TABLE VII
CLASSIFICATION ACCURACY FOR RANDOM FOREST ALGORITHM WITH
DIFFERENT LEVELS OF NOISE

Noise Level Raw Manual  Automatic (SAE)
Noise level 0 (no noise) 76.8% 74.7% 83.2%
Noise level 1 (u = 0,0 =0.02) 71.8% 66.0% 75.4%
Noise level 2 (x = 0,0 = 0.04 ) 68.5%  55.4% 70.0%
Noise level 3 (1 =0.2,0 =0.04) 69.4% 52.8% 72.6%

IV. DISCUSSION AND COMPARISON

Neurodegenerative disorders are among the leading causes
of death. These disorders, which impair cognitive abilities
and are caused by the progressive loss of neural connections
in the brain, affect more than 50 million people worldwide.
As the world’s population ages, the number of persons af-
fected by such diseases will rise. Alzheimer’s disease, in
particular, is the most common kind of dementia, with a life



expectancy of three to nine years for those affected. The
main physiological symptom of AD is brain atrophy, which
causes the brain volume to shrink over time. The pathological
changes include the accumulation of plaques and tangles in the
brain. Alzheimer’s disease starts as a modest preclinical stage
and progresses to mild cognitive impairment. The patient’s
cognitive performance deteriorates as the disease progresses.
The patient’s cognitive function is significantly impacted in
the advanced stages, and the patient cannot live independently.
As a result, caring for these individuals is incredibly difficult,
and AD is one of the most costly diseases. Early diagnosis
and effective patient monitoring can considerably enhance
treatment and lower expenses.

Microwave-based medical devices and imaging techniques
have been widely investigated during the last decades due to
their wearable and portable nature. Many research studies aim
to detect abnormal tissues, such as breast cancer and stroke[49]
[2]. Recently it has been discovered that there is a significant
difference between the dielectric properties of healthy and
AD-affected tissue [12]. These changes can be monitored
using the microwave [50]. Microwave-based medical imaging
has recently been investigated to detect these changes in the
brain [3]. It provides promising results; however, small brain
changes at early stages can not be detected due to their low
spatial resolution.

ML techniques have been widely used in healthcare. Re-
search interest in ML for classifying AD has increased using
MRI and CT scan images over the past decade. There has not
been much work done on raw signals or dataset(s), such as RF
signals. This study explores the use of ML algorithms to detect
different stages of AD using microwave-scattered data. The
measured RF data for physiological and pathological changes
in the brain are scaled to generate synthetic data using a
new data augmentation method. Features were extracted using
different statistical techniques as well as an SAE. These data
were then processed in three ML algorithms to validate how
well each algorithm could classify the different stages of AD.
Results showed that classical ML algorithms could accurately
classify the different stages of AD using the extended RF
dataset.

Based on the results, it is shown that the random forest
algorithm has the highest average accuracy of approximately
77%. CART follows up with an average accuracy of 75.3% for
all three types of input data. Given the large dataset and multi-
class nature of the data, random forest and CART looks to be
the obvious choice in classifying AD from the dataset. The
random forest algorithm is applied to the validation dataset to
determine how well it can classify the cases. After running the
random forest model on the validation dataset, the confusion
matrix and classification report is provided in Table.VIII and
Table.IX, respectively.

It was found that random forest had an overall accuracy of
83.2% on the validation dataset. Precision, which is defined
as the percent of correct predictions, was less than 90%
for all cases. Additionally, it can be noted that there were
more misclassifications for the Healthy case and Mild AD as
opposed to the severe AD case. This is due to the minimal
physiological and pathological changes made to the phantoms

TABLE VIII
CONFUSION MATRIX FOR RANDOM FOREST ALGORITHM

Healthy Mild AD  Severe AD
Healthy 180 24 12
Mild AD 14 200 26
Severe AD 17 28 219
TABLE IX

CLASSIFICATION REPORT FOR RANDOM FOREST ALGORITHM

Precision  Recall F1 Scores Support
(%) (%) (%) #)
Healthy 83 83 83 240
Mild AD 81 83 82 216
Severe AD 85 83 84 264

for healthy and Mild cases compared to the severe case.
While the classification report shows that the random forest
performance on the validation dataset has some limitations,
the overall accuracy of 83.2% is promising. It gives them the
incentive to process the data further to differentiate features
more quickly. In addition, the precision of Mild AD detection
is relatively high, which is promising as our goal is to use ML
on the RF dataset to determine early-stage detection of AD.

Compared to our previous work, [11][10], all these algo-
rithms on raw data do not perform well. This is due to the type
of data set used to train these algorithms. In the previous work,
the data was generated based on phantoms having similar mesh
cells for each case. This work uses nine different compositions
of mesh cells to create phantoms for each case to accommodate
various head sizes. As a result, a more realistic data set is
generated. Furthermore, in the previous work, all antenna
data was used as one sample for each case, and 600 x 1200
sets of data were used. In this work, each antenna data is
treated as a separate sample making it 3600 x 200 sets of
data. The classification algorithms do not need all antenna
data as one feature to classify different stages of AD. The
accuracy of automatic feature extraction significantly improves
the accuracy of KNN; however, the accuracy of the CART
algorithm remains the same.

It is important to ensure that the measurements are taken
with similar configurations and locations of antennas. The
current study used simulation data that does not pose any such
challenges. However, in real scenarios, follow-up measure-
ments for monitoring different stages may be performed with
slightly different positions of the antennas. This would give a
natural variation in the data and could overshadow the effect
of the minute variations in the dielectric properties of AD-
affected and surrounding tissues. In order to avoid these natural
variations, different positions on the wearable device should
be marked and aligned with the patient’s head. Using more
antennas to cover the head’s surface area will also reduce the
risk of variation from a position point of view. Additionally,
surface estimations techniques could also be used to allow
for adjustable sensor positioning [51]. The surface estimation
techniques, such as those utilising laser data, have previously
been used for breast cancer detection [52]. Similar techniques
could also be used for brain imaging. These algorithms would



enable the evaluation of similarity in positioning and orien-
tation of sensors for repeat visits of a patient. Therefore, the
patient-specific surface estimate is a useful tool for evaluating
the repeatability in microwave imaging. Furthermore, instead
of focusing on readings of one antenna, average reflection
or transmission coefficients from all antenna could be used.
These average values could be compared with calibrated
values to determine progression (even at minute stages). Using
the average reflection and transmission coefficients across all
frequencies will aid in the comprehension of each brain region
and determine the difference in the dielectric values and hence
the disease progression.

V. CONCLUSION AND FUTURE WORK

An ML-based classification method for classifying different
stages of AD is proposed. The data were obtained from
numerical phantoms mimicking major stages of AD. Multiple
phantoms with different mesh cells compositions were used to
accommodate various head sizes. A novel data augmentation
method is proposed to create synthetic data for 100 cases
for each AD stage. Multiple statistical features are extracted
and used to train the ML algorithms. An automatic feature
extraction method using a deep neural network-based autoen-
coder is designed to extract the core latent features from the
samples for better classification. Three different classification
algorithms were trained on these data and the extracted
features. The results were compared with the raw data and
manually extracted features. The results indicated that SAE
outperformed raw and manually extracted features. The overall
accuracy of these algorithms using features extracted through
the SAE is 81%, with random forests having the highest
accuracy of 83.2%. The proposed ML-based classification
method, with microwave imaging algorithms, could be used
to monitor AD at its early stages. The proposed method will
be evaluated on more realistic data obtained from AD patients
in the future.
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