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Abstract

Single cell genomics encompasses a suite of rapidly maturing technologies that mea-

sure the molecular profiles of individual cells within target samples. These approaches

provide a large up-step in biological information compared to long-established ‘bulk’
methods that profile the average molecular profiles of all cells in a sample, and have

led to transformative advances in understanding of cellular biology, particularly in

humans and model organisms. The application of single cell genomics is fast expanding

to non-model taxa, including aquaculture species, where numerous research applica-

tions are underway with many more envisaged. In this review, we highlight the poten-

tial transformative applications of single cell genomics in aquaculture research,

considering barriers and potential solutions to the broad uptake of these technologies.

Focusing on single cell transcriptomics, we outline considerations for experimental

design, including the essential requirement to obtain high quality cells/nuclei for

sequencing in ectothermic aquatic species. We further outline data analysis and bioin-

formatics considerations, tailored to studies with the under-characterized genomes of

aquaculture species, where our knowledge of cellular heterogeneity and cell marker

genes is immature. Overall, this review offers a useful source of knowledge for

researchers aiming to apply single cell genomics to address biological challenges faced

by the global aquaculture sector though an improved understanding of cell biology.

K E YWORD S

aquaculture, bioinformatic pipelines, cell isolation, nuclei isolation, single cell genomics,
transformative applications

1 | INTRODUCTION

The field of genomics is rapidly transitioning from a state where bulk

samples are predominantly studied, providing read-outs averaged across

all cells, to a position where the molecular profiles of individual cells can

be reliably profiled. As most phenotypes result from the actions and

interactions of specific cell types, generating cell-specific rather than

tissue-averaged molecular data creates a large up-step in information on

the mechanisms underpinning trait expression. Such knowledge will have

great value in research applications addressing biological challenges faced

by the aquaculture sector, representing ongoing barriers to the sustain-

able production of many species, including, for example, the threat posed

by disease outbreaks caused by diverse parasites and pathogens.

Single cell genomics involves the molecular analysis of individual

cells, typically using high-throughput sequencing technologies.1 The

transformative impact of such methods on our understanding ofRose Ruiz Daniels and Richard S. Taylor contributed equally to this study.
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cellular and developmental biology, immunology and disease biology

in humans and model organisms cannot be overstated.2–4 The most

common application is single cell transcriptomics, though methods for

profiling epigenomic features at single cell resolution, inclusive of

methylation (e.g., Ref. 5), chromatin accessibility (e.g., Ref. 6) and chro-

mosome conformation,7 are maturing rapidly,8 as is single cell proteo-

mics.9 In model organisms, it is now common to combine different

single cell technologies to generate ‘multi-omic’ profiles from the same

cells.10 The scale of recent knowledge advancement in this field is per-

haps best illustrated by the Human Cell Atlas initiative, which aims to

deliver comprehensive molecular maps of all human cell types.11–14

This review concerns the uptake and applications of single cell geno-

mics in aquaculture research, a relatively new field that is expanding rap-

idly. Our primary focus is on single cell transcriptomics (Section 2),

performed using single cell (sc) or single nuclei (sn) RNA-Sequencing

(scRNA-seq and snRNA-seq, respectively) on various platforms (reviewed

in Ref. 15; also see Section 2) that have increased dramatically in through-

put over recent years, such that thousands to hundreds of thousands of

cells are being routinely profiled in single studies.16 Compared to bulk

transcriptomics using RNA-seq, which is already widely utilized in aquacul-

ture research (reviewed in Ref. 17), sc/snRNA-seq is a ‘game changer’ due
to its ability to identify cell types and their heterogeneity, along with

TABLE 1 Summary of single cell transcriptomic studies in aquaculture species including major knowledge advances

Species Sample type Approach Summary and knowledge advances Citations

Atlantic salmon Liver snRNA-seq

10x platform

Liver cell atlas capturing host response to bacterial infection; revealed

unique hepatocyte states associated with infection and resolved major

immune cell types

24

Gill snRNA-seq

10x platform

Gill cell atlas; revealed known and novel gill cell types and cellular

remodelling during smoltification, including evidence for repression of

immune system

23

Rainbow trout Blood scRNA-seq

10x platform

Atlas of sorted B cell heterogeneity; improved understanding of B cell

heterogeneity, including new marker genes for distinct B cell subsets

and states

26

Blood scRNA-seq

10x platform

Analysis of antibody gene diversity in sorted B cells; supporting

hypothesis that trout B cells produce antibodies with distinct

specificities

25

Turbot Multi-tissue scRNA-seq

10x platform

Immune cell atlas; identified sixteen immune cell sub-types, including

major classes of lymphocytes and myeloid cells

64

Multi-tissue scRNA-seq

10x platform

Immune cell atlas; identified fourteen immune cell sub-types, including

major classes of lymphocytes and myeloid cells; providing evidence

that neutrophils are key effectors of trained innate immunity

66

Orange spotted

grouper

Midbrain scRNA-seq

10x platform

Midbrain cell atlas capturing response to RGNNV infection; described

thirty-five cell types, both neuronal and non-neuronal, with evidence

that microglia transform into macrophages upon infection

27

Gonads scRNA-seq

10x platform

Cell atlas of adult male gonad; identified 10 cell types, including germ and

somatic cells, with a panel of associated cell-specific marker genes

28

Nile tilapia Head kidney scRNA-seq

10x platform

Atlas of immune cells; revealing major populations of lymphocytes and

myeloid cells, including diverse B and T cell subsets

29

Head kidney scRNA-seq

10x platform

Atlas of immune cells after viral stimulation; revealed major populations

of lymphocytes and myeloid cells, and subsets of non-specific cytotoxic

cells (akin to natural killer cells)

30

Asian

sea bass

Ovaries scRNA-seq

Drop-seq

Adult cell atlas; identified multiple germ cell and somatic cell types and

revealed conserved and divergent ovary development mechanisms via

comparative single cell transcriptomics

44

Kuruma shrimp Haemolymph scRNA-seq

Drop-seq

Atlas of cell types; described six haemocyte subtypes and their marker

genes, and evidence for factors driving haemocyte differentiation

31

White shrimp Haemolymph scRNA-seq

10x platform

Atlas of cell types; described haemocytes, monocytic haemocytes and

granulocytes, including macrophage-like haemocytes

65

Black tiger

shrimp

Hepatopancreas

Haemolymph

scRNA-seq

10x platform

Atlases of cell types; identified seven haemocyte sub-types including

candidate stem cells and seven cell types in hepatopancreas, along with

cell-resolved responses to ammonia nitrogen stress

188

Hong Kong Oyster Haemolymph scRNA-seq

10x platform

Atlas of haemocytes; identified thirteen populations including

granulocytes, semi-granulocytes, and hyalinocytes, revealing candidate

transcription factors driving granulocyte lineage differentiation.

189

Haemolymph scRNA-seq

10x platform

Investigated cellular heterogeneity in response to copper exposure,

revealing cell-specific sensitivities to and markers for copper exposure

32

2 DANIELS ET AL.
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resolving cell-specific gene expression responses to environmental pertur-

bation.18 Such data are especially informative in species where knowledge

of cellular biology is limited, that is, most aquaculture species.

While confined to a few labs in its early applications, extensive

development of methods and commercial platforms has brought single

cell technologies within the reach of many researchers.16,18 A portfo-

lio of single cell transcriptomic studies have recently emerged in non-

model aquatic taxa, including Atlantic cod,19,20 Mexican cavefish,21

corals,22 and diverse aquaculture species, including Atlantic

salmon,23,24 rainbow trout,25,26 orange-spotted grouper,27,28 Nile

tilapia,29,30 kuruma shrimp31 and Pacific oyster,32 among others

(Table 1). This growing body of work immediately demonstrates the

potential of single cell transcriptomics to transform our understanding

of cellular biology in aquaculture species (Section 3), in settings that

can be exploited to address diverse sustainability challenges,33 includ-

ing the pressing need to manage disease outbreaks.34

However, single cell genomics is more challenging than equivalent

bulk methods in multiple respects, presenting a barrier to broad-scale

uptake in aquaculture research. This includes the lab work, requiring

high-quality cells or nuclei and specialist library preparation methods,

which brings several considerations to achieve optimal results

(e.g., Refs. 35,36) (see Section 4). Optimization efforts in single cell

genomics have concentrated on mammals, which have major differ-

ences in biology with aquatic species. Analysis of single cell data is

more complicated than bulk genomics due to its higher dimensionality.

Multiple decisions are involved at many steps of data analysis, with a

plethora of tools available, but without tried-and-tested standards

that fit all studies, species and problems.37,38 This challenge is com-

pounded in aquaculture species as analysis pipelines are optimized for

model species (see Section 5). Furthermore, while reference genomes

are now available for many aquaculture species,39 they remain com-

paratively poorly annotated, which is one of several challenges faced

when the aim is to transfer knowledge on cell biology across species—

a standard practise to classify cell types on the basis of known marker

genes from well characterized organisms.

This review starts with a brief overview of single cell transcrip-

tomics (Section 2), before outlining the potential applications and

impacts that single cell genomics can bring to aquaculture research

(Section 3). Subsequently, we explore barriers to achieving such

impacts, along with potential solutions and considerations when

designing/executing experiments relevant to the wet-lab work

(Section 4) and also concerning the downstream data analysis and

interpretation (Section 5). The overall aim is to provide a state-of-the

art review on single cell genomics relevant to aquaculture researchers,

while also offering recommendations and tips for those aiming to

uptake single cell methods in their research.

2 | WHAT IS SINGLE CELL/NUCLEI
TRANSCRIPTOMICS?

In a nutshell, single cell transcriptomics involves the global profiling of

gene expression in individual cells or nuclei. It is not our aim to

describe the development of this field (see reviews by Refs. 1,4), nor

do we comprehensively review the various platforms currently on

offer (see Ref. 40). Instead, this section offers a short primer on single

cell transcriptomics to provide context for the remainder of the

review.

Currently the most popular high-throughput single cell transcrip-

tomics methods are droplet-based, with all studies published to date

in aquaculture species using such strategies (Table 1). These

approaches employ microfluidic capture of cells/nuclei inside micro-

droplets that contain an mRNA capture bead that includes a unique

barcode, typically next to a unique molecular identifier (UMI).41 Sub-

sequently, reverse transcription is used to generate a cDNA product

with the expressed transcript linked to the barcode and UMI. In

downstream analysis, the cell barcode retains the identity of the cap-

tured cells or nuclei, while the UMI ensures only unique transcripts

are quantified. The resulting cDNA is used to make a library for

sequencing, typically on a high-throughput short-read platform, which

may be indexed to distinguish different samples. An important consid-

eration at this stage is sequencing depth per cell/nuclei, a product of

the (per sample) output of sequencing divided by the number of cells

or nuclei captured, with 25,000–100,000 reads per cell/nucleus offer-

ing sufficient depth for most applications.

The most widely used single cell transcriptomics platform is the

10x Genomics Chromium, which is user-friendly with demonstrated

capability to detect a high number of transcripts per cell in diverse

taxa and sample types. The popularity of this platform extends to

most studies performed with aquaculture species to date

(e.g., Table 1). However, it is also the most expensive droplet based

approach on the market, with other available platforms being more

affordable, including DropSeq42 (commercialized by Dolomite Bio)

and InDrop.43 Studies have validated DropSeq in several commercially

important aquatic species.19,31,44 There also exist non-droplet based

approaches including Smart-seq2,45 where single cells are separated

with a micro-capillary pipette or via FACS and then individually

sequenced, along with the microplate-based method SPLiT-seq,46

where cells or nuclei are uniquely labelled through multiple barcoding

rounds. This strategy has been commercialised by Parse Biosciences,

with the advantage that no platform or FACS sorting is required.

3 | APPLICATIONS OF SINGLE CELL
GENOMICS IN AQUACULTURE RESEARCH

The majority of knowledge on animal cell biology derives from a small

group of well-characterized organisms that benefit from advanced

research ‘toolboxes’, allowing known cell types to be routinely isolated

and manipulated (e.g., Ref. 47). Farmed fish and shellfish, by contrast,

are a highly diverse group of >500 species48 presenting enormous vari-

ation in cellular biology and tissue organization, yet have limited

species-specific research tools available to target or enrich particular

cell types (e.g., monoclonal antibodies and marker genes for well-

characterized cells). Consequently, our understanding of cell biology in

aquaculture species remains in its infancy compared to the most char-

acterized animal species. The uptake of single cell genomics, which

allows for the unbiased high-throughput characterization of single cells,

DANIELS ET AL. 3
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offers an unprecedented and immediate opportunity to fast-track our

understanding and exploitation of cell biology across the great diversity

of aquaculture species (Figure 1; Table 1). This section is not intended

to be exhaustive of all applications of single cell transcriptomics in

aquaculture research and innovation expected to arise in the coming

years. Instead, our goal is to provide some illustrative directions in

which single cell transcriptomics will advance different fields, which

can be built up in the future.

3.1 | Up-step in fundamental cellular biology and
molecular toolboxes

In aquaculture species, major knowledge advancement is possible

using single cell transcriptomics for the identification of cell types and

their expression profiles/responses (Table 1). Such work can reveal

which cell types and their sub-populations are conserved with a refer-

ence species (e.g., model organism), generate evidence for novel cell

types, and resolve which cells are the likely drivers for a shift in phe-

notypic status. Single cell transcriptomics creates an abundance of

novel marker genes for cell types and their sub-populations, which

can be used to add cell-specific resolution to bulk gene expression

studies (i.e., using existing or new datasets), while enhancing the

molecular toolbox for aquaculture research. This can be as straightfor-

ward as identifying candidate gene markers for a cell population of

interest, and quantifying the expression of such genes in bulk samples

using targeted assays (e.g., quantitative PCR), providing a routine and

cost-effective read-out on a cell population's phenotypic status. Cell-

specific marker genes can be taken forward as targets for in situ

expression analyses, to validate and provide spatial resolution to their

expression (or co-expression with other marker genes) at the tissue

level of organization (e.g., Refs. 49,50). A subset of genes will repre-

sent targets for which to develop monoclonal antibodies targeting

candidate cell surface markers, which can subsequently be used to

sort or quantify cells using fluorescence-activated cell sorting (FACS);

particularly useful in immunology (Section 3.2) (reviewed in Ref. 51).

Finally, data generated by single cell transcriptomics can be used to

deconvolute cell-specific expression signals in bulk studies (e.g., Refs.,

52–54). This approach may provide the benefits of single cell resolu-

tion in larger functional genomics studies, adding significant value

without adding additional sequencing costs. For example, a bulk RNA-

seq experiment with a complex design could be performed, which is

cost-effective per sample, and followed by deconvolution methods

that leverage existing single cell transcriptomic data from the same tis-

sue type, with the only additional costs being for the data analysis.

Considering the current status for model species alongside similar

aspirations for livestock (e.g., under the FAANG initiative55), many

commercially important aquaculture species will likely soon (i.e., in the

next 5 years) benefit from cell atlases spanning different tissues rele-

vant to production and health, mirroring what has been done, albeit at

a smaller scale, in mice,56 zebrafish,57 humans58 and Caenorhabditis

elegans.59 Such efforts have been merged and integrated into curated

resources available for wider exploitation (e.g., Ref. 60), providing a

template for aquaculture research communities in the future.

3.2 | Immunology and vaccinology

The outcome of infectious disease challenge, and the success of vacci-

nation programmes for species with an adaptive immune system, is

largely a product of immune cell actions and the responses of these

cells to pathogen signals, involving immune cell activation and differ-

entiation, in addition to cell-to-cell interactions. Single cell transcrip-

tomics provides a wealth of information on such processes,61,62

enabling a new frontier of investigations into the immune system of

aquaculture species.

F IGURE 1 Transformative applications of single cell genomics in aquaculture research and innovation. On the left side of the figure, we
outline areas (boxes with emboldened font) where uptake of single cell sequencing technologies can lead to major advances. Moving from left to
right, the text boxes summarize advances we expect to arise through time, in each specific area.

4 DANIELS ET AL.

 17535131, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/raq.12806 by U

niversity O
f E

dinburgh M
ain L

ibrary, W
iley O

nline L
ibrary on [09/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Unsurprisingly, immunology has been a primary focus in single cell

transcriptomics studies published to date in aquaculture species

(e.g., Refs. 17,23–26,30,31,63–64; Table 1). Such work has identified

novel heterogeneity in the haemocytes (immune cells responsible for

phagocytosis in the haemolymph) of kuruma shrimp,31 white

shrimp,65 and oysters.32 For example, a recent snRNA-seq study in

white shrimp provided evidence for phagocytic haemocytes sharing

marker genes with vertebrate macrophages, offering novel future ave-

nues to exploit the basis for cellular immunity in crustaceans.65 The

work done to date has also demonstrated that farmed teleosts from

different families (Salmonidae, Cichlidae and Serranidae) possess

diverse immune cell types with identifiable subsets, including T and B

lymphocytes, granulocytes, macrophages and dendritic cells (Table 1).

A scRNA-seq study focussing on circulating B cells in rainbow trout

provided evidence for extensive B cell heterogeneity, likely represent-

ing distinct maturation and differentiation states, while also noting

substantial differences in B cell marker genes with mammals.25 Two

recent multi-organ scRNA-seq studies in turbot provided a major step

forward in immunology for this species, demonstrating extensive

diversity in multiple immune cell subtypes, along with associated

marker genes.64,66 This work evidenced the complex role that T cell

heterogeneity plays in the response of turbot to bacterial infection,64

alongside evidence that neutrophils play a central role in turbot

trained immunity,66 a process where the innate immune system is

more effective in responding to a pathogen due to previous exposure

to immunological stimuli. This latter finding could support the design

of approaches that stimulate the innate immune system to increase

disease resistance independent of vaccination.

Our own study of Atlantic salmon liver used snRNA-seq to

uncover the crucial role played by hepatocyte state in the early

immune response to bacterial infection, supported by cell-specific

responses of hepatic immune cell sub-populations.24 We identified a

dominant population of hepatocytes that dramatically remodelled its

transcriptome following infection - repressing metabolic and anabolic

pathways, while activating the host defence response and up-

regulating key genes controlling protein synthesis and secretion, pre-

sumed to support the translation and secretion of high concentrations

of acute phase proteins into circulation.24 An snRNA-seq study of

orange spotted grouper brain following challenge with nervous necro-

sis virus (causative agent of viral nervous necrosis in many marine tel-

eosts), revealed heterogeneity in brain macrophages, and described

putative macrophage differentiation pathways supporting antiviral

responses.27 This study employed a bioinformatic tool called Monocle,

which aims to identify how far a cell-type has transitioned along a

developmental or differentiation state.67,68 Monocle is one of several

so-called trajectory inference methods,69 which may have applicability

to identify pathways of immune cell activation and differentiation in

aquaculture species. For instance, a recent scRNA-seq study of Atlan-

tic cod spleen used an alternative trajectory inference method to

reveal a potential B cell differentiation pathway leading to antibody-

producing plasma cells.20

Single cell transcriptomics has great potential to improve our

understanding of vaccine responses in finfish, and for identifying

novel correlates of protection that may expedite tests of vaccine effi-

cacy. This represents an important opportunity, considering: (i) that

the cellular basis for immunological memory in fishes remains poorly

defined,70,71 (ii) that reliable correlates of protective immunity are yet

to be established for many aquaculture vaccines72 and (iii) the press-

ing need to reduce the number of fish used in vaccine testing.73 Single

cell work in mammals (reviewed in Ref. 62) offers a useful direction of

travel for farmed finfish. A recent study focussed on vaccination

responses to dengue virus (DENV), known, like many viruses, to

depend on T cell reactions.74 The authors identified a novel popula-

tion of CD8+ T cells activated in response to vaccination with high

memory/effector potential that endured for 4 months post-

vaccination and likely underpinned durable protection. These cells

showed a distinct transcriptional programme dominated by metabolic

genes, which proved to be specific markers identifiable from 14 days

post-vaccination.74 Another single cell transcriptomic study provided

evidence for individual variation in vaccination response to hepatitis B

virus within a human cohort, which correlated with the proportion of

two rare dendritic cell populations showing distinct and highly specific

marker genes (NDRG2 and CDKN1). The authors showed it was possi-

ble to identify these dendritic cell subtypes by quantitative PCR of

NDRG2 and CDKN1, providing avenues to predict vaccine responsive-

ness prior to vaccination.75 Such studies demonstrate promise not

simply to identify cellular mechanisms leading to vaccine protection,

but also to identify marker genes for cell types that correlate with var-

iation in vaccine protection outcomes across individuals, which may

be present either before, or early post-vaccination, and can potentially

be measured cheaply.

3.3 | Host-pathogen interactions

Another emerging single cell approach with potential applications in

aquaculture research involves the profiling of host-pathogen interac-

tions. Such methods apply sc/snRNA-seq to samples including both a

host species and an infecting pathogen or parasite.76,77 The bulk

equivalent, often called dual-RNA-seq, has been used to investigate

problematic host-pathogen interactions in aquaculture. This includes

the joint profiling of transcriptomic responses of Atlantic salmon tis-

sues with parasites and pathogens during infection scenarios, includ-

ing salmon louse (Lepeophtheirus salmonis),78 Neoparamoeba perurans

(causative of amoebic gill disease)79 and the intracellular bacterium

Piscirickettsia salmonis (causative of piscirickettsiosis).80 These bulk

studies have revealed genes potentially involved in host resistance,

and candidate mechanisms by which parasites and pathogens circum-

vent host defence or otherwise interact with the host during infec-

tion. However, dual-RNA-seq methods cannot directly inform on cell

types involved in host-parasite interactions.

Single cell Dual-seq (scDual-seq) aims to directly measure cell-

specific responses and cell-to-cell interactions in samples containing

both host and pathogens. For intracellular pathogens, such insights

extend to distinguishing infected from uninfected host cells, which

has proven fruitful in studies of human pathogens.76,81 A recent study

DANIELS ET AL. 5
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developed a bioinformatics approach to capture pathogenic viruses in

infected host cells using scRNA-seq, allowing the immune responses

of infected and uninfected bystander cells to be distinguished.82 A

similar strategy was used in an Atlantic salmon head kidney cell line to

study the transcriptome of cells infected with infectious salmon anae-

mia virus, and compare their responses to bystander cells, providing

novel insights into the interaction between the virus and host cells.83

As intracellular bacterial and viral infections pose a ubiquitous chal-

lenge in aquaculture (e.g., Refs. 72,84), an improved understanding of

which cell types are infected, along with individual variation in cell-

specific responses to infection, will have value when designing vac-

cines that aim to elicit cell-mediated immunity, but also for elucidating

cellular mechanisms underlying the genetic basis for disease resis-

tance, for example, targets for viral entry into host cells. However, it

must be noted that in some settings, co-profiling of host and patho-

gen RNA brings challenges using bulk samples, and achieving effective

scDual-seq pipelines will be even more difficult.77

3.4 | Genome editing

The discovery of CRISPR-Cas systems has greatly facilitated the field

of genome editing, revolutionising practically all fields of biology. The

ability to modify the genome of aquaculture species has attracted

great interest from both researchers and industry, and CRISPR/Cas9

genome editing has already been applied to target traits in farmed fin-

fish species including Atlantic salmon, Nile tilapia, Channel catfish, and

various carps (reviewed in Refs. 85–88), in addition to farmed

shrimp89 and oyster90 species. Legislation is rapidly evolving and

genome editing seems to be gaining traction as a promising method to

improve aquaculture sustainability and animal welfare.

The main biological challenge limiting applications of genome

editing to improve aquaculture stocks is the identification of appropri-

ate targets. Recently, the combination of genome editing and single-

cell transcriptomics has enabled the study of candidate gene function,

even at genome-wide resolution. In CRISPR screens, numerous genes

are knocked-out simultaneously in vitro, with most cells being edited

for a single gene. If the appropriate construct has been used for edit-

ing, single-cell transcriptomics can be used to simultaneously identify

the guide RNA and determine the impact of the knock-out of that

gene on the cell transcriptome. This is commonly known as a pertur-

bation screen, and has, for example, been used recently to knock-out

all expressed human genes (in cell lines) simultaneously to uncover

the function of many uncharacterized genes on the basis of expres-

sion phenotypes in the edited cells.91 Several approaches including

Perturb-seq,92 CROP-seq93 and CRISP-seq94 rely on the same princi-

ple, that is, the identifying the RNA guide that edited each cell in par-

allel to measuring that cell's transcriptome. In addition to loss of

function screens, CRISPR activation, allowing the selective up-

regulation of genes, was recently coupled to single cell transcriptomics

in mouse embryonic stem cells, revealing key genes involved in tran-

scriptional regulation.95 Perturbation screens have huge potential to

improve our understanding of gene functions in aquaculture species,

which currently rely heavily on extrapolations from model species.

Nonetheless, these approaches are limited by the relevance of the

in vitro model of choice for the specific trait of interest, and in this

sense there is an acute need for the development of novel cell lines in

aquaculture species.

As a reverse strategy, it is also possible to interrogate the impact

of targeted genome edits for candidate genes by applying single cell

transcriptomics. The combination of in vitro perturbation screens and

in vivo characterisation of gene function using the above highlighted

approaches offers a powerful new toolbox to identify target genes for

the genetic improvement of aquaculture animals, prioritize causative

genetic variants in regions of the genome explaining trait variation,

and also to validate the potential impact of off-target edits. Finally,

single-cell technologies may also help us better understand and tackle

mosaicism, a frequent phenomenon where edited animals are a mix-

ture of edited and non-edited cells,96 representing a well-known issue

in aquaculture species (reviewed in Ref. 85). It remains unclear

whether mosaicism is stochastic in nature or is biased towards certain

cell lineages. Single-cell sequencing may help us answer this question,

and possibly lead to a better understanding of the molecular pathways

underlying these potential biases, a necessary step towards improving

the efficiency of in vivo editing in aquaculture species.

3.5 | Sex and reproductive biology

Aquaculture is a relatively young industry and encompasses hundreds of

unique species at different stages of domestication. One of the main

challenges during the domestication of aquaculture species is achieving

reproduction in captivity,39 an issue that affects even long-farmed spe-

cies such as Senegalese sole, forcing the industry to rely on wild brood-

stock and curtailing scope for selective breeding.97,98 The lack of

reproduction in captivity can have different underlying causes, ranging

from impaired gonad maturation to ineffective or inexistent courtship.

In finfishes, these processes depend on complex signalling along the

hypothalamic–pituitary–gonadal axis, with specific cell-types secreting

different sex hormones that control sex differentiation and reproduc-

tion.99 The hormonal cascades involved in regulating reproductive pro-

cesses in the many shellfish lineages used in aquaculture are equally

complex and highly diverse (e.g., Refs. 100,101).

Bulk transcriptomics lacks the resolution to detect subtle, cell-

type specific changes that may cause disruptions to reproduction in

captivity.102,103 In this sense, single-cell technologies can help dis-

sect the complex hormonal systems controlling reproduction at

higher resolution, as done recently in the model teleost medaka,104

enabling the characterization of reproductive disruptions by compar-

ing wild versus F1 individuals. Such information offers a strong base

to tackle reproductive problems faced by aquaculture species. Simul-

taneously, understanding how reproductive cells integrate and pro-

cess hormonal signals during sex differentiation will also shed light

into sexual dimorphism, commonly affecting traits of commercial rel-

evance in aquaculture species, such as growth.105 In this area, single

cell transcriptomics has already provided insights into mechanisms
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underlying the expression of sexually dimorphic traits in mouse44,106

and zig-zag eel.107

Single-cell technologies further have great potential to refine our

understanding of sex determination. Aquatic species have extremely

labile and consequently diverse sex determination systems. For instance,

in fish, the current model of sex determination suggests a network of

different interacting genetic and environmental factors, where small

changes can tip the scale towards males or females, providing multiple

opportunities for novel sex determination mechanisms to evolve

(e.g., Ref. 108). The development of germ cells is intimately linked to sex

determination in many species,109 and single-cell transcriptomics can

improve our understanding of this process during gonad development,

identifying factors underpinning germ cell proliferation and the underly-

ing genetic networks, as done recently in mammals (e.g., Refs. 110,111),

and avians.112,113 For example, a recent study in zebra finch (Taeniopygia

guttata) discovered three primordial germ cell sub-types, representing

the first evidence of heterogeneity in this cell type.113

With respect to work performed to date in aquaculture species,

two single cell transcriptomics studies have provided insights into

both germ and somatic cells in gonads. The first reported a compre-

hensive scRNA-seq atlas of testis cells in orange-spotted grouper, a

protogynous hermaphrodite, revealing a candidate developmental tra-

jectory of germ cells during spermatogenesis, providing novel markers

genes at different stages of the transition from spermatogonial stem

cells to mature spermatozoa.28 The second offered evidence for five

distinct cell types in the ovary of Asian seabass (Lates calcarifer), a pro-

tandrous hermaphrodite, including germ cells; revealing novel oocyte

marker genes, including shared marker genes with human oocytes.44

Such a comparative approach across different species may reveal

shared factors underpinning sex determination and early sex differen-

tiation, contributing to our understanding of the rapid evolutionary

turnover of sex determining mechanisms and helping towards sex

control efforts. Finally, an improved understanding of the transcrip-

tome and development of germ cells, including the associated marker

genes, may also be useful expedite progress in surrogate broodstock

technologies, which have major future applications in aquaculture

research and stock genetic improvement.114

3.6 | Selective breeding

Selective breeding is the main route for the genetic improvement of

aquaculture stocks. At the centre of these efforts are genome-wide

association studies (GWAS), which have identified quantitative trait loci

(QTL, i.e., regions in the genome correlated with variation in a target

phenotype, usually captured by SNP markers) for traits of interest in

many aquaculture species, including growth and resistance to diverse

diseases.39 Yet the causative genes and mutations underlying these QTL

remain elusive, and selection efforts rely on neutral markers in linkage

disequilibrium with causative genetic markers, which has limitations for

cross-generation and cross-population selection using genome-wide

information (e.g., Ref. 115). Single-cell studies can contribute towards

dissecting QTL through more precise assessment of the genes co-

localizing with QTL. This could involve inferring cell-specific expression

of genes within QTL regions, or investigating cell-type-specific differ-

ences between individuals carrying distinct genotypes for the QTL. The

power of scRNA-seq to understand the cell-specific nature of GWAS

hits has been demonstrated in humans,116,117 paving the way for similar

studies in aquaculture species

Single-cell technologies also allow for more precise definition of

connections between molecular phenotypes (e.g., gene expression)

and genetic variation.118 It is now known that most causative variants

fall within regulatory regions of genomes (e.g., Ref. 119), making

expression QTL (eQTL, i.e., genomic regions explaining individual vari-

ation in gene expression levels) increasingly to determine the genetic

basis for trait variation in aquaculture populations. While initiatives

such as FAANG aim to improve our understanding of non-coding

regions and eQTL in farmed animals, including aquaculture species,55

such work has been based on bulk methods. However, many eQTL

are cell-specific (e.g., Refs., 120,121), highlighting an increasing need

for cell-resolved eQTL maps (e.g., Ref. 13). Furthermore, in addition to

discovering the causes underlying QTL for prioritized traits in aquacul-

ture, cell-resolved eQTL can be fed directly into selective breeding

models to prioritise functional variation (e.g., Ref. 122). It should also

be noted that cell-resolved eQTL analysis is possible following decon-

volution of bulk RNA-seq datasets.52–54 Therefore, as the generation

of population-scale bulk RNA-seq is becoming increasingly affordable,

it should be readily possible to design studies with aquaculture spe-

cies that combine bulk data with a smaller set of single cell data for

deconvolution, enabling eQTL analysis.

To summarise, up-taking single cell transcriptomics into future

research on the genetic basis for commercial trait variation will help

increase the accuracy of selective breeding, leading to more efficient

and resilient aquaculture stocks through genetic improvement.

4 | EXPERIMENTAL CONSIDERATIONS

Single cell transcriptomics is performed using two fundamental strate-

gies, scRNA-seq or snRNA-seq, which require cells and nuclei as the

input, respectively. Consequently, a central consideration is which

strategy to select (Figure 2). This decision is influenced by practical

issues including whether fresh tissue is readily available, or whether

it's essential to freeze samples, which may be the case when sampling

aquaculture species. The quality of scRNA-seq and snRNA-seq data is

highly correlated with the quality of cells or nuclei input to library

preparation, demanding optimization efforts to ensure high-quality

outcomes are achieved. In this section, we focus on considerations

when designing single cell experiments, accounting for issues faced by

researchers working with aquaculture species. We first outline funda-

mental considerations around the choice of performing scRNA-seq

versus snRNA-seq (Section 3.1), before reviewing methods for isolat-

ing cells and nuclei from fresh and frozen tissues as the input to

scRNA-seq (Section 4.2) and snRNA-seq (Section 4.3), respectively.
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4.1 | Sequencing cell or nuclei transcriptomes?

A large number of studies have considered the relative merits of

scRNA-seq and snRNA-seq across diverse biological contexts and tis-

sues, including mammalian brain,123–125 kidney,126 liver,127

cardiomyocytes,128 adipose tissue,129 peripheral blood mononuclear

cells, and cell lines.125 While the general consensus is that both strate-

gies typically perform well using the same platform,125,130 there are

important distinctions and potential strengths and weaknesses to con-

sider when designing an experiment. RNA captured from whole cells

is derived from all compartments of the cell, which means scRNA-seq

datasets are most compatible with knowledge gained from transcrip-

tomic studies using bulk datasets, which likewise capture all cellular

fractions. Furthermore, as extensive post-transcriptional regulation

occurs outside the nucleus, scRNA-seq and snRNA-seq capture dis-

tinct information on gene expression dynamics, with snRNA-seq lack-

ing scope to capture transcriptional regulation after RNA nuclear

export, but on the other hand providing more direct readouts on tran-

scriptional regulation. Past work has shown that scRNA-seq datasets

are enriched for mitochondrial and ribosomal genes, while snRNA-seq

datasets are enriched for nuclear RNAs,130 including long non-coding

RNAs.35 snRNA-seq data also shows a markedly higher abundance of

unspliced mRNA containing intronic sequences, which has implica-

tions for downstream bioinformatics (Section 5) and may lead to

biases in the expression of particular genes for some sample types

(e.g., Ref. 124). Despite these clear differences, a range of studies

have shown that data derived from nuclear and cell transcriptomes is

highly correlated in many sample types (e.g., Refs. 128,129,131,132).

Furthermore, at least some of the apparent differences in gene

expression between the two strategies may be due to sampling

(e.g., impact of freezing vs. not freezing), rather than inherent differ-

ences between nuclei and cell transcriptomes.35

A known consideration is that scRNA-seq and snRNA-seq data-

sets often capture a very distinct representation of cell type diversity.

Numerous studies have shown that cell diversity is biased in scRNA-

seq datasets across different tissues types (e.g., Refs.

123,127,133,134), through there also exist cases where specific cell

types were underrepresented in snRNA-seq datasets (e.g., human

microglia124). For scRNA-seq, this issue relates mainly to the distinct

sensitivity of different cell types during cell dissociation from tissues

(Section 4.2), which is not straightforward for many sample types, and

in some cases, it may be difficult to recover some cell types for

sequencing (e.g., Ref. 135). While less well recognized, different cell

types likely have distinct sensitivities to being processed through plat-

forms used for scRNA-seq, particularly droplet based methods

employing microfluidics (Section 2). The need to dissociate cells

before scRNA-seq also activates stress associated genes (Section 4.2),

which may impact downstream data interpretation (e.g., Ref. 133).

This issue is thought to be largely avoided in snRNA-seq experi-

ments,125 and it is also true that nuclear isolation is more straightfor-

ward for many samples poorly amenable to cellular isolation

(Section 4.3).

Building on these general issues, it is important to consider practi-

calities surrounding sampling using aquaculture species, which often

necessitates trips to field situations (e.g., fish or shellfish farms) and/or

sampling sites physically located far from the facilities where single

F IGURE 2 Important considerations when designing a single cell transcriptomics study, focussing on sampling and the fundamental decision
surrounding whether to sequence cells or nuclei, with associated advantages and disadvantages of different approaches.
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cell transcriptomics is performed. In such cases, another challenge of

using scRNA-seq is the need to move from cell isolation to library

preparation quickly to limit negative impacts on cell viability and/or

cell type representation. This issue is especially important considering

that we will often start with limited expectations about cell diversity/

representation in samples for many aquaculture species and their tis-

sues, making it impossible to detect biases owing to a lack of baseline

understanding. On the other hand, snRNA-seq is commonly per-

formed using flash frozen tissue samples, which is compatible with

sampling set-ups used widely in aquaculture research. Based on the

literature reviewed above, snRNA-Seq is likely to give a less biased

representation of cell types for many sample types, which is desirable

when working with poorly characterized species and cells. Conse-

quently, the recognized benefits of snRNA-Seq are particularly rele-

vant to studies of aquaculture species cell transcriptomes. When

working with a new species or sample, it would be wise to initially

compare the results of both snRNA-Seq and scRNA-Seq, to determine

the comparative representation of cell type diversity as a trade off

against the relative quality of data captured. This approach is becom-

ing increasingly common in the mammalian literature.

4.2 | Obtaining high-quality cells for scRNA-seq

High quality scRNA-seq data are dependent on achieving cell suspen-

sions with a high proportion (i.e., >90%) of viable individual cells. High

cell viability also helps ensure that a sample's cell diversity is present

at the start of library preparation. Using cell suspensions containing

dead or damaged cells increases the detection of RNA located outside

cells, increasing background noise in the dataset (Section 5). Achieving

a high quality single cell suspension is strongly dependent on the pro-

tocol used. Generally speaking, cell dissociation involves converting

fresh tissue into a heterogeneous soup of its constituent cells. It is

common to dissociate tissues using mechanical means like douncing,

cutting or pipetting up and down, with care required to avoid negative

impacts on fragile cell types.136,137 Enzymatic digestion is also widely

used, requiring considerations around which enzyme or enzyme cock-

tail to employ (e.g., trypsin, collagenase, etc.), in addition to the length

and temperature of digestion (typically 30–60 min at 30–37�C). It is

also common to combine mechanical and enzymatic digestion.138 Ide-

ally, every study will achieve a balance between releasing ‘difficult to
dissociate’ cell types, while avoiding damage to more fragile

cells,35,137,139 which may not be easily achieved.

Most cell dissociation protocols were developed and optimized

using mammalian samples. This poses issues when working with aqua-

culture species, as the architecture of tissues and sensitivity of cells to

mechanical or enzymatic digestion may differ greatly from mammals.

It is well-established that mammalian cells experience transcriptome-

wide changes in response to common dissociation protocols,140,141

with incubations at 37�C inducing stress response genes.35 The same

responses will be strongly amplified for cells from ectothermic species

used in aquaculture. Providing an overview on this issue, Machado

et al.142 concluded that virtually all cell types will express stress

signatures given sufficient dissociation time. The choice of enzyme

can also affect gene expression in cells.139,143,144 One possible solu-

tion to reduce negative impacts of cell dissociation is to use cold

active proteases (active at <6�C), limiting cells heat stress (142,145,146).

At this temperature, transcription is largely inactive in mammals, limit-

ing artefacts linked to heat stress. This approach has been used with

success in mammalian kidney,145 brain124 and solid tumour146 sam-

ples, and will presumably greatly reduce dissociation induced artefacts

in ectothermic species.

Another way to avoid dissociation issues in aquaculture species

is via the use of cells that do not require dissociation, including

immune cells in the blood of rainbow trout,25 or oyster haemo-

lymph.32 A gentle approach for cell dissociation may further be pos-

sible for soft tissues lacking extensive structure, for example, the

spleen19,20 and head kidney21 of teleosts. In these studies, tissues

were subjected to filtering and centrifugation to achieve cellular dis-

sociation, which can be carried out at 4�C to limit stress responses.

In summary, diverse options are available for cell dissociation, but

care must be taken to limit the negative impacts of enzymatic diges-

tion and associated heat stress. Ideally, every new tissue type will be

subjected to trials to achieve optimal viability of cells before

scRNA-seq.

The need to rapidly process fresh samples for library preparation

in scRNA-seq can also be circumvented using fixation protocols.

These include the use of fixatives including methanol147 and

formaldehyde,46 in addition to cryopreservation in DMSO.148 Such

options provide more flexibility when sampling and storing samples

for scRNA-seq, but will still result in the same dissociation biases asso-

ciated with using fresh cells. A promising method called ACME

(ACetic-MEthanol) dissociation was recently established that over-

comes this issue by simultaneously dissociating and fixing cells for

later sequencing.149 Here the authors demonstrated that scRNA-seq

after ACME dissociation avoided biases in cell diversity, emphasising

benefits of maintaining the complete cell transcriptome—in other

words, avoiding limitations of scRNA-seq, while allowing cells to be

stored and sequenced at a later date, that is, a major benefit of

snRNA-seq.

4.3 | Obtaining high quality nuclei for snRNA-Seq

For the reasons outlined in Section 4.1, it may not be possible or

desirable to dissociate cells from fresh tissue samples, especially

when working with aquaculture species. In such cases, flash freezing

freshly-sampled tissues on liquid nitrogen or dry ice is compatible

with the recovery of high quality nuclei for snRNA-seq at a later

date, following a period of storage at an ultra-low temperature. An

important consideration, as with any bulk experiment, is that the

integrity of RNA will degrade through time even at very low temper-

atures. Therefore, it is advantageous to minimize the time samples

are frozen prior to nuclear isolation and snRNA-seq library prepara-

tion, though it is not possible to give precise guidance here, given

that there will be considerable variation in RNA degradation rates
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across tissues and species. Additional advantages of snRNA-seq

include that standardising nuclear isolation across different tissue

types is less onerous than attempting the equivalent cell dissocia-

tions, and that nuclear isolation protocols are done on ice at 4�C,

limiting the transcriptional activity of nuclei and associated impacts

on gene expression.35

Many of the first snRNA-seq studies employed a nuclear isolation

protocol using a standard commercial nuclear isolation buffer

(‘EZprep’) with a combination of douncing and centrifugation.132 This

protocol has been modified to incorporate a sucrose gradient to

accommodate more delicate tissue types.150 However, a drawback

when using a sucrose gradient is this additional step increases the

time between dissociation and library construction, potentially damag-

ing or losing fragile nuclei. A similar protocol has been used in other

sequencing assays that require nuclei from frozen tissue, including

ATAC-seq.151 With minor adjustments such as swapping the protease

inhibitor cocktail for RNAse inhibitor, these protocols can be readily

adapted for snRNA-seq.

A growing volume of literature has compared methods of nuclear

isolation across different tissues.13,36,152 This work highlights disad-

vantages in the original EZprep method, including nuclei loss and high

levels of ambient RNA. The faster and cheaper chopping extraction

approach152 was shown to represent the most effective method for

nuclear isolation with frozen tissue in terms of capturing diverse cell

types and reducing background RNA.13,36 Chopping extraction is

when nuclei are dissociated from cells using a custom nuclear extrac-

tion buffer, while chopping with precision scissors. In Eraslan et al.13 a

toolbox is presented to optimise detergent use for chopping extrac-

tion in different tissue types that is very applicable to different spe-

cies. With minor modifications, these protocols have been used in a

diverse range of tissue panels in Atlantic salmon for successful

snRNA-seq (e.g., Ref. 24). The addition of RNAse to this protocol is

desirable to reduce RNA degradation and background ambient RNA,

especially for tissue types that show high endogenous RNAase

activity.153

5 | BIOINFORMATIC AND ANALYSIS
CONSIDERATIONS

The analysis of single cell transcriptomics data is more complicated than

bulk RNA-seq, owing to its higher complexity and dimensionality, which

often captures the expression of tens of thousands of genes in thou-

sands of cells or nuclei. The data tends to be much sparser, consisting

largely of zeros, with sequencing depth varying extensively between

different cell types. These features require dimensionality reduction

approaches to make the analysis computationally tractable, alongside

statistical methods that compensate for sparseness and noise in the

data, in addition to inventive visualisations that make the outputs inter-

pretable. Reviews exist elsewhere that outline general approaches to

single cell transcriptomic data analysis, for example, Ref. 154, and this

section mainly outlines considerations relevant to studies with aquacul-

ture species, which transfer well to other non-model organisms (also

see review by Ref. 155). The analysis pipelines discussed were designed

for droplet-based technologies being widely applied in aquaculture spe-

cies (Section 2, Table 1), but can generally be used with data derived

from microplate based methods like SPLiT-seq.

5.1 | Limitations of genome annotations and cross-
species cell markers

A key outcome of single cell transcriptomic data analysis is the gener-

ation of a count matrix, representing the number of sequencing reads

or UMIs captured for each gene per cell/nuclei (the basis for all down-

stream analyses and visualizations). In the first step, the sequence data

are usually mapped against an annotated reference genome to deter-

mine read counts for genes (Section 5.2). While analysis frameworks

exist that do not require this a reference genome,156,157 they have

not been widely benchmarked.155 There are many considerations sur-

rounding genome annotation that impact on data generation and

interpretation. The first is that if a genome assembly is of low quality

and fragmented, this will impact gene prediction, meaning key marker

genes may be missing, split or only partially represented in the pre-

dicted gene models. Annotated reference genomes are available for

many aquaculture species,39 with most being of high quality owing to

modern sequencing technologies. However, even in complete and

accurate reference genomes, many correctly predicted gene models

will be assigned names that are challenging to interpret. This results

from the fundamental nature of functional annotation (assigning

names or features to genes based on sequence characteristics), which

is primarily derived from similarity to gene products from charac-

terised species in public databases. The consequence is that genes

may be named incorrectly, have low-confidence annotations, or lack

functional annotations (e.g., ‘uncharacterised protein’).
An associated problem is that gene names assigned by automated

genome annotation may often fail to represent the true orthologue

(i.e., same gene inherited in different species from their common

ancestor) to the genes from which their names were derived. Many

gene families have complex evolutionary histories, characterized by

losses and expansions, in addition to divergent evolutionary rates

across lineages, which challenges accurate gene name assignment

based solely on sequence similarity. For such gene families, sophisti-

cated phylogenetic approaches may be required for accurate homol-

ogy assignment (e.g., Ref. 158). As a simple example, if a gene has

been lost by pseudogenization during the evolutionary history of a

target species, it may be assigned a name for the next most closely

related gene from a larger gene family. In other cases, gene families

have been biasedly expanded in a particular species of interest, such

that multiple co-orthologues exist to single genes in taxa from which

gene names have been derived. This represents the rule for species

with a recent history of whole genome duplication (WGD), including

some of the most important farmed finfishes globally; that is, salmo-

nids159,160 and cyprinids,161,162 which occurred on top of a WGD

event in the common teleost ancestor. In such species, it is common

for there to exist three or four genes sharing equal orthology to

10 DANIELS ET AL.
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mammalian species, and these duplicated copies often show distinct

expression patterns,160,162 which presumably extends to different cell

types, for example, Ref. 24. However, duplicated genes retained from

recent WGD events are poorly annotated in public sequence or

genome databases, so care is required to ensure they have been prop-

erly captured in genomics studies to avoid spurious conclusions about

functional differences between a target species and well-

characterised taxa with more compact gene families.

Such issues are common to comparative genomics studies involv-

ing non-model organisms, but are particularly important to consider in

single cell transcriptomics, owing to the standard practise of determin-

ing cell identity on the basis of cell marker genes. This process ines-

capably requires transfer of knowledge about cell marker genes from

well-characterised species. Lying at the heart of this strategy is an

assumption of genetic orthology, which as detailed above may often

not be met, in addition to the assumption that gene cell-type expres-

sion is typically conserved across species.163 On this latter point, we

already know from single cell studies of species with well-annotated

genomes where gene orthology assignment is straightforward

(i.e., humans vs. mice), that while some orthologous genes are reliable

cross-species markers for the same cell types, others are not.24 More-

over, for species that possess multiple co-orthologues of marker

genes from well-characterized species, it is clearly important to con-

sider them holistically, rather than in isolation, to avoid spurious con-

clusions. For example, Taylor et al. identified that salmonid co-

orthologues of established mammalian marker genes for specific

hepatic cell types showed highly distinct cell-specific expression,

pointing to the need for more work to define such patterns globally.24

Despite the above issues, single cell studies of aquaculture spe-

cies cited elsewhere in this review indicate that a sufficient number of

conserved marker genes exist to confidently identify major cell types,

for instance, the main classes of immune cells shared by all jawed ver-

tebrates (i.e., B cells, T cells, macrophages, dendritic cells, etc.) in

recent teleost work. Where things get more challenging is in assigning

identity to distinct subsets within conserved cell types, which may

have evolved recently, reducing the effectiveness of marker gene

information from distantly related species. A good example is the

extensive heterogeneity observed in rainbow trout B cells, with dis-

tinct subsets identified lacking shared marker genes for B cell subsets

in mammals.26 As a separate related point affecting our ability to

transfer knowledge on cell markers across species, technical differ-

ences between studies, such as the use of snRNA-seq versus scRNA-

seq, as well as the platform used for analysis, can also change the rep-

ertoire of captured marker genes, even for the same species

(e.g., Ref. 127).

The above points are intended to highlight the need for a critical

approach to cell identification in non-model aquaculture species,

including the need to be aware of the possibility of species-specific

cell biology, marker genes that have yet to be characterized and limi-

tations in the use of marker genes from distantly related taxa. None-

theless, several strategies exist to address such challenges and

support a more reliable analysis. Firstly, if there are prioritized genes

of interest, it is possible to manually annotate them before adding

these to the reference genome annotation. For example, in a recent

single cell study in turbot,64 manual annotations of novel immune-

type receptors (NITR) were added to the annotation prior to mapping

using BLAST searches against the better annotated zebrafish genome.

It can also be useful to bolster the quality of gene annotation using

databases containing phylogeny-derived information on homology

relationships. For example, the Ensembl database, via the Biomart

function,164 allows researchers to extract information on the pre-

dicted orthologue to their full set of genes from any species in

Ensembl. We perform this approach routinely to compare annotations

from salmonid genes to their predicted human, mouse and zebrafish

orthologues. For taxa that are not included in Ensembl, global orthol-

ogy predictions can be derived using methods such as Orthofinder,165

and carried into single cell data analysis and interpretation (e.g., Ref.

166). On a smaller scale, constructing manual phylogenetic trees for

key gene families is a useful strategy, as done recently in Atlantic cod,

revealing several questionable annotations in the reference genome.19

Overall, we advise that all single cell transcriptomic studies done in

aquaculture species are based on a foundation that attempts to cap-

ture and interpret the correct evolutionary relationships between a

target species and the taxa from which knowledge of cell biology is

being inferred or transferred.

5.2 | Data mapping and initial filtering

The first step towards generating a count matrix is to determine the

genomic, cellular, and transcript origin of each sequenced read. This is

typically performed using a single pipeline, which determines the

genomic origin of reads via alignment to a reference genome, and

assigns the cell or nuclei of origin using the cellular barcode (CB) and

(when applicable) the transcript of origin by the UMI associated with

each read. A popular pipeline to perform these steps is the 10x Geno-

mics Cell Ranger software, which aligns reads to a reference genome,

and associates each read to an error-corrected CB and UMI. Alterna-

tive packages such as STARsolo167 or Alevin168 perform the same

function as Cell Ranger but also allow for the adjustment of sequence

alignment parameters, which has particular value when working with

non-model species, and the use of non-10x cellular/UMI barcode

configurations.

Multi-mapping occurs when a read can be assigned to more than

one location in the genome with similar statistical probability. This is a

major issue for lineages with genomes characterized by the extensive

presence of duplicated genes retained from recent WGD events,

including salmonids and cyprinids. In some cases, duplicated genes are

so similar that a significant proportion of reads map equally well to

both locations in the genome. If we retain only the uniquely mapping

portion of reads in species where duplicated features are common,

extensive data loss (including marker genes) may occur, which will

reduce the power of downstream analyses. Cell Ranger automatically

discards multi-mapping reads that map to more than one gene,

whereas Alevin and STARsolo offer models allowing probabilistic

assignment of multi-mapping reads across duplicated genes. Thus,
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more data can be retained, and an effort is made to accurately esti-

mate expression levels of duplicate genes using information about the

number of uniquely mapping reads to the different gene copies. Ale-

vin and STARsolo also offer more flexible approaches for error cor-

recting CBs and UMIs, as well as allowing user-specified read

structures to allow the processing of data from non-10x Genomics

platforms. There are several other differences, notably faster running

time than Cell Ranger, as well as differences in final UMI and gene

counts, which are described elsewhere.169

The final step is to determine which CBs are associated with real

cells or nuclei, based on the raw UMI count associated with each

CB.170 This step is non-trivial and even the best algorithms can result

in the erroneous filtering of genuine low-UMI count cells. For exam-

ple, the incorrect filtering of neutrophils in mammals by Cell Ranger,

due to low RNA levels and high RNAse content, is a known issue that

needs manual intervention to address.171 Suggested solutions are to

bypass the automated cell filtering step and specify a set number of

cells to be returned, or alternatively count intronic reads in addition to

exonic reads to increase UMI count (both of these approaches are

possible in all tools). This issue is likely to be particularly important for

aquaculture species due to the current sparsity of studies profiling

cells in these species, and the heterogeneous nature of datasets gen-

erated from whole tissues. For instance, in Atlantic salmon, there can

be an order of magnitude difference in the RNA content of cells

(e.g., Ref. 23) and erythrocytes in particular have extremely low RNA

content and can be erroneously filtered by automated tools.24

5.3 | Additional filtering and quality control steps

After the count matrix has been generated, there are a number of

additional steps that can be performed to enhance quality of down-

stream data. Most commonly, this involves a manual inspection of

data to remove empty droplets and poor quality cells, the use of bioin-

formatic tools to remove ambient RNA, the removal of ‘doublets’
(i.e., chimeric transcriptomes derived from more than one cell or

nuclei), and imputation of missing expression values. The removal of

empty droplets or poor quality cells is conducted through filtering

thresholds on UMI count, gene count and mitochondrial content, and

is usually conducted in downstream packages such as Seurat172 and

ScanPy,173 both of which include detailed vignettes on the process.

These packages also provide a diversity of clustering, differential

expression and visualisation options and are recommended for many

downstream analysis purposes such as dimensionality reduction, clus-

tering and visualisation (Section 5.4).

In principle, each droplet in a droplet-based single cell dataset

should contain either RNA originating from a single cell or nucleus, or

no RNA at all. In reality, even in high quality datasets every droplet

contains non-negligible amounts of contaminating RNA,174 and this

can vary significantly between datasets. This effect can be readily

observed in a gill snRNA-seq dataset from Atlantic salmon23 and a

spleen scRNA-seq dataset from Atlantic cod,19 where all cell types

‘express’ haemoglobin, that has likely originated from erythrocytes.

Similarly, abundant hepatocyte genes encoding acute phase proteins

showed leakage to all cell types in a liver snRNA-seq dataset in Atlan-

tic salmon.24 Several effective tools including SoupX,174 CellBen-

der175 and DecontX176 have been designed to remove ambient RNA,

using the presence of known empty droplets containing only ambient

RNA to estimate ambient RNA content in non-empty droplets. Cell-

bender in particular is highly suitable for the analysis of data gener-

ated in aquaculture species, as it requires little prior knowledge of the

data and few user set parameters, while SoupX and DecontX each

require input on meaningful cell identifications, which may be chal-

lenging to establish in the early stage of analysis with a novel species.

Cellbender has the advantage of also performing cell filtering based

on the de-contaminated dataset, when the removal of ambient RNA

can clarify the distinction between empty and non-empty droplets.

5.3.1 | Doublet removal

Three approaches exist to deal with doublets in single cell datasets.

The simplest is to apply an upper threshold on the UMI or gene count

in the quality control step, under the assumption that doublets will

contain more RNA and therefore more UMIs/genes. While this may

work well in homogeneous data sets where all cells/nuclei express

similar number of transcripts, in a tissue level dataset there will often

exist enormous variation in transcriptional activity between cell types,

resulting in an upper threshold erroneously removing the most tran-

scriptionally active cells, while missing doublets containing less active

cells. Therefore, this strategy is not generally recommended.

The second approach is to cluster the cells or nuclei (e.g., with

Seurat or ScanPy) (Section 5.4), perform a differential gene expression

test between each cluster and all other cells, and manually identify

clusters that differentially express specific markers of two other cell

types, but no unique markers of their own. This approach can be time

consuming, allows for human error, and only identifies heterotypic

doublets (i.e., two different cell types) but has the advantage of a bio-

logical justification for the removal of cells.

The third approach is to employ a dedicated bioinformatic pack-

age, many of which have been usefully benchmarked against each

other.177 These usually operate by generating a set of artificial dou-

blets based on an initial clustering of the data, which are used as the

basis to identify actual doublets in a sample. In our experience, care

should be taken when using a doublet removal package, as there can

be significant disparities between packages in which cells are identi-

fied as doublets. A manual inspection of the cells identified as dou-

blets is recommended prior to removal. The scDblFinder package178

uses a function that identifies clusters of likely heterotypic doublets

based on an algorithmic version of the manual strategy of performing

differential gene expression tests and identifying cell clusters that

express markers of two other clusters, but no unique markers.

5.3.2 | Imputation

Imputation aims to fill missing data values by comparison to a ‘true’
reference. In the context of single cell data, this means using
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transcriptionally similar cells to impute missing expression of genes

that have been lost due to incomplete capture or sequencing of the

RNA in the cell. The rationale for using imputation is that the imputed

dataset will be superior for downstream analysis, but this is by no

means clear. For example, while the recovery of gene expression pro-

files observed in bulk RNA-seq can be enhanced through imputation,

this may result in little downstream enhancement to clustering and

trajectory analysis,179 and there is the potential to introduce false pos-

itive results in differential gene expression tests.180 Despite this,

imputation has been used to recover biologically meaningful expres-

sion of very lowly expressed genes that was not present in the non-

imputed dataset (e.g., Ref. 181). Imputation should be conducted with

care and the benefits weighed against the risks of introducing

unwanted artefacts.

5.4 | Clustering and cell type identification

To characterize the heterogeneity of cells in a single cell dataset, it is

necessary to group cells sharing similar molecular profiles in a process

known as clustering, which is fundamental to most downstream appli-

cations. Most clustering algorithms use machine learning approaches

to cluster cells in an unsupervised fashion (i.e., without user input) and

generally perform well.182,183 Prior to clustering, data dimensionality

is reduced to make the analysis computationally tractable and to

remove uninformative variation. This typically involves using a subset

of genes that show the highest level of expression variation (perhaps

5%–10% of genes), before performing further dimensionality reduc-

tion, such as principal component analysis (PCA), and selecting the

PCs explaining the most variation to eliminate uninformative noise.

Cells are then grouped by similarity along these axes, with a graph-

based clustering algorithm used to determine cluster number and

assign cells.

Two critical parameters to consider during clustering are ‘resolu-
tion’, defining how fine-grained the definition of cell types will be, and

the degree of variation used to inform the clustering (i.e., the number

of PCs used as input). A study aiming to describe only the broad cell

lineages present in the data should opt for low resolution clustering,

requiring few PCs, while a study attempting to describe all variation,

including heterogeneity within particular cell lineages, should opt for

high resolution clustering, requiring more of the variation in the data-

set (hence more PCs). For most datasets, particularly in under

described aquaculture species, the clustering process will inevitably

require multiple attempts at clustering, with better understanding of

the data from early clustering attempts leading to better informed

choices for parameters. With very heterogeneous datasets, such as

those derived from primary tissue, the best approach is often to per-

form an initial global clustering to identify the major cell types in the

samples, then sub-setting these cell lineages and performing separate

clustering with parameters tuned to each lineage, for example, Ref.

24. This approach is commonly used and avoids under clustering very

diverse cell lineages (e.g., haematopoietic, including immune cells) or

over clustering homogeneous populations, but is time consuming.

Alternatively, other systematic approaches have been developed to

deal with this issue.184,185

At this stage on an analysis, it is important to visualise the data in

order to assess the performance and biological relevance of the clus-

tering. Currently the most widely used visualisation of cell clustering

is uniform manifold approximation and projection (UMAP),186 a non-

linear embedding method that aims to project all variation in data

onto two axes, resulting in a “map” where the proximity of individual

cells reflects similarity in their transcriptome composition.

TABLE 2 Summary of potential downstream bioinformatic analyses in single cell transcriptomic studies

Application Purpose Challenges Example tools

Differential expression tests

between conditions

Identify cell type specific changes in

gene expression in response to

challenge or changes in

environment.

Low numbers of biological

replicates may result in false

positives.

Low RNA content in single cell

datasets may lead to bias against

lowly expressed genes being

accurately identified as

differentially expressed.

Many bulk RNA-seq differential

gene expression tests work well

with single cell data, in addition

to single cell specific tests. A

variety of DGE tests are available

in scRNA-seq workflows,

Seurat,172 SCANPY173 and

Scater.190

Trajectory inference Infer dynamic changes in

transcriptomic profiles, for

example, along a developmental

trajectory.

Sampling must take place at the

timepoints where dynamic

changes are taking places.

Uncertainty in number of cells

required to reliable infer

trajectories.

Monocle68

Velocyto191

Slingshot192

Deconvolution of bulk RNA-

seq datasets

Estimation of cellular composition

of bulk RNA-seq data.

No aquaculture specific challenges. scBio193

Bisque194

Gene network analysis Identify signalling pathways and

molecular interactions between

cell populations.

Reliance on derived knowledge of

molecular interactions, which is

not available for most species

Noisy nature of single cell data can

confound inference of networks.

CellPhoneDb195

BTR196
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Identification and annotation of cell types involves the use of ‘a priori’
knowledge of marker genes to assign cellular identity. This can be per-

formed by either visualising the expression of these markers in each

cluster, for example with “violin” plots or heatmaps, or by performing

differential gene expression tests between each cluster and all other

cells, then referencing the most differentially expressed genes in each

cluster against the ‘a priori’ markers. The design of differential expres-

sion tests employed to define cell marker genes is important to the

outcome of this approach. For example, when investigating cell sub-

types within a lineage, the resulting marker genes from the differential

expression tests strongly depends on the background used for com-

parison, that is, whether the test is performed against all other cells in

the experiment, or against only other cells in that lineage. For exam-

ple, in Atlantic salmon liver, T cell subsets were better identified by

comparison of expression within the T cell lineage, rather than against

all other liver cells. For this reason is it often useful to analyse subsets

of the data separately when attempting to annotate cell sub-types.

Once clustering and annotation of cell types has been completed,

many options exist for downstream analyses, and the choice will be

informed by the goal of the study. Table 2 summarises several of the

common bioinformatic analyses that can be performed.

6 | FUTURE PERSPECTIVES AND
CONCLUSIONS

Looking ahead, spatial ‘omics’ is a related set of technologies we

expect to make a big impact on the characterisation of cell biology

in aquaculture species. A limitation of the single cell methods

reviewed here is the lack of in situ data to contextualize cell-

specific gene expression (including in response to stimuli) in the

background of where the cells are physically located or co-located

within a tissue. The spatial organization of cells within tissues is

vital to cell and tissue function, and may radically change under dif-

ferent physiological conditions, for example, the migration and

interaction of cells of the immune system following disease chal-

lenge. Several methods are already widely used to explore gene or

protein expression within cells and tissue organizations (e.g., in situ

RNA hybridization and immunohistochemistry), which can be com-

bined with novel cell marker genes gained from single cell tran-

scriptomics. However, such approaches are limited in throughput.

Spatial transcriptomics encompasses a group of recently developed

methods that bridge the gap between low-throughput in situ

expression methods, and high-throughput single cell transcriptomics

(reviewed in Ref. 187). In essence, these methods capture tran-

scriptomic read-outs in minute regions (tens of micrometre scale)

sampled from tissue sections, maintaining the spatial location of

each region to build up a bigger picture of gene expression across

the sampled tissue. This approach is complementary to single cell

transcriptomics, helping to interpret the function of cell types

according to their spatial location in relation to known features of

a tissue, particularly insightful when used in an experimental frame-

work comparing different conditions.

To wrap-up, single cell genomics is being rapidly uptaken in aqua-

culture species, and when applied alongside other emerging technolo-

gies will revolutionise our understanding of the cell-specific basis for

traits of significance to sustainability and production goals. We have

outlined some of the key envisaged applications and potential barriers

to successfully adopting single cell technologies in aquaculture

research, highlighting considerations for experimental design and exe-

cution both in the lab and during data analysis, with major implications

for sampling decisions, data quality and interpretation, and even cost.

All single cell studies require careful consideration and planning, and

there exist no blanket options to guarantee standardized high quality

data and interpretations in all species and systems. Clearly this field is

moving rapidly, and will build rapidly upon the emerging knowledge

gained from pioneering studies published in recent years, providing

increasing assurance concerning methods best suited to different

aquaculture species. In the future, we envisage a data-derived

approach will increasingly drive forward advances in species-specific

cell biology, which is needed to move beyond the current constraints

of knowledge transfer from a few well-characterised species.

AUTHOR CONTRIBUTIONS

Rose Ruiz Daniels: Conceptualization; writing – original draft; writing –

review and editing; visualization; funding acquisition. Richard S. Taylor:

Conceptualization; writing – original draft; funding acquisition; writing –

review and editing. Diego Robledo: Conceptualization; funding acquisition;

writing – original draft; writing – review and editing; supervision; visualiza-

tion; project administration; resources. Daniel J. Macqueen: Supervision;

conceptualization; funding acquisition; writing – original draft; writing –

review and editing; visualization; project administration; resources.

ACKNOWLEDGEMENTS

For the purpose of open access, the author has applied a Creative

Commons Attribution (CC BY) licence to any Author Accepted Manu-

script version arising from this submission.

FUNDING STATEMENT

We acknowledge funding for our single cell research, including grants

from the Scottish Universities Life Sciences Alliance (Technology Seed

Funding Call) (all authors), the University of Edinburgh's Data Driven

Innovation Initiative (Scottish Funding Council Beacon ‘Building Back

Better’ Call) (Rose Ruiz Daniels, Richard S. Taylor, Daniel

J. Macqueen), the Biotechnology and Biological Sciences Research

Council, including BBS/E/D/10002071 and BBS/E/D/20002174 (all

authors), BB/W005859/1 (Richard S. Taylor and Daniel J. Macqueen)

and BB/V009818/1 (Diego Robledo), and the Norwegian Seafood

Research Fund 901631 (Diego Robledo).

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT

Data sharing is not applicable to this article as no new data were cre-

ated or analyzed in this study.

14 DANIELS ET AL.

 17535131, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/raq.12806 by U

niversity O
f E

dinburgh M
ain L

ibrary, W
iley O

nline L
ibrary on [09/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ORCID

Rose Ruiz Daniels https://orcid.org/0000-0002-6702-5304

Diego Robledo https://orcid.org/0000-0002-9616-5912

Daniel J. Macqueen https://orcid.org/0000-0001-8050-7722

REFERENCES

1. Linnarsson S, Teichmann SA. Single-cell genomics: coming of age.

Genome Biol. 2016;17(1):1-3. doi:10.1186/S13059-016-0960-X/

METRICS

2. Stubbington MJT, Rozenblatt-Rosen O, Regev A, Teichmann SA. Sin-

gle-cell transcriptomics to explore the immune system in health and

disease. Science. 2017;358(6359):58-63. doi:10.1126/science.

aan6828

3. Griffiths JA, Scialdone A, Marioni JC. Using single-cell genomics to

understand developmental processes and cell fate decisions. Mol

Syst Biol. 2018;14(4):e8046. doi:10.15252/msb.20178046

4. Aldridge S, Teichmann SA. Single cell transcriptomics comes of age.

Nat Commun. 2020;11(1):4307. doi:10.1038/s41467-020-18158-5

5. Niemöller C, Wehrle J, Riba J, et al. Bisulfite-free epigenomics and

genomics of single cells through methylation-sensitive restriction.

Commun Biol. 2021;4(1):153. doi:10.1038/s42003-021-01661-w

6. Buenrostro JD, Wu B, Litzenburger UM, et al. Single-cell chromatin

accessibility reveals principles of regulatory variation. Nature. 2015;

523(7561):486-490. doi:10.1038/nature14590

7. Nagano T, Lubling Y, Stevens TJ, et al. Single-cell Hi-C reveals cell-

to-cell variability in chromosome structure. Nature. 2013;502(7469):

59-64. doi:10.1038/nature12593

8. Schier AF. Single-cell biology: beyond the sum of its parts. Nat

Methods. 2020;17(1):17-20. doi:10.1038/s41592-019-0693-3

9. Schoof EM, Furtwängler B, Üresin N, et al. Quantitative single-cell

proteomics as a tool to characterize cellular hierarchies. Nat Com-

mun. 2021;12:3341. doi:10.1038/s41467-021-23667-y

10. Kashima Y, Sakamoto Y, Kaneko K, Seki M, Suzuki Y, Suzuki A. Sin-

gle-cell sequencing techniques from individual to multiomics ana-

lyses. Exp Mol Med. 2020;52(9):1419-1427. doi:10.1038/s12276-

020-00499-2

11. Regev A, Teichmann SA, Lander ES, et al. The human cell atlas. eLife.

2017;6:e27041. doi:10.7554/eLife.27041

12. Elmentaite R, Domínguez Conde C, Yang L, Teichmann SA. Single-

cell atlases: shared and tissue-specific cell types across human

organs. Nat Rev Genet. 2022;23(7):395-410. doi:10.1038/s41576-

022-00449-w

13. Eraslan G, Drokhlyansky E, Anand S, et al. Single-nucleus cross-tissue

molecular reference maps toward understanding disease gene function.

Science. 2022;376(6594):eabl4290. doi:10.1126/science.abl4290

14. Tabula Sapiens Consortium, Jones RC, Karkanias J, et al. The Tabula

Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans.

Science. 2022;376(6594):eabl4896. doi:10.1126/science.abl4896

15. Kulkarni A, Anderson AG, Merullo DP, Konopka G. Beyond bulk: a

review of single cell transcriptomics methodologies and applications.

Curr Opin Biotechnol. 2019;58:129-136. doi:10.1016/J.COPBIO.

2019.03.001

16. Svensson V, Pachter L. RNA velocity: molecular kinetics from single-

cell RNA-Seq. Mol Cell. 2018;72(1):7-9. doi:10.1016/j.molcel.2018.

09.026

17. Chandhini S, Rejish Kumar VJ. Transcriptomics in aquaculture: cur-

rent status and applications. Rev Aquac. 2019;11(4):1379-1397. doi:

10.1111/raq.12298

18. Haque A, Engel J, Teichmann SA, Lönnberg T. A practical guide to

single-cell RNA-sequencing for biomedical research and clinical applica-

tions. Genome Med. 2017;9(1):75. doi:10.1186/s13073-017-0467-4

19. Guslund NC, Solbakken MH, Brieuc MSO, Jentoft S, Jakobsen KS,

Qiao SW. Single-cell transcriptome profiling of immune cell reper-

toire of the Atlantic cod which naturally lacks the major

histocompatibility class II system. Front Immunol. 2020;11:559555.

doi:10.3389/fimmu.2020.559555

20. Guslund NC, Krabberød AK, Nørstebø SF, et al. Lymphocyte subsets

in Atlantic cod (Gadus morhua) interrogated by single-cell sequencing.

Commun Biol. 2022;5(1):689. doi:10.1038/s42003-022-03645-w

21. Peuß R, Box AC, Chen S, et al. Adaptation to low parasite abundance

affects immune investment and immunopathological responses of

cavefish. Nat Ecol Evol. 2020;4(10):1416-1430. doi:10.1038/

s41559-020-1234-2

22. Hu M, Zheng X, Fan CM, Zheng Y. Lineage dynamics of the endo-

symbiotic cell type in the soft coral Xenia. Nature. 2020;582(7813):

534-538. doi:10.1038/s41586-020-2385-7

23. West AC, Mizoro Y, Wood SH, et al. Immunologic profiling of the

Atlantic salmon gill by single nuclei transcriptomics. Front Immunol.

2021;12:669889. doi:10.3389/fimmu.2021.6698899

24. Taylor RS, Ruiz Daniels R, Dobie R, et al. Single cell transcriptomics

of Atlantic salmon (Salmo salar L.) liver reveals cellular heterogeneity

and immunological responses to challenge by Aeromonas salmoni-

cida. Front Immunol. 2022;13:984799. doi:10.3389/fimmu.2022.

984799

25. Perdiguero P, Morel E, Díaz-Rosales P, Tafalla C. Individual B cells

transcribe multiple rearranged immunoglobulin light chains in teleost

fish. iScience. 2021;24(6):102615. doi:10.1016/J.ISCI.2021.102615

26. Perdiguero P, Morel E, Tafalla C. Diversity of rainbow trout blood B

cells revealed by single cell RNA sequencing. Biology (Basel). 2021;

10(6):511. doi:10.3390/biology10060511

27. Wang Q, Peng C, Yang M, et al. Single-cell RNA-seq landscape mid-

brain cell responses to red spotted grouper nervous necrosis virus

infection. PLoS Pathog. 2021;17(6):e1009665. doi:10.1371/journal.

ppat.1009665

28. Wu X, Yang Y, Zhong C, et al. Single-cell atlas of adult testis in pro-

togynous hermaphroditic orange-spotted grouper, Epinephelus

coioides. Int J Mol Sci. 2021;22(22):12607. doi:10.3390/

ijms222212607

29. Wu L, Gao A, Li L, Chen J, Li J, Ye J. A single-cell transcriptome pro-

filing of anterior kidney leukocytes from Nile tilapia (Oreochromis

niloticus). Front Immunol. 2021;12:783196. doi:10.3389/fimmu.

2021.783196

30. Niu J, Huang Y, Liu X, et al. Single-cell RNA-seq reveals different

subsets of non-specific cytotoxic cells in teleost. Genomics. 2020;

112(6):5170-5179. doi:10.1016/j.ygeno.2020.09.031

31. Koiwai K, Koyama T, Tsuda S, et al. Single-cell RNA-seq analysis

reveals penaeid shrimp hemocyte subpopulations and cell differenti-

ation process. Elife. 2021;10:e66954. doi:10.7554/eLife.66954

32. Meng J, Wang WX. Highly sensitive and specific responses of oyster

hemocytes to copper exposure: single-cell transcriptomic analysis of

different cell populations. Environ Sci Technol. 2022;56(4):2497-

2510. doi:10.1021/acs.est.1c07510

33. Naylor RL, Hardy RW, Buschmann AH, et al. A 20-year retrospective

review of global aquaculture. Nature. 2021;591(7851):551-563. doi:

10.1038/s41586-021-03308-6

34. Stentiford GD, Sritunyalucksana K, Flegel TW, et al. New paradigms

to help solve the global aquaculture disease crisis. PLoS Pathog.

2017;13(2):e1006160. doi:10.1371/journal.ppat.1006160

35. Denisenko E, Guo BB, Jones M, et al. Systematic assessment of tis-

sue dissociation and storage biases in single-cell and single-nucleus

RNA-seq workflows. Genome Biol. 2020;21(1):130. doi:10.1186/

s13059-020-02048-6

36. Slyper M, Porter CBM, Ashenberg O, et al. A single-cell and

single-nucleus RNA-Seq toolbox for fresh and frozen human

tumors. Nat Med. 2020;26(5):792-802. doi:10.1038/s41591-020-

0844-1

37. Lähnemann D, Köster J, Szczurek E, et al. Eleven grand challenges in

single-cell data science. Genome Biol. 2020;21(1):31. doi:10.1186/

s13059-020-1926-6

DANIELS ET AL. 15

 17535131, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/raq.12806 by U

niversity O
f E

dinburgh M
ain L

ibrary, W
iley O

nline L
ibrary on [09/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0002-6702-5304
https://orcid.org/0000-0002-6702-5304
https://orcid.org/0000-0002-9616-5912
https://orcid.org/0000-0002-9616-5912
https://orcid.org/0000-0001-8050-7722
https://orcid.org/0000-0001-8050-7722
info:doi/10.1186/S13059-016-0960-X/METRICS
info:doi/10.1186/S13059-016-0960-X/METRICS
info:doi/10.1126/science.aan6828
info:doi/10.1126/science.aan6828
info:doi/10.15252/msb.20178046
info:doi/10.1038/s41467-020-18158-5
info:doi/10.1038/s42003-021-01661-w
info:doi/10.1038/nature14590
info:doi/10.1038/nature12593
info:doi/10.1038/s41592-019-0693-3
info:doi/10.1038/s41467-021-23667-y
info:doi/10.1038/s12276-020-00499-2
info:doi/10.1038/s12276-020-00499-2
info:doi/10.7554/eLife.27041
info:doi/10.1038/s41576-022-00449-w
info:doi/10.1038/s41576-022-00449-w
info:doi/10.1126/science.abl4290
info:doi/10.1126/science.abl4896
info:doi/10.1016/J.COPBIO.2019.03.001
info:doi/10.1016/J.COPBIO.2019.03.001
info:doi/10.1016/j.molcel.2018.09.026
info:doi/10.1016/j.molcel.2018.09.026
info:doi/10.1111/raq.12298
info:doi/10.1186/s13073-017-0467-4
info:doi/10.3389/fimmu.2020.559555
info:doi/10.1038/s42003-022-03645-w
info:doi/10.1038/s41559-020-1234-2
info:doi/10.1038/s41559-020-1234-2
info:doi/10.1038/s41586-020-2385-7
info:doi/10.3389/fimmu.2021.6698899
info:doi/10.3389/fimmu.2022.984799
info:doi/10.3389/fimmu.2022.984799
info:doi/10.1016/J.ISCI.2021.102615
info:doi/10.3390/biology10060511
info:doi/10.1371/journal.ppat.1009665
info:doi/10.1371/journal.ppat.1009665
info:doi/10.3390/ijms222212607
info:doi/10.3390/ijms222212607
info:doi/10.3389/fimmu.2021.783196
info:doi/10.3389/fimmu.2021.783196
info:doi/10.1016/j.ygeno.2020.09.031
info:doi/10.7554/eLife.66954
info:doi/10.1021/acs.est.1c07510
info:doi/10.1038/s41586-021-03308-6
info:doi/10.1371/journal.ppat.1006160
info:doi/10.1186/s13059-020-02048-6
info:doi/10.1186/s13059-020-02048-6
info:doi/10.1038/s41591-020-0844-1
info:doi/10.1038/s41591-020-0844-1
info:doi/10.1186/s13059-020-1926-6
info:doi/10.1186/s13059-020-1926-6


38. Nayak R, Hasija Y. A hitchhiker's guide to single-cell transcriptomics

and data analysis pipelines. Genomics. 2021;113(2):606-619. doi:10.

1016/j.ygeno.2021.01.007

39. Houston RD, Bean TP, Macqueen DJ, et al. Harnessing genomics to

fast-track genetic improvement in aquaculture. Nat Rev Genet. 2020;

21(7):389-409. doi:10.1038/s41576-020-0227-y

40. Chen G, Ning B, Shi T. Single-cell RNA-Seq technologies and related

computational Data analysis. Front Genet. 2019;10:317. doi:10.

3389/fgene.2019.00317

41. Zhang X, Li T, Liu F, et al. Comparative analysis of droplet-based

ultra-high-throughput single-cell RNA-Seq systems. Mol Cell. 2019;

73(1):130-142.e5. doi:10.1016/j.molcel.2018.10.020

42. Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide

expression profiling of individual cells using nanoliter droplets. Cell.

2015;161(5):1202-1214. doi:10.1016/j.cell.2015.05.002

43. Klein AM, Mazutis L, Akartuna I, et al. Droplet barcoding for single-

cell transcriptomics applied to embryonic stem cells. Cell. 2015;

161(5):1187-1201. doi:10.1016/j.cell.2015.04.044

44. Liu X, Li W, Yang Y, et al. Transcriptome profiling of the ovarian cells

at the single-cell resolution in adult Asian seabass. Front Cell Dev

Biol. 2021;9:647892. doi:10.3389/fcell.2021.647892

45. Picelli S, Faridani OR, Björklund AK, Winberg G, Sagasser S,

Sandberg R. Full-length RNA-seq from single cells using Smart-seq2.

Nat Protoc. 2014;9(1):171-181. doi:10.1038/nprot.2014.006

46. Rosenberg AB, Roco CM, Muscat RA, et al. Single-cell profiling of

the developing mouse brain and spinal cord with split-pool barcod-

ing. Science. 2018;360(6385):176-182. doi:10.1126/science.

aam8999

47. Eisenhoffer GT, Slattum G, Ruiz OE, et al. A toolbox to study epider-

mal cell types in zebrafish. J Cell Sci. 2017;130(1):269-277. doi:10.

1242/jcs.184341

48. The State of World Fisheries. FAO. Food and Agriculture Organiza-

tion of the United Nations. 2022. 10.4060/cc0461en.

49. Strell C, Hilscher MM, Laxman N, et al. Placing RNA in context and

space - methods for spatially resolved transcriptomics. FEBS J. 2019;

286(8):1468-1481. doi:10.1111/febs.14435

50. Asp M, Bergenstråhle J, Lundeberg J. Spatially resolved

transcriptomes-next generation tools for tissue exploration. Bioes-

says. 2020;42(10):e1900221. doi:10.1002/bies.201900221

51. Fei C, Nie L, Zhang J, Chen J. Potential applications of fluorescence-

activated cell sorting (FACS) and droplet-based microfluidics in pro-

moting the discovery of specific antibodies for characterizations of

fish immune cells. Front Immunol. 2021;12:771231. doi:10.3389/

fimmu.2021.771231

52. Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell

subsets from tissue expression profiles. Nat Methods. 2015;12(5):

453-457. doi:10.1038/nmeth.3337

53. Avila Cobos F, Alquicira-Hernandez J, Powell JE, Mestdagh P, De

Preter K. Benchmarking of cell type deconvolution pipelines for

transcriptomics data. Nat Commun. 2020;11(1):5650. doi:10.1038/

s41467-020-19015-1

54. Jin H, Liu Z. A benchmark for RNA-seq deconvolution analysis under

dynamic testing environments. Genome Biol. 2021;22(1):102. doi:10.

1186/s13059-021-02290-6

55. Clark EL, Archibald AL, Daetwyler HD, et al. From FAANG to fork:

application of highly annotated genomes to improve farmed animal

production. Genome Biol. 2020;21(1):285. doi:10.1186/s13059-020-

02197-8

56. Tabula Muris Consortium, Overall Coordination, Logistical Coordina-

tion, et al. Single-cell transcriptomics of 20 mouse organs creates a

Tabula Muris. Nature. 2018;562(7727):367-372. doi:10.1038/

s41586-018-0590-4

57. Farnsworth DR, Saunders LM, Miller AC. A single-cell transcriptome

atlas for zebrafish development. Dev Biol. 2020;459(2):100-108. doi:

10.1016/j.ydbio.2019.11.008

58. Lindeboom RGH, Regev A, Teichmann SA. Towards a human cell

atlas: taking notes from the past. Trends Genet. 2021;37(7):625-630.

doi:10.1016/j.tig.2021.03.007

59. Packer JS, Zhu Q, Huynh C, et al. A lineage-resolved molecular atlas

of C. elegans embryogenesis at single-cell resolution. Science. 2019;

365(6459):eaax1971. doi:10.1126/science.aax1971

60. Zhang X, Lan Y, Xu J, et al. CellMarker: a manually curated resource

of cell markers in human and mouse. Nucleic Acids Res. 2019;47(D1):

D721-D728. doi:10.1093/nar/gky900

61. Papalexi E, Satija R. Single-cell RNA sequencing to explore immune

cell heterogeneity. Nat Rev Immunol. 2018;18(1):35-45. doi:10.

1038/nri.2017.76

62. Noé A, Cargill TN, Nielsen CM, Russell AJC, Barnes E. The applica-

tion of single-cell RNA sequencing in vaccinology. J Immunol Res.

2020;2020:8624963. doi:10.1155/2020/8624963

63. Chan JTH, Kadri S, Köllner B, Rebl A, Korytář T. RNA-seq of single fish
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