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The formation of pairs and trains of particles in inertial microfluidics is an important consideration for device
design and applications, such as particle focussing and separation. We study the formation and stability of
linear and staggered pairs of nearly rigid spherical particles of different sizes in a pressure-driven flow through
a straight duct with a rectangular cross-section under mild inertia. An in-house lattice-Boltzmann-immersed-
boundary-finite-element code is used for the three-dimensional simulations. We find that the stability and
properties of pairs of heterogeneous particles strongly depend on the particle sizes and their size ratio, while
the formation of the pairs is also determined by the initial lateral position and the axial order of the particles.
Our findings imply that perturbations of particle trajectories caused by other particles, as they are expected to
happen even in dilute suspensions, can be important for the formation of stable pairs in inertial microfluidics.

I. INTRODUCTION

Separation and sorting of micron-sized particles
and cells has importance in disease diagnostics1,
therapeutics2, and cell analysis3. Among the available
separation methods, inertial microfluidics (IMF) has be-
come attractive due to its high throughput, low cost, and
label-free manipulation of the particles4. IMF is a rela-
tively new field that emerged in the late 2000s5,6. While
inertia is often negligible in traditional microfluidic de-
vices due to the small length scales and flow rates in-
volved, the channel Reynolds number in IMF is of the or-
der 10–100 due to the relatively high velocity of the fluid.
In this range of Reynolds number, inertial effects can be
exploited to manipulate particles through focussing and
separation7–10.

Particles in IMF experience shear gradient and wall re-
pulsion forces11–14. The shear gradient lift force results
from the interaction of the finite size of the particle with
the gradient of the flow velocity across the channel. This
force usually pushes the particle away from the channel
centre towards a wall. The wall repulsion force is caused
by an increased pressure between the particle and the
wall. The resulting net force felt by the particle is com-
monly known as inertial lift force. As a consequence,
particles usually undergo lateral migration towards one
of the existing lateral equilibrium positions. This particle
focussing phenomenon was first observed by Segré and
Silberberg15 in a pressure-driven flow through a cylindri-
cal pipe.

In addition to the focusing of a single particle in IMF,
multiple particles tend to form axially ordered trains
with regular inter-particle spacing16,17. The formation
of trains can be exploited in applications such as cell
encapsulation18 and flow cytometry19. Since it has been
identified that the formation of particle pairs precedes

the emergence of trains20, understanding the formation
of particle pairs is crucial. Lee et al.21 first identified
the self-assembly of particle pairs and identified reverse
streamlines are crucial elements. Particle pairs can be
classified into staggered pairs (particles located on op-
posite sides of the channel) and linear pairs (particles
placed on the same side of the channel)20,21. During pair
formation, the axial distance between both particles per-
forms a damped oscillation before converging to an equi-
librium value16,22. It has been reported that linear parti-
cle pairs do not form when both particles are of the same
size20.

Patel and Stark23 investigated the effect of particle
softness and shape for mono- and bi-disperse particle
pairs and found that the presence of the second parti-
cle can change the stability of the single-particle equi-
librium positions. Li et al.24 investigated the formation
of a heterogeneous pair of particles consisting of a rigid
and a soft particle with the same size and demonstrated
the pair formation after a number of passing interactions
in a simulation with periodic boundary conditions. A
new focusing state, called binding focusing state, was
found where the soft particle gets close to the rigid par-
ticle, both particles switch their original paths and focus
together on a new equilibrium position. Gao et al.25 ex-
perimentally found that a small difference in particle size
of a rigid particle improves the particle focussing perfor-
mance. Chen et al.26 performed 2D simulations of the
pair formation of bi-dispersed rigid particles of different
sizes in a linear arrangement; they found that pair for-
mation is only possible when the larger particle is lead-
ing and the inter-particle distance decreases as Reynolds
number increases.

The formation of heterogeneous pairs can be desired
(e.g., for the generation of Janus or compound particles)
or detrimental (e.g., for the separation of different par-
ticles). Thus, it is important to better understand the
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FIG. 1: (a) Schematic of a pair of particles in a rectangular duct with height 2h and width 2w; the length of the
periodic unit cell is L. The flow is along the x-axis (blue arrow). The particles are initially located on the

x-z-mid-plane (y = 0, grey plane). While the particles flow along the x-axis, they only migrate along the z-axis and
remain on the plane at y = 0. (b) In the staggered arrangement, both particles are initially on different sides of the

channel. (c) Particles in the linear arrangement are initially on the same side of the channel. The initial axial distance
between the particles is δx0 ≪ L. The particle initially located downstream is called leading particle; the other

particle is called lagging particle.

conditions and mechanisms leading to the formation of
heterogeneous pairs. In this paper, we perform 3D sim-
ulations using a lattice-Boltzmann-immersed-boundary-
finite-element solver to investigate the dynamics and for-
mation of a pair of particles of different sizes through
a straight rectangular channel by a pressure-driven flow
at a moderate Reynolds number (Sec. II). We consider
particle pairs in the staggered and linear arrangements
(Sec. III). Our study comprises three parts. First, we
investigate for which combinations of particle sizes sta-
ble pairs form when both particles are initially far away
from each other and focussed at their respective lateral
equilibrium positions; we find that the formation of these
‘focussed stable pairs’ not only depends on the size ratio
but also on the absolute sizes of the particles. Interest-
ingly, the known instability of linear pairs of identical
particles disappears when there exists a small size het-
erogeneity. Second, we analyse the stability of already
existing pairs, independently of their possible formation
mechanism; we observe that more pairs are stable than
the focussed stable pairs; these additional stable pairs are
denoted ‘incidentally stable pairs’. Third, we study how
a perturbation of the initial position of the smaller parti-
cle, which might be caused by the presence of other par-
ticles, affects pair formation; we identify the existence
of a ‘stability band’, a finite region of initial positions of
the smaller particle that lead to either focussed or inci-
dentally stable pairs. Implications and future directions
are discussed in Sec. IV.

II. PHYSICAL MODEL AND NUMERICAL
METHODS

We study, via 3D computer simulations, the dynamics
of a pair of spherical particles of different sizes in a flow
through a straight microchannel at moderate Reynolds

numbers. We use a soft particle model near the rigid
limit. In the following, we briefly explain the physical
model (Sec. II A), including the geometrical setup, and
the numerical methods (Sec. II B).

A. Physical model

We consider a Newtonian liquid with kinematic vis-
cosity ν and density ρ flowing through a rectangular duct
with a width of 2w and a height of 2h with an aspect ra-
tio w/h = 2 as shown in Fig. 1a. The liquid is governed
by the incompressible Navier-Stokes equations. Flow is
driven along the x-axis (axial direction). The y- and z-
axes are denoted as lateral directions.

We consider two initially spherical and neutrally buoy-
ant particles with radii R and r ≤ R. The size ratio of the
two particles is β = R/r ≥ 1. Note that in some cases we
consider the limit of homogeneous particles, β = 1. Both
particles are modelled as capsules comprising a thin hy-
perelastic membrane and an interior liquid with the same
properties as the suspending liquid. The capsule mem-
branes are governed by the Skalak model27:

ws =
κs

12
(I2

1 +2I1 −2I2)+
κα

12
I2
2 (1)

where ws is the areal energy density, I1 and I2 are the
in-plane strain invariants28, and κs and κα are the elastic
shear and area dilation moduli. In order to avoid mem-
brane buckling, we include a membrane bending energy

wb =
κb

2

(
H −H(0)

)2
(2)

where H and H(0) are the trace of the surface curvature
tensor and the spontaneous curvature, respectively, and
κb is the bending modulus.
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Both particles are initially placed on the x-z-mid-plane
(y = 0) between the side walls as shown in Fig. 1a. Par-
ticles initially located on this mid-plane will usually stay
on the plane while moving along the x-axis and migrat-
ing along the z-axis29. We distinguish between the ini-
tially lagging and leading particles based on their ini-
tial positions on the x-axis (Fig. 1b and Fig. 1c). We
consider two arrangements of particles in this work. In
the first arrangement, the particles are placed on oppo-
site sides of the channel centre (staggered arrangement,
Fig. 1b). In the second arrangement, the particles are po-
sitioned on the same side of the channel (linear arrange-
ment, Fig. 1c). In both arrangements, we distinguish be-
tween cases with the smaller particle being the leading or
the lagging particle.

We apply periodic boundary conditions in the axial di-
rection and the no-slip condition at the channel walls and
on the surface of the particles. The channel length L is
large enough so that particles do not interact with their
periodic images.

The channel Reynolds number Re is defined as

Re =
Umaxw

ν
(3)

where Umax is the maximum velocity of the flow in the
absence of particles. Following Schaaf and Stark30, the
Laplace number La is used to characterise the particle
softness:

La =
κsa
ρν2 (4)

where a is the radius of the particle which is either R or
r.

We use the channel half-height h as characteristic
length to non-dimensionalise the particle radii and the
travelled distance. Time is non-dimensionalised by the
advection time of the larger particle:

tad =
R

Umax
. (5)

Other dimensionless groups are the confinement of the
larger particle, χR = R/h, the confinement of the smaller
particle, χr = r/h, the channel aspect ratio α = w/h, the
reduced dilation modulus κ̃α = κα/κs, and the reduced
bending modulus κ̃b = κb/(κsa2).

B. Numerical model

We use a fluid-structure interaction solver in which
the lattice-Boltzmann (LB) method is used to solve the
Navier-Stokes equation, the finite-element (FE) method
for the particle dynamics, and the immersed-boundary
(IB) method for the fluid-structure interaction. This IB-
LB-FE solver has been previously employed in the study

of deformable capsules in inertial microfluidics31,32. We
only provide essential properties of the model here, while
comprehensive details are available elsewhere28.

We use the D3Q19 lattice33 and the BGK collision
operator34 with relaxation time τ for the LB method. The
viscosity of the liquid and the relaxation time satisfy

ν = c2
s

(
τ − ∆t

2

)
(6)

where cs is the lattice speed of sound and ∆t is the time
step. For the D3Q19 lattice, c2

s = ∆x2/(3∆t2) holds
where ∆x is the lattice resolution. The flow is driven by
a constant body force35. The no-slip boundary condition
at the channel wall is realised by the standard half-way
bounce-back condition36. This form of the LB method is
widely used in the field of fluid dynamics, including in
previous inertial microfluidics studies30,37.

A surface mesh consisting of flat triangular faces (or
elements) defined by three nodes (or vertices) each is
used to represent each particle. The particle mesh is
generally deformed at a given time step. An explicit
scheme is used to calculate the resulting hyperelastic
forces acting on each vertex. The bending forces are cal-
culated from the angles between normal vectors of pairs
of neighbouring faces, and the shear and area dilation
forces are calculated from the deformation gradient ten-
sor of each face38.

We employ an IB method with a 3-point stencil39.
The forces obtained from the FE scheme are spread from
the Lagrangian particle mesh to the Eulerian fluid lattice
where they act on the surrounding fluid nodes through the
LB algorithm. The updated fluid velocity is then interpo-
lated at the location of each mesh node. The positions
of the mesh nodes are updated using the forward-Euler
method, assuming a massless membrane which is appro-
priate for neutrally buoyant capsules. This treatment re-
covers the no-slip boundary condition at the surface of
the capsules and the momentum exchange between the
liquid and the particles.

Our IB-LB-FE solver has been tested for a single soft
particle and the interaction between two soft particles in
inertial flows in our previous work32. Unless otherwise
stated, the following parameters are kept constant in this
study: 2w = 160∆x, 2h = 80∆x, L = 560∆x, Re = 10,
La = 100, κ̃α = 2, and κ̃b = 0.00287. The number of
surface mesh elements of the particles range from 500
for the smallest simulated particle to 7220 for the largest
one. We focus on R, r, δx0, zlead

0 and zlag
0 as free param-

eters. Note that, for La = 100, particles are close to the
rigid limit and pair formation is well understood for ho-
mogeneous pairs32. Simulations are initialised by drop-
ping the particles in the simulation box and then driving
the flow, starting at t = 0.
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III. RESULTS AND DISCUSSIONS

We first explain the types of pair interaction observed
in our study together with examples of their trajectories.
We then investigate the effect of the size and initial lateral
position of the particles on the formation and stability of
particle pairs.

A. Types of observed particle pairs

In a Poiseuille flow of a Newtonian liquid at mild in-
ertia, a suspended rigid spherical particle generally mi-
grates to a lateral equilibrium position between the chan-
nel centre and the wall5. Larger particles are usually fo-
cussed at a lateral position closer to the centreline than
smaller particles40,41. Due to the curved velocity pro-
file, particles focussed closer to the centreline generally
move faster along the channel than those focussed nearer
to a wall. Hence, to leading order, stable pairs are only
expected to exist when both particles have the same ax-
ial speed at their respective equilibrium positions. How-
ever, the presence of a second particle nearby can modify
the lift force experienced by the first particle — and vice
versa37. Due to the hydrodynamic interaction between
both particles, lateral equilibrium positions can change
and the particles can form a stable pair under some cir-
cumstances, even if both particles have different individ-
ual lateral equilibrium positions.

Not all pairs exhibit the same characteristics, and pairs
can be categorised according to the time evolution of
their axial distance. We observe four different types of
interactions between two particles: stable pairs, oscilla-
tory stable pairs, unstable pairs, and periodic pairs. We
define a stable pair as an arrangement where the axial
distance between the particles, δx, converges to a con-
stant value which is sufficiently small so that particles
still interact hydrodynamically (typically δx/R < 6); we
denote this equilibrium axial distance δxeq.

An example of a stable pair in the staggered arrange-
ment is shown in Fig. 2a for particles with χR = 0.35 and
χr = 0.3. The particles were initialised at their single-
particle equilibrium positions with the larger particle lag-
ging behind the smaller particle by an axial distance
δx0/R = 10. The larger particle is closer to the centre
and, therefore, moves with a higher axial speed. Initially,
the larger particle approaches the leading smaller particle
and attempts to overtake; the axial distance decreases.
During this process, the lateral positions of both parti-
cles change in a way that the smaller particle gets closer
to the centre than the larger particle. Consequently, the
larger particle fails to overtake the smaller particle, and
the smaller particle moves faster than the larger particle
for some time. In the following, both particles tend to
migrate back to their respective lateral equilibrium posi-
tions, thus the larger particle becomes faster and the axial

distance decreases again. The process repeats for a few
times with a decreasing amplitude, until both particles
settle in a stable arrangement where both particles move
with the same axial speed and the smaller particle is still
leading.

In contrast to a stable pair, an oscillatory stable pair
is characterised by two particles whose axial distance
δx keeps oscillating between two values within hydro-
dynamic interaction range. An example of a staggered
oscillatory pair is shown in Fig. 2b for particles with
χR = 0.4 and χr = 0.25. While the general dynamics
is similar to that of the stable pair in Fig. 2a, the trajecto-
ries of the oscillatory stable pair converge to a limit cycle
in the centre-of-mass frame.

An unstable pair is characterised by the axial distance
δx increasing or decreasing without bounds. An exam-
ple is shown in Fig. 2c for particles in the staggered ar-
rangement with χR = 0.4 and χr = 0.1 where the smaller
particle is initially leading. One reason for this instabil-
ity is the large difference in axial particle speed due to a
mismatch of the particles’ lateral equilibrium positions.
The larger particle moves so much faster than the smaller
particle that no stable pair can form during the time the
particles interact hydrodynamically.

Since simulations are performed in a box that is pe-
riodic along the flow direction, pairs sometimes form
between a particle and the periodic image of the other
particle. A typical scenario is shown in Fig. 3 where
the two particles are initially in a staggered arrangement
(Fig. 3(a)). Under some circumstances, the leading parti-
cle moves away from the lagging particle and catches up
with the periodic image of the other particle with which
it consequently forms a pair (Fig. 3(b)). The actual ax-
ial distance between the initially considered particles is
of the order δx ≈ L ≫ R, though. Initial conditions that
lead to the formation of a periodic pair, rather than a sta-
ble or oscillatory stable pair as defined previously, are
counted as initial conditions leading to an unstable pair
since the initially considered particles move too far away
from each other to form a pair. However, a periodic pair
is still a stable or oscillatory stable pair that might have
resulted from some unknown initial conditions under dif-
ferent circumstances. As such, periodic pairs could be
considered (oscillatory) stable pairs if we were only in-
terested in the existence of stable pairs and not in the cir-
cumstances under which they might have formed. Note
that in our study, periodic pairs are counted as unstable.

From our initial simulations, we know that particle
pair formation depends on the particle sizes and the ini-
tial position of the particles. Thus, in the following, we
study the effect of the confinement values (χR and χr)
and the initial position of both particles on the formation
and stability of particle pairs. We perform our analysis
in three steps: (i) Assuming the absence of perturbations,
particles are initially located far from each other and on
their respective lateral equilibrium positions before they
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FIG. 2: Types of particle pairs observed in this work. All examples are in staggered arrangement with the smaller
particle initially leading and δx0/R = 10. The left column shows the lateral position of both particles as function of

time. The right column displays the axial distance between both particles as function of time; the insets show the
particle trajectories in the centre-of-mass system. The coordinate x′ indicates the flow-wise coordinate with respect to

the instantaneous centre of mass of the particle pair. (a) Stable pair of particles with χR = 0.35 and χr = 0.3. The
inset shows that particle trajectories converge to a stable configuration. (b) Oscillatory stable pair with χR = 0.4 and

χr = 0.25. The limit cycle of the trajectories is clearly visible in the inset. (c) Unstable pair with χR = 0.4 and
χr = 0.1. The axial distance grows without bounds.



Numerical study of the formation and stability of a pair of particles of different sizes in inertial microfluidics 6

LL

(a) Initial configuration

LL

(b) Configuration at later time

FIG. 3: Schematic of the formation of a periodic pair. Solid lines represent the actual simulation domain and
particles; dashed lines represent the adjacent downstream periodic unit cell. Dotted lines indicate the periodic

boundaries. The flow is from left to right. (a) Initial configuration of two particles in the staggered arrangement. (b)
Pair formation between one actual particle and the periodic image of the other particle at a later time.

interact (Sec. III B). (ii) Pairs are initialised by putting
the smaller particle in the vortex of the larger particle,
and the stability of the pair is investigated (Sec. III C).
(iii) Assuming that particles are generally affected by
other particles in the channel, we investigate the effect
of a perturbation of the initial conditions on the forma-
tion of pairs (Sec. III D).

B. Pair formation from initially focussed particle
positions

We start by assuming that both particles are initially
far away from each other and had time to focus at their in-
dividual lateral equilibrium positions, unperturbed by the
possible presence of other particles in the channel. Since
both particles have different sizes and, therefore, differ-
ent lateral equilibrium positions, one of them is usually
faster and therefore eventually catches up with the other
particle.

Our initial simulations show that the particle pair is al-
ways unstable when the larger particle is initialised far
downstream of the smaller particle since the larger par-
ticle has a lateral equilibrium position closer to the cen-
treline and is, therefore, moving faster than the smaller
particle. Thus, in this section, we study the case where
we initialise the smaller particle as the leading particle in
detail. Note that in Sec. III B 2, we include unstable pair
results for the case where the leading particle is larger for
completion. It is possible to form a stable pair with the
larger particle leading if the initial lateral positions are
different; we will investigate these cases in Sec. III D.

1. Effect of initial axial distance

In order to ensure that particles are initially far away
and not yet interacting hydrodynamically, we need to
identify an appropriate initial axial distance, δx0. We
consider two cases for a number of different values of

δx0 in the linear arrangement: (i) χR = 0.3, χr = 0.2 and
(ii) χR = 0.4, χr = 0.2. The time evolution of the axial
distance δx is shown in Fig. 4. For both cases, it can
be seen that particles behave identically at late times as
long as δx0 ≥ 8R. This behaviour is demonstrated more
clearly in the insets of both panels where the time axis
has been shifted in such a way that the first minimum of
δx(t) occurs at t ′ = 0 for all curves with δx0 ≥ 8R. We
conclude that δx0 = 8R ensures that particles do not in-
teract initially. Hereafter, we initialise all simulations in
this section with δx0 = 10R.

2. Effect of particle sizes on pair formation

Next, we study the effect of particle size, χR and χr,
and size ratio β on the formation of stable pairs. Parti-
cles are initialised at their respective single-particle equi-
librium positions.

The simulation outcomes are shown in Fig. 5. The
green and grey shaded regions represent the smaller par-
ticle leading and lagging, respectively. We observe sta-
ble pairs (solid circles), oscillatory stable pairs (open cir-
cles) and no pair formation (crosses). We denote the sta-
ble pairs observed here ‘focussed stable pairs’ since they
form from two particles that were initially focussed at
their respective lateral equilibrium positions. As stated
earlier, there is no pair formation when the smaller par-
ticle is initially lagging, both for staggered and linear ar-
rangements. Since larger particles have equilibrium po-
sitions closer to the centre, these particles are in regions
of faster flow and quickly move away from any lagging
smaller particle. Since the initial distance between both
particles is large, there is no hydrodynamic interaction
between them, and the smaller particle has no way of
forming a pair with the larger one. From now on, we
only discuss those cases where the smaller particle is ini-
tially leading (green region).

In the staggered arrangement (Fig. 5(a)), both parti-
cle size ratio and absolute particle size influence the out-
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FIG. 4: Time evolution of the axial distance between the
particles in the linear arrangement for (a) χR = 0.3,

χr = 0.2 and (b) χR = 0.4, χr = 0.2 for various initial
axial distances δx0. The particle pairs behave

identically at later times for δx0 ≥ 8R. The insets show
the distance for δx0 ≥ 8R as function of shifted time t ′

such that the first minimum of δx(t) occurs at t ′ = 0.

come. When both particles are small compared to the
channel, no pair formation is observed; the minimum
confinement for which a pair forms is around χ = 0.15.
Our streamline data (not shown here) suggest that the
flow distortions caused by sufficiently small particles are
not able to interact across the channel centreline, thus a
stable staggered pair is unable to form when both par-
ticles are below a critical size. Furthermore, the parti-
cle size ratio β is an important factor: the particles do
not form a pair when β ≈ 2 or larger. Importantly, the
pair stability turns from stable to oscillatory stable before
becoming unstable with increasing β . This observation
suggests that oscillatory stable pairs can be found at the
stability limit in terms of size ratio.

In the linear arrangement (Fig. 5(b)), pair formation
predominantly depends on the particle size ratio β ; there

does not seem to be a minimum confinement for which
pairs can form. In the limiting case of two identical parti-
cles (β = 1), we found that the axial distance between the
particles increases steadily and apparently without upper
bound. Since the increase in the axial distance becomes
progressively slower with distance, we aborted the sim-
ulation after δx reached about 15R without indication of
reaching an equilibrium distance. This observation is in
agreement with published results20. However, size het-
erogeneity enables the formation of linear pairs over a
wide range of particle size ratios. Overall, we observe
more stable pairs in the linear arrangement than in the
staggered arrangement. Linear pairs can also form at
larger particle size ratios, up to β ≈ 2.5.

To explore the role of size heterogeneity on pair for-
mation close to the homogeneous limit, β ≈ 1, in the
linear arrangement, we have run simulations with vary-
ing degrees of mild size heterogeneity. Fig. 6 shows that
a slight heterogeneity in particle size results in stable
pairs forming. This observation is crucial since, in ex-
periments, particle or cell properties are never perfectly
homogeneous. The size ratio β also plays an important
role for the equilibrium axial distance δxeq in the pair as
shown in the inset of Fig. 6. We observe a logarithmic di-
vergence of δxeq for β → 1. As a result, a small change
in size heterogeneity for β ≈ 1 can lead to large varia-
tions in the axial distance. This observation explains the
findings of Gao et al.25 who experimentally found that
a small difference in particle size improves the particle
focussing performance.

The axial equilibrium distance δxeq is one of the most
important properties of a particle pair. Fig. 7(a) shows
the normalised axial distance for all observed stable
pairs, both staggered and linear, as a function of the con-
finement of the smaller particle. Most notably, δxeq is
approximately twice as large for linear than for staggered
pairs, which has been found previously37. Importantly,
the equilibrium distance also depends on the individual
particle sizes. Ignoring the dependence on χR, staggered
pairs tend to decrease their axial distance with increasing
χr, while we observe the opposite trend for linear pairs.
For a given fixed value of χR, however, staggered pairs
show a weak increase of δxeq with χr. Furthermore, for a
given fixed value of χr, δxeq of staggered pairs increases
for decreasing χR. For staggered pairs, there is no sign
of a divergence of δxeq for β → 1 in Fig. 7(a), which is
in line with the observed stability of staggered homoge-
neous pairs. We visualize the staggered and linear pairs
in Fig. 7(b) for the conditions indicated by open circles
in Fig. 7(a) for two different values of β . For visualiza-
tion purpose, we show the short segment close to particle
pair, not the full length of the periodic cell. Left and right
panels represent staggered and linear pairs, respectively.
We could see the axial equilibrium distance is approxi-
mately two times in the linear pairs than that of the stag-
gered pairs. It is difficult to predict the change in the
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FIG. 5: Effect of particle confinement on pair formation for particles initially far away from each other and focussed
at their respective lateral equilibrium positions. Particles are initialised either in the (a) staggered arrangement or (b)

linear arrangement. The green and grey regions represent the smaller particle initially leading and lagging,
respectively. Simulations are classified as one of three possible outcomes: stable pair (solid circle), oscillatory stable
pair (open circle) and no pair (cross). Stable pairs arising from these initial conditions are denoted ‘focussed stable

pairs’. The two inclined lines indicate lines of constant (a) β = 1 and β = 2, respectively, and (b) β = 1 and β = 2.5,
respectively.

axial equilibrium distance with the confinement of the
small particle from visualization as the change in δxeq is
less than 10%. We also observe from Fig. 7(b) that par-
ticles are not deformed for the conditions (La = 100 and
Re = 10) considered in our work and our assumption of
studying effect of particles size only on the formation of
pairs and their stability is valid.

Fig. 8 shows the fluid streamlines around a single
larger particle at its lateral equilibrium position in the
co-moving frame of the particle. We observe that, in
all our simulations, the smaller particle in a stable stag-
gered pair eventually reaches the leading vortex caused
by the larger particle. This effect has been described
before16,37. For the linear stable pair, the smaller par-
ticle reaches the leading inner edge of the recirculation
zone. We will take advantage of these observations in
Sec. III C where we investigate the stability of already
existing pairs.

Apart from the stable and oscillatory stable pairs de-
fined in Fig. 2, we have also observed the formation of
stable pairs involving periodic images. These periodic
pairs were introduced in Sec. III A and play a special
role since periodic images do not exist in the real world.
However, the observation that stable periodic pairs can
form for combinations of χR and χr that are marked
as unstable in Fig. 5 implies that some pairs are able
to form under different initial conditions than those as-

sumed in this section. For example, we found stable peri-
odic pairs in the linear arrangement with the smaller par-
ticle leading for χR = 0.4, χr = 0.15; χR = 0.4, χr = 0.1;
χR = 0.35, χr = 0.1; and χR = 0.3, χr = 0.1 which are
all marked unstable in Fig. 5. Based on the observation
of stable pairs that do not form when particles are ini-
tially at their lateral equilibrium positions and far away
from each other, we need to investigate which particle
arrangements are stable (assuming that pairs already ex-
ist) and under which initial conditions additional stable
pairs can form in the first place. We will address both
questions in Sec. III C and Sec. III D, respectively.

C. Stability of already existing pairs

The initial conditions used in Sec. III B are very spe-
cific: both particles are focussed at their individual lat-
eral equilibrium positions. Any pair forming under these
conditions is a focussed stable pair. We have already seen
that not all possible stable pairs are formed from these
initial conditions, though. Thus, in this section, we study
the stability of pairs already existing. To this end, we
initialise particles in such a way that the larger particle
is at its lateral equilibrium position and the smaller par-
ticle is located either in the vortex of the larger particle
(staggered arrangement) or at the edge of the recircula-
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FIG. 6: Linear pair formation for slightly heterogeneous particles. The time evolution of the axial distance δx
between the particles shows that there is no pair formation for homogeneous particles (β = 1). However, a slight

heterogeneity results in the formation of a pair. Variation of the equilibrium axial distance δxeq with size ratio β is
depicted in the inset; a logarithmic divergence is observed for β → 1 (fit parameters: a =−0.8756, b = 1.160,

c = 4.531).

tion zone of the larger particle (linear arrangement), see
Fig 8.

There are two distinct cases for the linear and stag-
gered arrangements, respectively: the smaller particle
can initially be leading or lagging since there are two
vortices and two recirculation zones. Once the pair is
initialised, we track the axial distance δx to determine
whether the pair is stable or not. The resulting stabil-
ity map for both staggered and linear pairs is shown in
Fig. 9.

For the cases where the smaller particle is leading in
the staggered arrangement (green area in Fig. 9a), we
did not find any more stable pairs than those already ob-
served in Fig. 5a. However, there exist new stable pairs
when the larger particle is leading in the staggered ar-
rangement in Fig. 9a, despite Fig. 5a not showing any of
these stable pairs. These new stable pairs are not very ro-
bust and require careful selection of the initial positions
to be observed. Although these pairs are stable accord-
ing to our definition, they are sensitive to perturbations
that offer the leading larger particle the opportunity to
move away due to its preferred lateral equilibrium po-
sition closer to the centreline where the flow is faster.

Since these new stable pairs do not form when particles
are initially focussed at their individual lateral equilib-
rium positions, we denote the new pairs ‘incidentally sta-
ble pairs’.

In the linear arrangement, particle pairs are stable
when the smaller particle is leading and unstable when
the larger particle is leading for all investigated combi-
nations of size ratio (Fig. 9b). These findings are similar
to those in Fig. 5b, although pairs with a large value of
β = R/r did not form when particles were initially far
away from each other. These results are in contrast to the
findings of Chen et al.26 who reported that linear pair for-
mation is only possible when the larger particle is lead-
ing. However, unlike our simulations, their simulations
were in 2D, omitting transverse flow effects which Had-
dadi and Morris42 demonstrated alter the stability char-
acteristics within the pair.

We have seen that the initial configuration of the par-
ticles plays an important role. Some pairs tend to be
more robust and can form when particles at their respec-
tive lateral equilibrium position approach each other for
the first time (focussed stable pairs), while other stable
pairs require more carefully chosen initial conditions (in-
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FIG. 7: (a) Normalised axial equilibrium distance δxeq/h for all stable pairs observed in Sec. III B as function of the
confinement of the smaller particle, χr. Note that, by definition, χR ≥ χr in all cases. (b) Visualisation of particle
pairs indicated by open circles in (a). Left and right panels represent staggered and linear pairs, respectively. Note

that only a short channel segment close to each pair is shown, rather than the full length of the periodic cell.

FIG. 8: Streamlines (blue) in the co-moving frame of a single particle (black) at its lateral equilibrium position. Flow
is from left to right. Red dots indicate the vortices located on the opposite side of the channel; a smaller particle

reaches the leading vortex in case a stable staggered pair forms. The red bars highlight the inner edges of the
recirculation zones on the same side of the channel; a smaller particle reaches the leading inner edge in case a stable

linear pair forms.

cidentally stable pairs). Since the initial conditions in our
simulations reflect an arbitrary instant in time in a real-
world application where particles might be in arbitrary
locations, we need to understand better how the choice
of initial conditions affects pair formation.

D. Pair formation from initially unfocussed particle
positions

We showed in Sec. III B that pairs of particles can form
for specific combinations of particle sizes when both par-
ticles are initially focussed at their respective lateral equi-
librium positions (focussed stable pairs). We then dis-
covered in Sec. III C that more particle pairs, if already
formed, are stable (incidentally stable pairs). Based on
these findings, we can distinguish between three possi-
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FIG. 9: Effect of particle confinement on the stability of pairs initialised according to Fig. 8 in the (a) staggered
arrangement and (b) linear arrangement. The green and grey regions represent the smaller particle initially leading
and lagging, respectively. Simulations are classified as one of four possible outcomes: focussed stable pair (solid
circle), incidentally stable pair (solid square), oscillatory stable pair (open circle), and no pair (cross). The two

inclined lines indicate lines of constant (a) β = 1 and β = 2, respectively, and (b) β = 1 and β = 2.5, respectively.

ble scenarios. For a given combination of confinement
values χR and χr (and therefore β ), exactly one of the
following outcomes is true:

1. A pair forms when particles are initially focussed
at their respective lateral equilibrium positions.
This scenario is typically expected when the sus-
pension is very dilute and particles have the time
to migrate to their lateral equilibrium positions
before encountering each other. These focussed
stable pairs are combinations of particles that are
marked as stable in Fig. 5.

2. A pair only forms when at least one particle is
initially unfocussed. This situation is expected to
be more common in less dilute suspensions where
particles are perturbed by the presence of other
particles such that particles cannot migrate to their
lateral equilibrium positions before they encounter
each other. These incidentally stable pairs are
combinations of particles that are marked as sta-
ble in Fig. 9 but as unstable in Fig. 5.

3. No pair forms independently of the initial particle
positions. These are combinations of particles that
are marked as unstable in Fig. 9.

In this section, we explore the second scenario. It
would be unfeasible to scan the entire space of the ini-
tial positions of both particles, thus we pursue a differ-
ent strategy. Since larger particles are less perturbed by

the presence of other particles and migrate faster toward
their lateral equilibrium position43, we assume that the
larger particle is initially focussed at its lateral equilib-
rium position. The smaller particle, however, is released
at different lateral positions to mimic the effect of an up-
stream perturbation. Furthermore, both particles are still
initialised on the mid-plane (y = 0) to reduce the com-
plexity of the problem, and δx0 = 10R in all cases. Note
that there might exist even more incidentally stable pairs
if the initial position of the larger particle is also varied.
Additionally, for β → 1, the smaller particle plays an in-
creasingly important role in the pair formation process.
Thus, for an exhaustive analysis, the initial positions of
both particles should be varied. This kind of analysis is
not within the scope of this paper.

We investigate a single combination of particles with
the smaller particle lagging in the staggered arrangement
that was found stable (Fig. 9) but did not result in a
pair when initialised at the lateral equilibrium positions
(Fig. 5): χR = 0.4, χr = 0.1 (β = 4). The trajectories
of both particles in the centre-of-mass system are shown
in Fig. 10 for a range of initial positions of the smaller
particle. The dashed line corresponds to the case where
the smaller particle is initially at its lateral equilibrium
position, and the square and the thick dots represent the
positions of the particles in the stable arrangement. It
is particularly obvious that the smaller particle, when it
is initially at its lateral equilibrium position, is far away
from its stable point in the pair and immediately moves
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stability band

FIG. 10: Particle trajectories are shown in the centre-of-mass system for χR = 0.4 and χr = 0.1 where the smaller
particle is lagging in the staggered arrangement. Flow is from left to right. The square and red dot represent the

particle positions in the stable pair with the larger particle on the right near x′ = 0. The dash-dotted line indicates the
lateral position of the smaller particle in the stable pair. Particles are initialised with δx0 = 10R, thus trajectories of

the smaller particle start near x′ =−10R. The dashed line shows the lateral equilibrium position of the smaller
particle, leading to no pair formation. The dotted line represents the centerline. The inset shows the zoomed-in region
around the stable position of the smaller particle. A stable pair only forms when the smaller particle is initialised in

the ‘stability band’ denoted by the red measurement line.

away from the larger particle. This observation confirms
the finding of Patel and Stark23 who reported that the
presence of the second particle can change the stability
of the single-particle equilibrium positions. Thus, for a
stable pair to form, we hypothesise that the smaller par-
ticle should be close to the lateral position of its stable
point when both particles approach each other. Indeed,
there exists a ‘stability band’ of initial lateral positions
(indicated by the red line) that all result in the formation
of the same stable pair. All investigated cases of initial
positions outwith the stability band do not result in the
formation of a stable pair.

Since the width of the stability band is small compared
to the height of the channel, we expect that the proba-
bility of this specific pair forming is relatively low in a
real-world scenario where the smaller particle could be
at a random location initially. This stability band could
explain the formation of heterogeneous pairs after a num-
ber of passing interactions in a simulation using periodic
boundary conditions reported by Li et al.24. On each
pass, the lateral position of the lagging particle is modi-
fied due to the previous passing interaction. We hypothe-
sise that, for the instance the pair actually forms, the lag-
ging particle approaches the leading particle within the
stability band. In the future, it could be investigated how
the width of the stability band is related to the probability
of pair formation.

Hood and Roper44 performed a detailed analysis for
homogeneous pairs of particles and found that particle
focusing positions in the staggered pair are the weighted
averages of the lateral focusing positions and the location
of the closed eddy on the opposite side. Further study
is needed to draw similar conclusions for heterogeneous
pairs.

The example case considered here shows that the ini-
tial conditions play an important role in the formation of
a pair of particles with different sizes. While a consid-
erable number of focussed stable pairs can form when
particles are initially at their respective lateral equilib-
rium positions, other incidentally stable pairs can only
form under different initial conditions. The presence of
other particles in a channel might lead to the perturba-
tions needed to enable the formation of pairs that would
not form under unperturbed conditions.

IV. SUMMARY AND CONCLUSIONS

The formation of stable particle pairs is crucial for var-
ious inertial microfluidic applications, such as particle
focussing and separation. Identifying the conditions un-
der which stable particle pairs form is important for de-
signing microfluidic devices. Despite the use of inertial
microfluidics to separate cells and particles of different
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sizes, there is a paucity of studies investigating the for-
mation of pairs of particles of different sizes. The present
work addresses this need by investigating the effect of the
size and initial position of particles on the formation and
stability of heterogeneous pairs under moderate inertia.

We used a three-dimensional in-house immersed-
boundary-lattice-Boltzmann-finite-element solver to
simulate a pair of particles of different sizes (radii r
and R ≥ r) and identical softness (Laplace number 100)
moving in a pressure-driven flow (along the x-axis)
through a rectangular channel (half-width w and half-
height h < w) at Reynolds number 10. Particles were
initially located on the plane defined by the mid-points
of the longer edges (y = 0) along the channel width.
While particles move along the channel, they generally
undergo lateral migration along the height axis (z-axis)
and all particle motion occurs on the x-z-plane midway
between the side walls. We considered two different
particle arrangements: staggered (particles on opposite
sides of the channel centreline) and linear (particles
on the same side of the channel centreline). To model
particles in a dilute suspension that approach each other
from a large distance, particles were initialised with
an axial distance δx0 = 10R for which hydrodynamic
interactions are weak.

First, we considered pair formation for configura-
tions where both particles are initially at their respective
single-particle lateral equilibrium positions. These con-
figurations are denoted ‘unperturbed’ since they would
be expected when particles are isolated and have enough
time to migrate laterally before encountering each other.
We denote pairs forming under these conditions ‘fo-
cussed stable pairs’. We found that stable pairs in the
staggered and linear arrangements form for a wide range
of confinement values χR = R/h and χr = r/h and their
ratio β = R/r. The pair formation strongly depends on
which particle is leading and lagging. No pair formation
was observed when the smaller particle is lagging since
the larger particle is generally located closer to the cen-
treline where it moves faster. When the smaller particle
is leading, staggered pairs only form when both particles
have a minimum size while linear pairs can form even
when both particles are small compared to the channel
height. Furthermore, pairs only form if the size ratio β

is sufficiently small (typically β < 2–3); this critical size
ratio is larger for linear pairs than for staggered pairs.
We also confirmed earlier studies showing that no stable
linear pairs form when both particles have the same size
(β = 1). However, even a mild size heterogeneity of the
order of a few percent leads to stable linear pairs with a
large axial spacing δxeq. This finding is important since
particles or cells are never perfectly uniform in experi-
ments. Generally, the axial spacing δxeq in stable pairs
is roughly twice as large in linear pairs than in staggered
pairs, and δxeq depends on both particle sizes.

Second, we investigated the stability of already exist-

ing pairs, independently of their possible formation, by
placing the smaller particle in one of the eddies caused
by the larger particle. While all pairs observed forming
in the first part of our study were confirmed to be stable,
we also identified additional stable pairs that were unable
to form under unperturbed conditions. We denote these
new pairs ‘incidentally stable pairs’. In particular, stag-
gered pairs are stable over a wide range of particle sizes
even when the leading particle is larger than the lagging
particle. However, we did not find any stable linear pairs
when the leading particle is larger than the lagging parti-
cle.

Third, in order to understand why not all possible sta-
ble pairs are focussed stable pairs, we performed another
study to investigate the effect of the initial position of
the smaller particle on pair formation. We found that
there exists a ‘stability band’: a finite range of initial lat-
eral positions of the smaller particle that lead to stable
pairs (as long as the pair is stable for the given combina-
tion of particle sizes). This stability band might or might
not include the lateral equilibrium position of the smaller
particle, thus explaining why some pairs are incidentally
stable pairs. Our findings imply that upstream perturba-
tions caused by the presence of additional particles, as
would be expected even in dilute suspensions in inertial
microfluidics, might play an important role in the forma-
tion of stable pairs that would not be able to form for two
focussed particles.

Our study was performed with slightly deformable
particles in straight channels at Reynolds number 10.
It remains an open question how the mechanisms of
pair formation are different when particles are more de-
formable and in curved channels at higher Reynolds
number as they are often used in inertial microfluidic ap-
plications. We hope that this study creates additional im-
petus for the simulation-informed design of inertial mi-
crofluidic devices for particle focussing and separation.
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