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We study robust mechanism design in environments in which agents commonly believe that others’
types are identically distributed, but we do not assume that the actual distribution is common knowledge,
nor that it is known to the designer. First, we characterize all incentive compatible transfers under these
assumptions. Second, we characterize the conditions under which full implementation is possible via
direct mechanisms, that only elicit payoff relevant information, and the transfer schemes which achieve
it whenever possible. The full implementation results obtain from showing that the problem can be trans-
formed into one of designing a network of strategic externalities, subject to suitable constraints which are
dictated by the incentive compatibility requirements.
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1. INTRODUCTION

Many economic models assume that agents believe that the types of others are drawn from
the same distribution. This is a natural way to represent situations in which agents regard their
opponents as ex-ante symmetric from an informational viewpoint, or more broadly that they
come from a common population of “types.” Standard modelling techniques, however, not only
impose that the distribution of types is identical across agents, but also that it is common knowl-
edge among them—and, in mechanism design, also known to the designer. But if identicality

The editor in charge of this paper was Andrea Galeotti.
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2 REVIEW OF ECONOMIC STUDIES

is a natural way to capture a basic qualitative property of these environments, common knowl-
edge of the distribution is a different kind of assumption: not only is it strong and unlikely to
be satisfied; it is also well-known to heavily affect the results. Inspired by Wilson (1987)’s call
for a “[. . . ] repeated weakening of common knowledge assumptions [. . . ],” and in the spirit of
the robust mechanism design literature,1 in this paper, we explore questions of partial and full
implementation under the assumption that agents commonly believe that others’ types are identi-
cally distributed, but without assuming that the distribution of types is commonly known, or that
it is known to the designer. We will refer to this assumption as “common belief in identicality,”
and to the restrictions it entails on agents beliefs as the Bid -restrictions.

We focus on general environments in which a finite number of agents have preferences over
allocations and a private good, “money.” As it is standard in the mechanism design literature,
we assume that preferences are quasi-linear in the latter and that each agent has payoff-relevant
private information. The designer wishes to choose an allocation, depending on agents’ pref-
erences over outcomes, and hence the desired allocation is a function of the realized vector of
payoff types. The designer’s problem is thus to make the agents willing to reveal their types, so as
to implement the desired allocation. We allow for general interdependence in agents’ valuations,
and hence agents’ preferences over outcomes may depend both on their own and on the others’
types. The main restrictions we impose are that types are one dimensional, and that both the val-
uations and the allocation rules are twice differentiable. For example, the designer may wish to
induce the efficient level of provision of a public good, that equalizes the marginal cost of pro-
duction with the sum of the agents’ marginal utilities. These marginal utilities may depend on
the agents’ own type, as well as on the others’ types, and the more an agent’s marginal utility for
the public good depends on others’ types, the stronger the level of preference interdependence
among the agents.

We assume that, in order to implement the desired decision rule, the social planner may only
use transfer schemes that only elicit agents’ information about preferences: for each profile of
reports by the agent, the planner chooses the allocation that corresponds to the desired deci-
sion, treating the reported types as if they were true, and the transfer scheme determines how
much each agent should pay or receive, as a function of everyone’s reports. The implementation
question is thus whether such transfers can be designed so that agents find it in their interest to
report their types truthfully. For partial Bid -implementation, this means that truthful revelation
must be a mutual best response for all beliefs that the agents may hold about others’ types, given
the Bid -restrictions (Bid -incentive compatibility). Full Bid -implementation instead requires that
truthful revelation be the only rationalizable solution under common belief in identicality.2 For
each notion of implementation, we identify the transfer schemes that achieve it whenever possi-
ble, and the conditions on the environment under which partial and full Bid -implementation are
possible.

We start our analysis with the introduction of the canonical transfers (cf. Ollár and Penta,
2017). These are the transfers that one is bound to use if truthful revelation is required
to be an ex-post equilibrium (so called ex-post incentive compatibility), and hence they
characterize the possibility of achieving partial implementation in belief-free settings (cf.

1. The robust mechanism design literature was spurred by the seminal works in belief-free settings by Bergemann
and Morris (2005, 2009a, 2009b, 2011) for static mechanisms, followed by Müller (2016, 2020) and Penta (2015) for
dynamic ones. Settings with partial belief restrictions have been studied, for instance, by Lopomo et al. (2011), Artemov
et al. (2013), and Ollár and Penta (2017, 2022b).

2. The solution concept we adopt, Bid -rationalizability, is a special case of Battigalli and Siniscalchi (2003)’s
�-rationalizability. Besides the papers cited in the previous footnote, special versions of �-rationalizability have also
been used in implementation theory by Oury and Tercieux (2012) and Kunimoto et al. (2021).
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OLLÁR AND PENTA IDENTICAL BUT UNKNOWN DISTRIBUTIONS 3

Bergemann and Morris, 2005). For instance, if the designer wishes to implement the efficient
allocation rule, then the canonical transfers coincide with the generalized Vickrey–Clarke–
Groves (VCG) mechanism.

Our first result shows that, when only common belief of identicality is maintained, partial
implementation is possible if and only if it can be achieved by the canonical transfers. This,
however, is not to say that partial Bid -implementation is possible if and only if ex-post incen-
tive compatibility is (for a counterexample, see Example 2 below), but only that in both cases
it suffices to check if incentive compatibility holds for the same transfers (namely, the canon-
ical ones). The intuition for this result is the following: under the Bid -restrictions, from the
designer’s viewpoint, payoff types of the same agent do not differ in terms of their beliefs about
others’ types, and hence beliefs cannot be used to better screen types at the truthful profile
(which is the focus of partial implementation). Compared with the belief-free case, however,
the Bid -restrictions do relax the incentive compatibility constraints and enlarge the set of incen-
tive compatible transfers, which provides extra flexibility that the designer can leverage when
trying to achieve full implementation, where the possibility of non-truthful profiles must also be
taken into account.

Since full Bid -implementation requires that truthful revelation be the only rationalizable
solution under common belief in identicality, strict Bid -incentive compatibility is necessary
for full Bid -implementation. Therefore, compared with partial Bid -implementation, the extra
desideratum is a uniqueness result. As we show, uniqueness crucially depends on the strate-
gic externalities that are induced by a mechanism, that is on how agents’ best responses are
affected by the reports of the others. Specifically, first we define a measure of strategic external-
ities between each pair of agents and collect them in a matrix of strategic externalities. Then, we
show that this matrix is key for uniqueness and, hence, for Bid -full implementation. In particular,
for environments that satisfy a standard single-crossing and a public-concavity condition, and
for transfer schemes that are quadratic in the agents’ reports, we show that a Bid -incentive com-
patible transfer scheme also achieves full Bid -implementation if and only if the spectral radius
of the associated matrix of strategic externalities is less than one.3

With these results, in order to identify the transfer schemes that achieve full Bid -
implementation whenever possible, we aim to construct transfers that minimize the spectral
radius of the corresponding strategic externality matrix, subject to preserving Bid -incentive
compatibility.4 Crucially, it turns out that the latter is possible only if the associated matrix
of strategic externalities features the same row-sums as those that are induced by the canoni-
cal transfers. The key to our design strategy is thus to redistribute the strategic externalities of
the canonical transfers, subject to maintaining their row-sums and satisfy the relevant incentive
compatibility constraints, in order to minimize the set of rationalizable reports. This is equivalent
to a network design problem, in which nodes represent agents, and flows on the directed edges
represent the strategic externalities, which must be arranged in order to minimize the spectral
radius, up to an inflow constraint on each node. We find that the transfers that solve this prob-
lem induce a mechanism that features a stark hierarchical structure: besides preserving, for each

3. The spectral radius of a matrix is the largest absolute value of its eigenvalues. The case of SC-PC environments
and quadratic transfers, which we discuss here, provides the easiest-to-read conditions for uniqueness. Outside of these
settings, there is a gap between the necessity and sufficiency. The general conditions we provide in Lemma 1 are based
on the spectral radii of an upper and lower-bound of the strategic externality matrix. In SC-PC settings with quadratic
transfers, these two bounds coincide. In Section 4.1, we discuss the connections of our conditions with the global stability
of linear dynamical systems.

4. A different characterization of economic concepts, based on the spectral radius of the matrix of payoff
externalities, is provided by Elliott and Golub (2019), in the context of efficiency with public goods.
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4 REVIEW OF ECONOMIC STUDIES

player, the total level of strategic externalities, these transfers load them all on the opponent who
displays the lowest amount of preference interdependence. The strategic externalities associated
with such loading transfers are thus described by a star network whose centre is the agent with
the lowest level of total preference interdependence. In this star network, each node has one
incoming edge; externalities flow to the peripheral nodes only from the centre, and to the centre
only from the node with the second-lowest level of preference interdependence.

The structure of the loading transfers enables us to uncover a fairly surprising result: the
possibility of full Bid -implementation is characterized by the strength of the preference interde-
pendence of the two agents for whom it is smallest, regardless of the number of the other agents,
and of their preferences. At the extreme, whenever an environment includes at least one agent
with private values, common belief in identicality ensures that full implementation is possible
via a simple direct mechanism. Besides depicting a much more permissive picture for full imple-
mentation than Bergemann and Morris (2009a)’s belief-free benchmark (which may perhaps
strike as surprising, given the weakness of the Bid -restrictions), this characterization has poten-
tially powerful implications from a broader market design perspective, which we will discuss in
the conclusions.

2. FRAMEWORK

Preferences, types, and allocation rules. We consider environments with transferable utility with
a finite set of agents I = {1, . . . , n}, in which the space of allocations X is a compact and convex
subset of a Euclidean space.

Agents privately observe their payoff types θi ∈ �i := [θ, θ ] ⊆ R, drawn from a closed
interval on the real line, which we assume is common to all agents (the latter assumption is
inherent to our main question, which is to study the assumption of identical distributions).We
adopt the standard notation θ−i ∈ �−i = × j �=i� j and θ ∈ � = ×i∈I�i for profiles. Agent i’s
valuation function is vi : X ×� → R, assumed twice continuously differentiable, and we let
ti ∈ R denote the private transfer to agent i : for each outcome (x, θ, (ti )i∈I ), i’s utility is equal
to vi (x, θ)+ ti . The tuple 〈I, (�i , vi )i∈I 〉 is common knowledge among the agents. If vi is con-
stant in θ−i for every i , then the environment has private values. If not, it has interdependent
values.

An allocation rule is a mapping d : � → X which assigns to each payoff state the allocation
that the designer wishes to implement. We focus on allocation rules that are twice continuously
differentiable and responsive, in the sense that for all i and θi �= θ ′

i , there exists θ−i ∈ �−i such
that d(θi , θ−i ) �= d(θ ′

i , θ−i ) (see, e.g.Bergemann and Morris, 2009a).
The model accommodates general externalities in consumption, including both pure cases of

private and public divisible goods. The main substantive restrictions are the one-dimensionality
of types, and the smoothness of the allocation function. We will use the notation ∂ f/∂x for all
derivatives, with the understanding that when X is multidimensional, ∂vi

∂x (x, θ) and ∂d
∂θi
(θ) denote

the vectors of partial derivatives and ∂vi
∂x (x, θ) · ∂d

∂θi
(θ) denotes their inner product.

Beliefs. We assume that agents commonly know that they each regard the types of the oppo-
nents to be identically distributed, but they do not necessarily know (or agree on) the actual
distribution, which importantly is unknown to the designer. Hence, for each type θi , the designer
regards many beliefs Bid

θi
⊆ �(�−i ) as possible for type θi , namely all those which are consis-

tent with the idea that the opponents’ types are identically distributed.5 Formally, the designer’s

5. For a measurable set E , �(E) denotes the set of probability measures on its Borel σ -algebra.
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OLLÁR AND PENTA IDENTICAL BUT UNKNOWN DISTRIBUTIONS 5

assumptions about beliefs is represented by belief restrictions Bid = ((Bid
θi
)θi ∈�i )i∈I , assumed

common knowledge, such that:6

Bid
θi

=
{

bθi ∈ �(�−i ) : marg
� j

bθi = marg
�k

bθi for all j, k �= i

}
for all i and θi . (2.1)

These belief restrictions entail weaker assumptions on agents’ beliefs than many standard mod-
els in more applied theory and in empirical work. The belief restrictions in (2.1) are weaker, for
example, than assuming: (i) a joint distribution with identical marginals over agents’ types; (ii)
a joint distribution with exchangeable random variables; (iv) known independent and identical
distributions across agents (as in standard common prior i.i.d. environments); (v) independent
and identical but unknown distributions; (vi) unobserved heterogeneity but symmetrically dis-
tributed values; (vi) environments with pure common values in which the state of the world is
unknown to the designer, but commonly known by the agents; etc. For instance, a type θi may
subjectively believe that others’ types are i.i.d. according to some distribution, whereas a dif-
ferent type θ ′

i may believe that they are perfectly correlated (note that both such beliefs satisfy
the marginality condition in (2.1)). Different types of agent i may thus entertain different beliefs
about the opponents, which may or may not assume that types are i.i.d. across the opponents.
However, the only thing that any of i’s types know about others’ beliefs (as well as the only thing
that the designer knows about them), is that they must satisfy the marginality condition. Hence,
our belief restrictions entail a very weak level of common knowledge in the environment.

Mechanisms. We consider direct mechanisms, in which agents report their payoff types and
the allocation is chosen according to d. A direct mechanism is thus uniquely determined by a
transfer scheme t = (ti )i∈I , where ti : M → R is twice differentiable and specifies the transfer to
each agent i , for all profiles of reports m ∈ �. (To distinguish the report from the state, we main-
tain the notation mi even though the message spaces are Mi = �i .) Any transfer scheme induces
a game with ex-post payoff functions U t

i (m; θ) = vi (d(m), θ)+ ti (m). When the transfers are
clear from the context, we don’t emphasize the dependence of the payoff functions on t , and
simply write Ui (m; θ). For the analysis of partial implementation, in which each agent expects
his opponents to report truthfully, the following notation will be useful: For any θi , bθi ∈ �(�−i )
and mi , we let E

bθi (Ui (mi , θ−i ; θi , θ−i ))) := ∫
�−i

Ui (mi , θ−i ; θi , θ−i ) dbθi . For full implementa-
tion instead, we will also consider other (non-truthful) reporting strategies for the opponents,
and also use the following notation: For every θi ∈ �i , μ ∈ �(M−i ×�−i ) and mi ∈ Mi , we let
EUμ

θi
(mi ) = ∫

M−i ×�−i
Ui (mi ,m−i ; θi , θ−i ) dμ denote agent i’s expected payoff from message

mi , if i’s type is θi and his conjectures are μ, and define B Rθi (μ) := arg maxmi ∈Mi EUμ
θi
(mi ).

2.1. Leading examples and preview of results

In this section, we provide some examples to illustrate the key ideas of the paper and their con-
nection with the previous literature. The examples are all based on the following environment:
There are three agents, {1, 2, 3}, with preferences over the quantity x ∈ R+ of public good such
that vi (x, θ) = (θi + γi jθ j + γikθk)x for all i , j �= i and k �= i, j . Types θi ∈ [0, 1] are private

6. The notion of a belief restriction is introduced by Ollár and Penta (2017) to model general restrictions on
agents’ beliefs: a belief restriction is a commonly known collection B = ((Bθi )θi ∈�i )i∈I such that Bθi ⊆ �(�−i ) is
non-empty and convex for all i and θi , and Bi : θi → Bθi ⊆ �(�−i ) is continuous for every i . As discussed in Ollár and
Penta (2017), special cases of interest include (i) standard Bayesian environments, in which Bθi is a singleton for all θi
and i ; (ii) common prior environments, in which ∃p ∈ �(�) such that Bθi = {p(· | θi )} for all i and θi ; (iii) belief-free
environments, in which Bθi = �(�−i ) for all i and θi .
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6 REVIEW OF ECONOMIC STUDIES

information to each agent i , and γ = ((γi j ) j �=i )i=1,2,3 ∈ R
6 are the parameters of preference

interdependence. For instance, the public good in question could be quantity of public ameni-
ties in a city, and each agent’s valuation for such a public good depends on both their own
extroversion score, θi , as well as on others’ (for references on the extroversion scale and other
personality traits, and their use in economics, see e.g. Becker et al., 2012). The effect of oth-
ers’ extroversion on one’s own valuation, however, may vary—e.g. j’s extroversion may have a
larger effect than k’s on the valuation of agent i (i.e. γi j > γik), for instance because i is more
likely to interact with j-types than with k-types (e.g. based on their geographic location within
the city). In this context, the commonly known γ parameters represent how much the valuation
of agents from different neighbourhoods depend on the extroversion of individuals’ from other
neighbourhoods. The Bid -restrictions instead reflect the idea that extroversion (which is private
information, and hence unobservable to others as well as to the designer) is commonly believed
to be identically distributed across the (observable) neighbourhoods, although agents from dif-
ferent neighbourhoods or different types from each neighbourhood may differ in their beliefs
about such a distribution.

Example 1. The designer wishes to implement the efficient allocation rule. With production
costs c(x) = x2/2, the efficient decision rule is d(θ) = ∑3

i=1 κiθi , where κi ≡ 1 + γ j i + γki for
all i , which we assume positive. Given this environment, we consider three sets of assumptions
on agents’ beliefs: (i) a belief-free setting, (ii) a standard common prior environment, and (iii)
a setting in which only common belief in identicality is maintained. Our paper focuses on the
latter environment, which will be discussed in part (iii) of the example. It is instructive, however,
to first go over the examples about the belief-free and i.i.d. common prior benchmarks.

(i) Belief-free implementation. If the designer has no information about agents’ beliefs, or
if he wishes to achieve implementation without relying on any belief restriction, then only the
generalized VCG mechanism can be used (cf. Bergemann and Morris, 2009a).

In our example, the VCG transfers are the following:

t∗
i (m) = −κi (0.5m2

i + mi (γi j m j + γikmk)).

Given this, as long as κi > 0 for all i , for any profile (θ−i ,m−i ) of opponents’ types and reports,
the ex-post best-reply function for type θi of player i is7

B R∗
θi
(θ−i ,m−i ) = proj

[0,1]

⎛
⎝θi +

∑
j �=i

γi j (θ j − m j )

⎞
⎠ .

Observe that, regardless of what γ is, for any realization of θ , truthful revelation (mi (θi ) = θi ) is
a best response to the opponent’s truthful strategy (m j (θ j ) = θ j ). This is the well-known ex-post
incentive compatibility of the VCG mechanism. Partial implementation of the efficient allocation
is thus guaranteed independent of agents’ beliefs. Furthermore, if

∑
j �=i |γi j | < 1 for all i ∈ I ,

then the equation above is a contraction, and its iteration delivers truthful revelation as the only
rationalizable strategy. In this case, the VCG mechanism also guarantees full belief-free imple-
mentation. Full implementation, however, is only possible if the preference interdependence is
“small.’ For instance, suppose that preference parameters are such that

(γ12, γ13, γ21, γ2,3, γ31, γ32) = (0.9,−0.5, 1.2,−0.6,−0.8, 1.6) =: γ̂ .
Then, all profiles are rationalizable, and hence belief-free full implementation fails.

7. For any y ∈ R, we let proj[0,1](y) := arg minθi ∈[0,1] |θi − y| denote the projection of y on the interval [0, 1].
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OLLÁR AND PENTA IDENTICAL BUT UNKNOWN DISTRIBUTIONS 7

Hence, partial belief-free implementation is always possible in this setting, but
full belief-free implementation fails if the preference interdependence is too strong
(Bergemann and Morris, 2009a). The reason is that if preference interdepedence is strong, then
players’ best responses in the VCG mechanism are strongly affected by others’ strategies. This
in turn generates multiplicity of equilibria, and hence failure of full implementation. We thus
shift the focus from preference interdependence to the strategic externalities of a mechanism,
which can be captured by studying how agents’ best responses are affected by changes in the
opponents’ report. This information can be conveniently summarized in a strategic externality
matrix, whose i j th entry contains the derivative of player i’s best response with respect to j’s
report, for j �= i , normalized by the concavity of i’s payoff function with respect to his own
report. In the case of the canonical mechanism, this amounts to

SE∗ =
⎡
⎣ 0 γ12 γ13

γ21 0 γ23

γ31 γ32 0

⎤
⎦ .

(ii) Identical and known distribution: reduction of strategic externalities. Strategic externalities
and preference interdependence necessarily coincide in the VCG mechanism. But if the designer
has some information about the agents’ beliefs, then this coincidence is relaxed: the strategic
externalities can be weakened, so as to ensure uniqueness, even if preference interdependence is
strong. This is the main insight from Ollár and Penta (2017).

Implementation under known i.i.d common prior. Suppose that types are commonly known
to be i.i.d. draws from a uniform distribution over [0, 1], and this is known to the designer.
Consider the following transfers, which are a special case of Proposition 3 in Ollár and Penta
(2017):

t O P
i (m) := t∗

i + miκi

⎛
⎝∑

l �=i

γil(ml − 0.5)

⎞
⎠ = −κi

⎛
⎝1

2
m2

i + mi

∑
l �=i

γil0.5

⎞
⎠ .

Then, to a conjecture μ ∈ �(�−i × M−i ), the best-reply function is

B RO P
θi
(μ) = proj

[0,1]

⎛
⎝θi +

∑
l �=i

γil [Eμ(θl)− 0.5]
⎞
⎠ .

Under the maintained assumptions, E(θl | θi ) = 0.5 for all θi and l �= i . Hence the term in square
brackets cancels out for all types. Truthful revelation therefore is strictly dominant (what we
refer to as interim dominant strategy implementation), and full implementation is achieved for
any γ . Players’ best-responses are not affected by other reports, and hence strategic externalities
are completely eliminated in this case.

The result in this example does rely on the restriction on agents’ beliefs, and in particular
on the knowledge that “E(θl | θi ) = 0.5 for all θi and l �= i .” If this moment condition were not
satisfied, these transfers would achieve neither full nor partial implementation. This moment
condition was used in part (ii) to weaken the strategic externalities of the baseline transfers from
part (i), but in principle, others could be used too. Intuitively, the more information the designer
has about agents’ beliefs, the more freedom he has to choose a convenient moment condition. As
shown by Ollár and Penta (2017), common prior models are maximal in the freedom they allow
to the designer and, for a large class of environments, as in the example, strategic externalities
can be completely eliminated when types are independent or affiliated.
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8 REVIEW OF ECONOMIC STUDIES

(iii) Identical but unknown distribution: redistribution of strategic externalities. Now sup-
pose that agents commonly know that they each regard the types of their opponents as being
drawn from the same distribution over �i . The distribution itself, however, is not necessarily
known to the agents and, most importantly, it is unknown to the designer. Transfers from the
previous example do not ensure implementation anymore, since agents’ beliefs neet not satisfy
the moment condition “E(θl | θi ) = 0.5 for all θi and l �= i ,” and hence incentive compatibility
may fail. In fact, as we will show, Ollár and Penta (2017)’s idea of reducing strategic externali-
ties is incompatible with incentive compatibility under these belief restrictions. The designer is
therefore much more limited than in a standard common prior setting, such as that of the pre-
vious example. Nonetheless, a novel design strategy, based on a redistribution of the strategic
externalities, may still be used to achieve full implementation.

Bid -Implementation. Suppose that γ = γ̂ as at the end of part (i), and hence belief-free
implementation is not possible. Now consider the following transfers:

t e
i (m) = t∗

i (m)+ miκi
γi j − γik

2
(m j − mk) for all i;

In this case, to a conjecture μ ∈ �(�−i × M−i ), the best-reply function becomes

B Re
θi
(μ) = proj

[0,1]

⎛
⎝θi + 1

2
(γi j + γik)

∑
l �=i

E
μ(θl − ml)+ 1

2
(γi j − γik)E

μ(θ j − θk)

⎞
⎠

= proj
[0,1]

⎛
⎝θi + 1

2
(γi j + γik)

∑
l �=i

E
μ(θl − ml)

⎞
⎠

The simplification in the last line follows from the fact that, under the Bid restrictions, it is
common belief that E(θ j − θk | θi ) = 0 for all beliefs that any type θi may entertain. Thus, this
mechanism is incentive compatible for all beliefs consistent with Bid : if for all θl and l �= i ,
ml = θl , then for all i , the best response is mi = θi . Moreover, it can be shown that these best-
replies induce a contraction, which ensures that truthful revelation is the only rationalizable
profile for all agents. Transfers (t e

i )i∈I therefore achieve both partial and full Bid -implementation
in this setting.

Next, consider the following transfers:

⎡
⎣t l

1(m)
t l
2(m)

t l
3(m)

⎤
⎦ =

⎡
⎣t∗

1 (m)+ m1κ1γ13(m3 − m2)
t∗
2 (m)+ m2κ2γ23(m3 − m1)

t∗
3 (m)+ m3κ3γ32(m2 − m1)

⎤
⎦ .

It can be shown that these transfers too are incentive compatible under the Bid -restrictions, that
is, they are based on moment conditions which are commonly known among the agents. More-
over, these transfers too induce contractive best replies and, hence, achieve full implementation.

To understand the logic behind these transfers, it is useful to look at the induced SE-matrices
when γ = γ̂ , and compare them to the SE-matrix of the VCG transfers:

SE∗ =
⎡
⎣ 0 0.9 −0.5

1.2 0 −0.6
−0.8 1.6 0

⎤
⎦ , SEe =

⎡
⎣ 0 0.2 0.2

0.3 0 0.3
0.4 0.4 0

⎤
⎦ , SEl =

⎡
⎣ 0 0.4 0

0.6 0 0
0.8 0 0

⎤
⎦ .

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/advance-article/doi/10.1093/restud/rdac084/7000773 by U

niversity of Edinburgh user on 01 M
arch 2023



OLLÁR AND PENTA IDENTICAL BUT UNKNOWN DISTRIBUTIONS 9

FIGURE 1

Strategic externalities and transfer schemes in part (iii) of Example 1. These network representations illustrate the

strategic externalities induced, respectively, by the canonical, equal externality, and loading transfers. For example, the

arrow pointing from agent 2 to 1 illustrates the absolute influence of 2’s choice on 1’s best reply.

First note that both (t e
i )i∈I and (t l

i )i∈I induce SE-matrices such that the sum of the strategic
externalities within each row is the same as in the baseline VCG mechanism. This is not a
coincidence: as one of our results will show, under the Bid -restrictions, any incentive compat-
ible transfer scheme would have to preserve, for every agent, the total externalities across all
of his opponents which are present in the underlying canonical mechanism, which in turn are
pinned down by the total level of preference interdependence. (So, for instance, transfers such
as (t O P

i )i∈I from part (ii) of Example 1, whose SE-matrix consists of all zeros, will not be
incentive compatible under the Bid -restrictions.) In this sense, strategic externalities can only be
redistributed, not reduced (Figure 1).

Second, the SE-matrix of the (t e
i )i∈I transfers are such that the externalities that any agent

i is subject to is constant across all of his opponents. In this sense, the (t e
i )i∈I transfers induce

an equal redistribution of the total strategic externalities for every player. With the (t l
i )i∈I trans-

fers instead, for every i , the total strategic externalities are all loaded on the opponent l �= i
who is subject to the lowest total strategic externalities (that is l = 2 for i = 1, and l = 1 for
i = 2, 3).

But while both matrices induce a contraction and have the same row-sums—which implies
that, in both mechanisms, the same strategies survive the first round of elimination of never best-
responses—the square of the SEl -matrix exhibits lower row-sums than that of the SEe-matrix:

(SEe)2 =
⎡
⎣0.14 0.08 0.06

0.12 0.18 0.06
0.12 0.08 0.2

⎤
⎦ , (SEl)2 =

⎡
⎣0.24 0 0

0 0.24 0
0 0.32 0

⎤
⎦ .

Recursively, this also extends to all powers k ≥ 2, which implies that, from the second round of
elimination on, the set of rationalizable reports shrinks more under (t l

i )i∈I than under (t e
i )i∈I . In

fact, it can be shown that among all matrices which preserve the row-sums of the SE∗-matrix,
the strategic externality matrix associated with the loading transfers is the one with the smallest
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10 REVIEW OF ECONOMIC STUDIES

spectral radius. This implies that, among all incentive compatible transfers, the loading transfers
are those which induce the fastest contraction of the best-reply sets.

Our main results for full implementation show that, in a general class of environments, a
suitable generalization of the loading transfers characterizes the mechanisms which achieve full
Bid -implementation. Under these belief restrictions, full implementation is possible if and only
if it is achieved by the loading transfers. This in turn enables us to characterize the environments
in which full implementation is possible. We also show that the loading transfers induce the
fastest contraction among all implementing mechanisms, and that they are the “most robust”
with respect to lower order beliefs in rationality. The equal-externality transfers, instead, are
“most robust” if one considers the possibility of the risk of mistakes in some agents’ play (cf.
Ollár and Penta, 2022b, also discussed in Section 4.3).

2.2. Implementation concepts

Next we formalize the notions of both partial and full implementation. We start from partial
implementation, and first recall the standard notion of ex-post incentive compatibility, which
requires truthful revelation to be an ex-post equilibrium of the game induced by a direct
mechanism:

Definition 1 (ep-IC). A direct mechanism is ex-post incentive compatible (ep-IC) if, Ui (θ; θ) ≥
Ui (θ

′
i , θ−i ; θ) for all θ and for all θ ′

i .

As shown by Bergemann and Morris (2005), ex-post incentive compatibility characterizes
the possibility of partial implementation when the designer has no information about agents’
beliefs. In the present context, however, the designer knows that agents’ beliefs are consistent
with the Bid -restrictions, and hence our analysis of partial implementation relies on the following
less demanding notion of incentive compatibility:

Definition 2 (Bid -IC). A direct mechanism is Bid -incentive compatible (Bid -IC) if for all i ∈ I ,
for all θi , θ

′
i ∈ �i , and for all bθi ∈ Bid

θi
, E

bθi (Ui (θi , θ−i ; θi , θ−i )) ≥ E
bθi (Ui (θ

′
i , θ−i ; θi , θ−i )).

(When d is clear from the context, we may say that t is Bid -IC.) If the above inequalities hold
strictly for all θ ′

i �= θi , then it is strictly Bid -IC.

Definition 3 (Partial Implementation). If (d, t) is Bid -IC, then we say that the transfers
t partially Bid -implement the allocation function d. The allocation function d is partially
Bid -implementable if there exist transfers that partially Bid -implement it.

First note that Bid -IC is more demanding than standard Bayesian incentive compatibility,
since it requires truthful revelation to be a mutual best-reply for all beliefs in the set Bid

θi
, as

opposed to the single beliefs that each type would have in a standard Bayesian setting. However,
since each Bid

θi
is a strict subset of �(�−i ) (and, in particular, it does not contain all degenerate

beliefs over each θ−i ∈ �−i ), then Bid -IC is less demanding than ex-post incentive compatibility.
Similar to Bergemann and Morris (2005), one could define Partial Bid -Implementation as

requiring truthful revelation to be a Bayes–Nash equilibrium for all type spaces consistent with
the Bid -restrictions. By arguments similar to Bergemann and Morris (2005), it can be shown
such a notion is equivalent to the incentive compatibility condition in Definition 2. Given this,
the natural full implementation notion is to require truthful revelation to be the only Bayes–
Nash equilibrium strategy for all type spaces consistent with the Bid -restrictions. Once again,
arguments similar to Bergemann and Morris (2009a) show that the set of all such Bayes–Nash
equilibrium strategies is conveniently characterized by a suitable notion of rationalizability,
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OLLÁR AND PENTA IDENTICAL BUT UNKNOWN DISTRIBUTIONS 11

which will be introduced shortly, and which we refer to as Bid -rationalizability.8 Our notion of
full implementation will thus require truthful revelation to be the only Bid -rationalizable strat-
egy. For the reasons, we explained, this notion can be seen as a shortcut to analyse standard
questions of Bayesian implementation for all beliefs consistent with the Bid restrictions, and
hence provides the natural counterpart to the notion of partial implementation that we introduced
above.9

Formally, Bid -rationalizability is defined by an iterated deletion procedure in which, for
each type θi , a report survives the kth round of deletion if and only if it can be justified by
conjectures (joint distributions over opponents’ types and reports) that are consistent with the
Bid -restrictions, and with the previous rounds of deletion. For every i and θi , the set of conjec-
tures that are consistent with the Bid -restrictions is Cid

θi
:= {μi ∈ �(M−i ×�−i ) : marg�−i

μi ∈
Bid
θi

}.
Definition 4 (Bid -rationalizability). Fix a direct mechanism. For every i ∈ I , let Rid,0

i = Mi ×
�i and for each k = 1, 2, . . ., let Rid,k−1

−i = × j �=i Rid,k−1
j ,

Rid,k
i = {(mi , θi ) : mi ∈ B Rθi (μi ) for some μi ∈ Cid

θi
∩�(Rid,k−1

−i )}.

The set of Bid -rationalizable messages for type θi is Rid
i (θi ) := {mi : (mi , θi ) ∈ ⋂k≥0 Rid,k

i }.
Definition 5 (Full implementation). The transfer scheme t = (ti )i∈I fully implements d under
common belief in identicality if Rid

i (θi ) = {θi } for all θi and all i . Allocation rule d is fully
Bid -implementable if there exist some transfers that fully Bid -implement it.10

First we note that Bid -Rationalizability is in general a weak solution concept, and hence our
notion of implementation is a demanding one. On the other hand, sufficient conditions for full
Bid -implementation guarantee full implementation with respect to any (non-empty) refinement
of Bid -Rationalizability, and hence the weakness of the solution concept strengthens our results.
Finally, note that in order to achieve full Bid -implementation, the truthful profile must be a
mutual (strict) best response for all types θi and for all beliefs bθi ∈ �(�−i ). Strict Bid -IC there-
fore is necessary condition for full Bid -implementation. For this reason, while the main focus of
the paper is on the analysis of full implementation, we first tackle the partial Bid -implementation
problem, and return to full Bid–implementation in Section 4.

In the next two sections, we characterize the joint conditions on (v, d) under which partial
and full Bid -implementation is possible, as well as the transfer schemes that (partially or fully)
implement d whenever possible.

8. Bid -rationalizability is a special case of Battigalli and Siniscalchi (2003)’s �-rationalizability, which in gen-
eral allows for general restrictions on players’ first-order beliefs on others’ types and strategies. Within robust mechanism
design, special cases of �-rationalizability have been used by Bergemann and Morris (2009a), who impose no belief
restrictions, and by Ollár and Penta (2017), who focused on belief restrictions that are only on others’ types; Lipnowski
and Sadler (2019) instead adopted restrictions on beliefs about others’ behaviour for their concept of peer-confirming
equilibrium, although not in an implementation setting.

9. By the same arguments, Bergemann and Morris (2009a) and Ollár and Penta (2017) study full imple-
mentation, respectively, in belief-free settings and under general belief-restrictions, using corresponding versions of
�-rationalizability. (For earlier versions of these results on �-rationalizability, see Battigalli and Siniscalchi (2003).)

10. A weaker notion of implementability would allow non-truthful reports, provided that they all induce the same
allocation as the true type profile. It can be shown that the two notions coincide for responsive allocation rules.
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12 REVIEW OF ECONOMIC STUDIES

3. INCENTIVE COMPATIBILITY AND PARTIAL IMPLEMENTATION

In this Section, we characterize properties of the transfers which partially implement a given
allocation function d : � → X , and study necessary and sufficient conditions for Bid -partial
implementation. We begin with introducing the canonical transfers, t∗ = (t∗

i (·))i∈I , which are
defined as follows: for each i ∈ I and m ∈ �,

t∗
i (m) = −vi (d(m),m)+

∫ mi

θ i

∂vi

∂θi
(d(si ,m−i ), si ,m−i ) dsi .

In the following, we will refer to the pair (d, t∗) as the canonical direct mechanism.11

As shown by Ollár and Penta (2017), the canonical transfers characterize the ex-post incen-
tive compatible transfers in general environments with interdependent valuations, up to a
constant which does not depend on i’s own report (Lemma 1). Hence, the canonical transfers
characterize the mechanisms which may achieve partial implementation in the belief-free sense.
As discussed, in the present context the designer knows that agents “commonly believe in iden-
ticality,” and hence our analysis of partial implementation relies on the less demanding notion
of incentive compatibility that we introduced in Definition 2. Nonetheless, as shown by the next
result, the canonical transfers are still without loss of generality for partial Bid -Implementation:

Theorem 1 (Partial Implementation). Under the maintained assumptions, d is partially Bid -
implementable if and only if (d, t∗) is Bid -incentive compatible.

Theorem 1 implies that, under the Bid -restrictions, in order to decide whether partial imple-
mentation is possible, there is no reason to consider transfers other than the canonical ones. As
we will see, this is not the case for full implementation: full implementation may fail under the
canonical transfers, but be achieved by other transfers. Besides its intrinsic interest, this result
also simplifies the task of identifying which conditions on the environment are necessary or suffi-
cient for partial implementation: it suffices to study properties of the payoff functions induced by
the canonical mechanism, U ∗

i (m; θ), which only depend on the allocation function (d) and on the
agents’ preferences (v). First note that, under the maintained assumptions, the canonical direct
mechanism induces twice differentiable payoff functions. Since, by construction, the canonical
transfers satisfy the first-order conditions, sufficiency hinges on the second-order conditions of
agents’ optimization problem at the truthful profile.

Corollary 1 (Partial implementability and the canonical payoffs).

(i) If d is partially Bid -implementable, then E
bθi (∂2U ∗

i (θi , θ−i ; θi , θ−i )/∂
2mi ) ≤ 0 for all i , θi ,

and for all bθi ∈ Bid
θi

.
(ii) If E

bθi (∂2U ∗
i (θi , θ−i ; θi , θ−i )/∂

2mi ) < 0 for all i , θi and for all bθi ∈ Bid
θi

, then d is partially
Bid -implementable.

11. The term “canonical mechanism” is traditionally used to refer to Maskin’s mechanism for full implementa-
tion (Maskin, 1999). That mechanism is not “direct” and it induces an integer game to eliminate undesirable equilibria.
We call (d, t∗) the canonical direct mechanism, since special cases of this mechanism are pervasive in the partial imple-
mentation literature. Examples arise, among others, in auctions (Myerson, 1981; Dasgupta and Maskin, 2000; Segal,
2003; Li, 2017), in pivot mechanisms (Milgrom, 2004; Jehiel and Lamy, 2018), in public goods problems (Green and
Laffont, 1977; Laffont and Maskin, 1980), the one-dimensional results of Jehiel and Moldovanu (2001). Lemma 1 in
Ollár and Penta (2017) generalizes the earlier results in the papers above. The term canonical direct mechanism was first
used with this acceptation in Ollár and Penta (2017).
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OLLÁR AND PENTA IDENTICAL BUT UNKNOWN DISTRIBUTIONS 13

Note that, if the expectation operators were removed from these conditions, so that the
second-order conditions are satisfied in the ex-post sense, then these conditions would cor-
respond to ep-IC. It is clear, however, that there is a gap between the two: As the next
example shows, there are environments in which (d, t∗) satisfies the second-order conditions
in expectation, for all beliefs consistent with the Bid restrictions, but not in the ex-post sense:

Example 2. Consider an environment with three agents, I = {1, 2, 3}, with types θi ∈ [−1, 1]
and valuations vi (x, θ) = (θi + θi (θ j − θk))x for all i ∈ I , where x ∈ R, and consider the allo-
cation rule d(θ) = ∑3

i=1 θi . In this environment, the second-order derivative of the payoff
functions induced by the canonical transfers are the following:

∂2U ∗
i (m; θ)
∂2mi

= −2(1 + m j − mk)+ (1 + m j − mk) = −(1 + m j − mk),

which, at the truth-telling profile m = θ , is equal to:

∂2U ∗
i (θ; θ)
∂2mi

= −(1 + θ j − θk),

Since this term is positive at some θ ∈ �, truthful reporting is not optimal at all states. On the
other hand, t∗ ensures Bid -incentive compatibility, since at the truthtelling profile,

∂2
E

bθi (U ∗
i (mi , θ−i ; θ))
∂2mi

= −1 < 0 for all mi and for all bθi ∈ Bid
θi
.

Hence, (d, t∗) is Bid -IC, but not ep-IC. It follows that, with these preferences, this allocation
rule is partially Bid -implementable, but not belief-free implementable.

This clarifies that the result in Theorem 1 does not imply that Bid -IC is possible if and only
if ep-IC is possible, but only that in both cases it suffices to consider the same mechanism, t∗.
Similar to the way that ex-post monotonicity (of d) and single-crossing (of v) are sufficient for
ep-IC, one can show that if interim monotonicity and single-crossing are satisfied for all beliefs
consistent with the Bid -restrictions, then the sufficient condition in part (ii) of Corollary 1 also
holds, and hence they provide sufficient conditions for partial Bid -implementation.12

The intuition for the result in Theorem 1 is the following: under the Bid -restrictions, types do
not differ in terms of their beliefs (i.e. Bid

θi
= Bid

θ ′
i

for all θi , θ
′
i ∈ �i ), and hence beliefs cannot

be used to separate types, beyond what can be achieved without exploiting them. Thus, relative
to the belief-free case, the role of the belief-restriction Bid is limited to relaxing the incentive
compatibility constraint that the canonical transfers need to satisfy (from ex-post, to Bid -IC), but
it cannot be further leveraged to improve the design of transfers, to screen types.

The fact that Bid
θi

= Bid
θ ′

i
=: Bid

i for all θi , θ
′
i ∈ �i also has the following interesting implica-

tion, which in fact emerges from the proof of Theorem 1: For every Bid -IC (d, t), and for any
belief consistent with the Bid -restrictions, the expected payment from every type of every agent
at the truthtelling profile is the same as in the canonical mechanism (up to a constant). Formally:

Proposition 1 (“Payoff Equivalence” for Bid -restrictions). If (d, t) is Bid -IC, then for all b ∈
Bid
θi

, ∃κ ∈ R such that E
b(ti (θi , θ−i )) = E

b(t∗
i (θi , θ−i ))+ κ , for all θi ∈ �i .

12. Example 2 above is an instance of an environment with a (ex-post) monotonic allocation rule, in which the
single crossing condition holds in expectation, for all bi ∈ Bid

θi
, but not in the ex-post sense.
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14 REVIEW OF ECONOMIC STUDIES

This result is an extension of the revenue-equivalence theorem, from the standard case of
independent common prior, to the Bid -restrictions. To understand this result, note that both
the Bid -restrictions and models of independent common prior share the feature that an agent’s
beliefs (a set, or a singleton) about others’ types are the same for all his types. As further dis-
cussed in Ollár and Penta (2021), this property of generalized independence is key to revenue
equivalence.

4. FULL IMPLEMENTATION

For later reference, we introduce a class of environments which satisfy a standard single-crossing
condition, and in which the concavity of agents’ valuation functions is public information:

Definition 6 (SC-PC Environment).

(i) Single-crossing environment: for all i and (x, θ), preferences are single crossing such that
∂2vi
∂x∂θi

(x, θ) > 0, and allocation is monotonic such that ∂d/∂θi > 0,

(ii) Public concavity environment: for all i , ∂2vi/∂
2x and ∂d/∂θi are constant in θ , and for all

i and j , ∂2vi/∂x∂θ j is constant in (x, θ).

We say that (d, v) is an environment with single crossing and public concavity (SC-PC) if it
is both (i) and (ii).

These conditions generalize properties of standard quadratic-linear environments with single
crossing preferences, which are common both in the theoretical and in the empirical literature
for the convenient property that they imply linear best replies. Special cases of our condi-
tions are common in models of social interactions, markets with network externalities, supply
function competition, divisible good auctions, markets with adverse selection, provision of pub-
lic goods.13 Compared with these applications, Definition 6 also accommodates more general
dependence on x , as long as the concavity and the cross derivatives are public information.

These assumptions have two important consequences: Part (i) is a standard condition for
ex-post incentive compatibility, which ensures in particular that partial Bid -implementation is
possible; Part (ii) ensures that, in the canonical direct mechanism, the second-order deriva-

tives ∂2U ∗
i

∂mi ∂m j
= − ∂2vi

∂x∂θ j
· ∂d
∂θi

are constant in (θ,m) and that ∂2U ∗
i /∂

2mi �= 0. We can thus define

the (normalized) canonical externalities as real numbers ξi j := ∂2U ∗
i /∂mi ∂m j

∂2U ∗
i /∂

2mi
. For each i , let

ξi := ∑
j �=i ξi j , and relabel agents, if necessary, so that |ξ1| ≤ |ξ2| ≤ · · · ≤ |ξn|. In SC-PC envi-

ronments, these properties of the second-order derivatives of the payoff functions hold for all
transfers with constant curvature, i.e. such that ∂3ti

∂mi ∂m j ∂mk
= 0 for all i, j, k ∈ I .

4.1. Redistribution of strategic externalities

In order to achieve full Bid -implementation, the truthful profile must be a mutual (strict) best
response for all types θi and for all beliefs bθi ∈ �(�−i ). Strict Bid -IC therefore is a neces-
sary condition for full Bid -implementation. Beyond this partial implementation requirement,
however, we will show that full implementation imposes more stringent restrictions on the
mechanism, and specifically on the strategic externalities that it induces.

13. Quadratic-linear models are frequent in the literature of networks (e.g. Ballester et al., 2006; Bramoullé and
Kranton, 2007; Bramoullé et al., 2014; Galeotti et al., 2020), social interactions models (Blume et al., 2015), markets
with network externalities (e.g. Fainmasser and Galeotti, 2015), divisible good auctions (e.g. Wilson, 1979), and public
goods (e.g. Duggan and Roberts, 2002).
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OLLÁR AND PENTA IDENTICAL BUT UNKNOWN DISTRIBUTIONS 15

To this end, for any transfer scheme t , and for every (m, θ) ∈ M ×�, we define the strate-
gic externality matrix, SEt (m, θ) ∈ R̄

n×n , in which the entry in row i and column j is equal

to SEt (m, θ)i j = ∂2U t
i (m,θ)/∂mi ∂m j

∂2U t
i (m,θ)/∂

2mi
∈ R̄ if i �= j and SEt

i j = 0 if i = j . (Recall that U t
i (m, θ)

denotes i’s payoff function induced by transfers t .) When the transfers in question are the canon-
ical ones, t∗, then we write SE∗ instead of SEt∗

. For example, in SC-PC settings, the canonical
transfers t∗ induce the following matrix of strategic externalities: for all (m, θ),

SE∗(m, θ) =

⎡
⎢⎢⎢⎣

0 ξ12 . . . ξ1n

ξ21 0 . . . ξ2n
...

...
. . .

...
ξn1 ξn2 . . . 0

⎤
⎥⎥⎥⎦ .

The next result shows that strategic externalities are key for full implementation. In partic-
ular, it shows that whether a strictly Bid -IC transfer scheme t achieves full implementation,
depends on the properties of two matrices which are closely related to SEt (m, θ). Such matrices
are obtained by focusing on the largest and smallest externalities across the domain, respec-
tively, normalized by the smallest and largest concavity in the domain. Formally, let |SEt

max|
and |SEt

min| be such that |SEt
max|i i = |SEt

min|i i = 0 for each i and, for each i and j �= i ,

let |SEt
max|i j := max(m,θ)∈�×� |∂2U t

i (m,θ)/∂mi ∂m j |
min(m,θ)∈�×� |∂2U t

i (m,θ)/∂
2mi | and |SEt

min|i j := min(m,θ)∈�×� |∂2U t
i (m,θ)/∂mi ∂m j |

max(m,θ)∈�×� |∂2U t
i (m,θ)/∂

2mi | . For any

square matrix A ∈ R
n×n , we let ρ(A) denote the spectral radius of A, i.e. the largest absolute

value of its eigenvalues.14 The next lemma formalizes the connection between the spectral radius
of the |SEt

max| and |SEt
min|-matrices and full Bid -implementation:

Lemma 1 (Spectral radius and full Bid -implementation). If t is Bid -IC, then

(i) ρ(|SEt
max|) < 1 implies that t fully Bid -implements d,

(ii) ρ(|SEt
min|) ≥ 1 implies that t does not fully Bid -implement d.

First note that, if t is such that SEt (m, θ) is constant in (m, θ) (as is the case, for instance, in
SC-PC environments and transfers with constant curvature), then |SEt

max| = |SEt
min| ≡ |SEt |,

and then this Lemma implies that a transfer scheme t fully Bid -implements d if and only if
ρ(|SEt |) < 1. Intuitively, the reason for this result is that eigenvalues in general describe the
properties of iterated matrices. For strategic externality matrices, this amounts to describing the
iterations of best replies which are implicit in the rationalizability operator. The condition that
the spectral radius is smaller than one determines whether the transfers induce contractive best
replies, and hence a unique rationalizable profile.15 Incentive Compatibility—which is assumed
in the Lemma—in turn ensures that such a unique profile is actually the truthful revelation
profile. Since, in general, strategic externalities may vary over the domain, the necessary and
sufficient conditions in the Lemma refer to the lower and upper bounds of such externalities, i.e.
respectively to the |SEt

min| and |SEt
max|-matrices.

As discussed, Bid -IC is a necessary condition for full Bid -implementation. Hence, we turn
next to the implications of Bid -IC for the mechanism’s strategic externalities:

14. If A is such that Ai j = ∞ for some i j-entry, we let ρ(A) := limK→∞ ρ(AK ), where AK is s.t. [AK ]i j :=
K if Ai j = ∞ and [AK ]i j := Ai j otherwise.

15. Results analogous to Lemma 1 can be stated for other belief restrictions too, in that the spectral radius
condition can be shown to characterize contractiveness of best replies in general games with payoff uncertainty. Other
known conditions, such as diagonal dominance, are easier to check but only sufficient.
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16 REVIEW OF ECONOMIC STUDIES

Lemma 2. If t is Bid -IC, then for all θ and (mi , m̄−i ) s.t. m̄ j = m̄k for all j, k �= i ,

(i) ∂2Ui (mi , m̄−i ; θ)/∂2mi = ∂2U ∗
i (mi , m̄−i ; θ)/∂2mi and

(ii)
∑

j �=i ∂
2Ui (mi , m̄−i ; θ)/∂mi∂m j = ∑

j �=i ∂
2U ∗

i (mi , m̄−i ; θ)/∂mi∂m j .

These conditions are also sufficient in SC-PC, when t has constant curvature.

In words, these conditions say that for any agent i and for any state θ , at any profile in which
i’s opponents report (not necessarily truthfully) the same type, then both the concavity in own-
action (condition 1), and the sum of the strategic externalities of all the opponents (condition
2), induced by any Bid -IC transfer scheme, must be the same as those of the canonical direct
mechanism.

The intuition for this result, which is formalized by Lemmas 3 and 4 in Appendix A, is the
following: by Lemma 3, the only way in which the designer can exploit the information on
agents’ beliefs to design Bid -incentive compatible mechanisms, is to correct the baseline canon-
ical transfers by adding a belief-dependent term which can be chosen for instance to minimize
the spectral radius of the strategic externality matrix. In order to preserve incentive compati-
bility, however, the designer must know the expected value of this corrective term—formally,
a function of the opponents’ types—at the truthful strategy profile, for all beliefs that agents
might have about others’ types. Under the Bid , essentially the only restriction which holds for
all beliefs of all types is the idea that any player i regards the types of any two players as identi-
cally distributed. Hence, the only functions of the opponents’ types whose expectation is known
to the designer, regardless of which beliefs among those in Bid are entertained by the agents,
are functions for which any “increase” on the effect of one opponent’s type, must be offset by a
commensurate “decrease” of some other opponent’s type (cf. Lemma 4). The overall expectation
of this corrective term must thus ensure a rebalance of the effects across the opponents, at least
at profiles of identical types, which overall implies the constraint on the strategic externalities in
the result above (cf. Appendix A).

The general design principle that emerges from combining Lemmas 1 and 2 is that the
designer should seek to minimize the spectral radius of the |SEt

max|-matrix, subject to the con-
straints imposed by Bid -IC (and, particularly, by Lemma 2). Such constraints imply that the
designer may only redistribute, not reduce, the total strategic externalities induced by the canon-
ical direct mechanism. In SC-PC environments and with quadratic transfers (which imply, in
particular, that the SEt -matrix is constant in (m, θ)), the conditions in Lemma 2 require that,
in order to preserve Bid -IC, a transfer scheme should induce a matrix of strategic externalities
which preserves, row by row, the same row-sums of the SE∗-matrix, (ξi )i∈I , which in turn are
uniquely pinned down by environment, (v, d). Our main result does not restrict the transfers to
be quadratic, but it is nonetheless useful to consider that case. With such a restriction, in SC-PC
settings, the design problem of identifying the transfers t̂ that achieve full Bid -implementation
whenever some transfers in the same class do, is equivalent to a problem of minimizing the
spectral radius subject to preserving the row-sums. This is formalized by the next result, which
follows directly from Lemma 1:

Corollary 2. A Bid -IC transfer scheme t̂ solves the “design problem” in the sense above if and
only if the associated matrix of strategic externalities solves the following program:

min
A

ρ(|A|)
subject to Aii = 0 for every i ∈ I,∑

j �=i

Ai j = ξi for every i ∈ I.
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OLLÁR AND PENTA IDENTICAL BUT UNKNOWN DISTRIBUTIONS 17

Moreover, the set of quadratic transfers that achieve full Bid -implementation in a given envi-
ronment (v, d) consists of all Bid -IC transfers t whose matrix of strategic externalities, SEt ,
satisfies the constraints in this program and is such that ρ(|SEt |) < 1.

This result formalizes the connection between the full implementation and the network
design problems that we discussed in the introduction and in Section 2. The second part of the
result, that characterizes the set of transfers that achieve full implementation, is useful to think
about other desiderata that one can impose, beyond full implementation. In Ollár and Penta
(2022b), for instance, we consider the problem of a designer who wishes to fulfil other robustness
criteria, besides full Bid -implementation. In that case, the program can be adapted by replacing
the minimization of ρ (which corresponds to identifying the “most contractive” transfers, that
achieve full implementation whenever possible—what is needed to identify general conditions
on (v, d) for implementability in the next subsection) with some other objective, tailored to the
specific desiderata, and adding the requirement ρ(|SEt |) < 1 to the constraints of the program.
In this sense, the connection between the approaches can prove fruitful for further questions of
implementation. We discuss this point further in Section 4.3.16

The uniqueness results above are also related to the literature on rationalizability and on
global stability in dynamical systems. As we explained, the matrix of strategic externalities is
key to uniqueness. The literature on dominance solvability provides some insights in this sense,
but mainly for complete information games (Moulin, 1984). One may intuit that uniqueness of
rationalizability is related to global stability, meaning that it is guaranteed if the dynamical sys-
tem which describes the iterations of best replies is globally stable. We give broad conditions
under which this intuition is valid and extends to incomplete information environments with
belief-restrictions.17 For instance, with quadratic transfers and under the SC-PC restriction, the
matrix of strategic externalities determines a linear dynamical system which describes the rel-
evant best-reply sets given the belief-restrictions. Unique rationalizability is equivalent to the
global stability of this system which, in turn, is characterized by the largest absolute eigenvalue
(the spectral radius). Given that a Bid -incentive compatible t already ensures that truthful revela-
tion has the best-reply property, uniqueness (and, hence, full Bid -implementation) is achieved if
and only if the spectral radius of the associated matrix of strategic externalities is less than one.
As mentioned, outside of this special case, the resulting dynamical system is not necessarily lin-
ear, and there may be a gap between necessary and sufficient conditions. Our general conditions
therefore involve upper and lower bound matrices of strategic externalities (Lemma 1).

4.2. Full implementation via transfers: characterization

In this section, we restrict attention to SC-PC environments, which as discussed are especially
important from the viewpoint of the applied theoretical literature. Similar to what we did for par-
tial implementation, we seek to identify a transfer scheme which can be used to identify whether
or not full Bid -Implementation is possible. To this end, we introduce the loading transfers. As
illustrated in part (iii) of Example 1, the logic of the construction is to redistribute the strate-
gic externalities so that, in the resulting mechanism, they are all concentrated on the two agents

16. In Ollár and Penta (2022a), we show that the program in Corollary 2 can be rewritten as an optimal transport
problem with a nonlinear cost function, thereby providing a connection and also a novel result from the viewpoint of that
literature (see, for instance, Ekeland, 2010; Daskalakis et al., 2017; Kattwinkel et al., 2022, and chapters in Galichon,
2018).

17. Ollár and Penta (2017) already noted the relevance of strategic externalities for uniqueness of rationalizability
in incomplete information games and for general belief restrictions, but they only focused on sufficient conditions. The
spectral radius results that we provide in this paper (also applied in Ollár and Penta, 2022b) are novel.
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18 REVIEW OF ECONOMIC STUDIES

with the smallest canonical externalities (given the relabelling above, these are agents 1 and 2).
Formally, the loading transfers (t l

i )i∈I are defined as follows: for each i ∈ I and m ∈ Mi × M−i ,

t l
i (m) = t∗

i (m)︸ ︷︷ ︸
canonical transfers

+ Ll
i (m−i )mi︸ ︷︷ ︸

redistribution of
canonical externalities

, (4.2)

where Ll
i : M−i → R is such that

Ll
i (m−i ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎣−

∑
k �=1
k �=2

∂2v1

∂x∂θk
m2 +

∑
k �=1
k �=2

∂2v1

∂x∂θk
mk

⎤
⎥⎥⎦ ∂d

∂θ1
if i = 1

⎡
⎢⎢⎣−

∑
k �=1
k �= j

∂2v j

∂x∂θk
m1 +

∑
k �=1
k �= j

∂2v j

∂x∂θk
mk

⎤
⎥⎥⎦ ∂d

∂θ j
if i �= 1

First, it can be checked that these transfers ensure Bid -IC (cf. Lemma 3 in Appendix A). Second,
letting Ul

i (m; θ) denote the payoff function which results from these transfers, it can be checked
that ∂2

i1Ul
i = ∑

j �=i ∂
2
i jU

∗
i for all i �= 1; ∂2

12Ul
1 = ∑

j �=1 ∂
2
1 jU

∗
1 and otherwise ∂2

i jU
l
i = 0. That is,

the total canonical externalities are all loaded onto the two agents with the smallest canonical
externalities: for all i �= 1, the sum of canonical externalitites for i are all loaded onto agent 1;
whereas the sum of canonical externalities for agent 1 are loaded onto 2.

SEl =

⎡
⎢⎢⎢⎣

0 ξ1 . . . 0
ξ2 0 . . . 0
...
...
. . .

...
ξn 0 . . . 0

⎤
⎥⎥⎥⎦ .

Theorem 2 (Full Implementation: Characterization). Fix an SC-PC (v, d).

(i) d is fully Bid -implementable if and only if it is fully Bid -implemented by tl .
(ii) d is fully Bid -implementable if and only if |ξ1ξ2| < 1.

Before discussing the logic of the proof, first note that the condition in Part (ii) is a
constraint on the canonical externalities and it is equivalent to requiring that the preference
interdependence of agents 1 and 2 be sufficiently small. Formally: |ξ1ξ2| < 1 if and only if
|∑ j �=1

∂2v1
∂x∂θ j

·∑ j �=2
∂2v2
∂x∂θ j

| < ∂2v1
∂x∂θ1

· ∂2v2
∂x∂θ2

.
Part (i) of the theorem derives from the following observations. First, in SC-PC environments,

the loading transfers are strictly Bid -IC and induce constant strategic externalities. Hence (by
Lemma 1) they achieve full implementation if and only if ρ(|SEl |) < 1. Second, by examining
the iterative rounds of rationalizability, we show that all Bid -IC transfers induce sets of rational-
izable profiles that contain the ones induced by the loading transfers. The steps in the proof also
imply that ρ(|SEl |) ≤ ρ(|SEt

max|) for all Bid -IC transfers t . The reason why t l achieves the min-
imal spectral radius among the possible strategic externality matrices is perhaps best illustrated
in Example part (iii) of Example 1. To concentrate all of i’s strategic externalities on the oppo-
nent with the smallest |ξ j | (that is, 1’s externalities on agent 2, and all other agents’ externalities
on agent 1) decreases the impact of the flow of externalities on best replies. This impact is key to
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OLLÁR AND PENTA IDENTICAL BUT UNKNOWN DISTRIBUTIONS 19

rationalizability and is linear algebraically represented by the iterated matrix of strategic exter-
nalities. The intuition, as our proof shows, indeed carries over to all rounds of iterations and
is optimal in the here considered broader space of transfers. Hence, if ρ(|SEl |) ≥ 1, then full
implementation necessarily fails for all other transfers too. On the other hand, if ρ(|SEl |) < 1,
then full implementation is possible, and it is achieved, for example, by t l .

Part (ii) follows from the fact that ρ(|SEl |) < 1 if and only if |ξ1ξ2| < 1. As we explained,
this implies that the possibility of achieving full Bid -implementation depends on the canonical
externalities of the two agents with the smallest canonical externalities (equivalently, of the two
smallest levels of preference interdependence). Thus, full implementation is possible if and only
if the combined effect of these two agents’ canonical externalities is not too large, regardless
of the strength of the preference interdependence of the other agents and their number. At the
extreme, if an environment involves just one agent with private values, then full implementation
is possible.

4.3. Discussion

It may be useful at this point to discuss how the results above and our approach more broadly
compare with the typical approach in the literature on full implementation.

On the restriction to direct mechanisms. The first, main point of departure, is our restriction
to direct mechanisms. As it is well known, this restriction is without loss of generality for the
purpose of partial implementation, but it may make the task of achieving full implementation
harder. Note, however, that if this means that the necessity part of our characterization may
be stronger than what could be identified with unrestricted mechanisms, the opposite is true
for the sufficiency direction: the fact that we provide remarkably permissive results, despite
the restriction to the class of mechanisms, strengthens those results. There are, however, other
reasons for restricting the class of mechanisms.

First, classical results on full implementation typically involve unrealistically complicated
mechanisms, which have been criticized for providing limited economic insight (e.g. Jackson,
1992). The artificial nature of those mechanisms, and the related emphasis in the literature on
necessity results, in our view explain why the full implementation approach has overall been less
successful than the partial implementation one, in terms of delivering clear qualitative insights
on the design of real world mechanisms. Our insistence on using the same class of mechanisms
as is typical in the partial implementation literature allows for an easier comparison with that lit-
erature, which favours the interpretability of the results and hence pushes a bit further Jackson’s
concern for economic ‘relevance’ of full implementation theory.

This restriction also enables us to uncover what features of an incentive compatible trans-
fer scheme—namely, the structure of its strategic externalities—may or may not be problematic
from the full implementation viewpoint. With this understanding, our approach develops con-
structive insights on how failures of full implementation can be overcome, while maintaining
the same fundamental structure as the transfer schemes for partial implementation, which have a
clear economic interpretation and may thus be more portable to the real world. One by-product
of this is the possibility of recasting the implementation problem in terms of a weighted network
design problem, thereby connecting full implementation with more familiar concepts of main-
stream economics, such as networks and externalities. As we further discuss in the conclusions,
we think that this connection may benefit both the implementation and the network literature.

Constructive insights for transfer design. The classical approach in the full implementa-
tion literature considers preferences which are not necessarily quasi-linear, and focuses on
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20 REVIEW OF ECONOMIC STUDIES

social choice functions (SCFs) f : � → Y , where Y denotes the space of outcomes (see, e.g.
Bergemann and Morris, 2009a). With quasi-linear preferences, Y = X × R

n , and hence such
characterizations can be used to check whether a given f (·) = (d(·), t (·)) is implementable by a
direct mechanism (and hence, similar to Lemma 1, whether a given t implements d), but they do
not provide insights on how to design transfers for full implementation. Since we are interested
in this kind of constructive insights, we adopted here the standard setup of the partial implemen-
tation literature, only taking d : � → X as given, and letting the designer choose t : � → R

n .
Second, as we already discussed, the restriction to direct mechanisms also entails some loss
of generality for full implementation, but in these environments it enables an easier comparison
with the partial implementation literature, and to focus on the structural properties of the transfer
schemes. The emphasis on the ability to generate insights for the design of transfers represents an
important point of departure from the full implementation literature, and is also reflected in the
kind of conditions we provide (cf. Lemma 1).18 By referring to the eigenvalues of the strategic
externality matrices, these conditions also enabled us to draw a bridge between full implemen-
tation and networks (e.g. Elliott and Golub, 2019; Galeotti et al., 2020), which may prove fertile
for both strands of the literatures (these points are further discussed in the Conclusions).

Alternative robustness criteria. In many settings, it may be desirable to ensure that the imple-
menting mechanism does not rely too heavily on agents’ behaviour exactly coinciding with that
entailed by the maintained assumptions on their preferences and rationality. In Ollár and Penta
(2022b), we explore the implications of this kind of desiderata on the design of transfers for
full implementation, by requiring the implementing mechanism to minimize the impact of an ε-
mistake in agents’ reports. Such “mistakes” can be interpreted as stemming from agents’ slightly
faulty behaviour (similar to Eliaz, 2002), or as a shorthand to account for possible misspecifi-
cation of their preferences in the model.19 Intuitively, the extreme hierarchical structure of the
strategic externalities induced by the loading transfers may entail an unnecessarily high fragility
of the system in this context, and hence if full Bid -implementation is possible, other transfer
schemes may provide a better compromise between the various desiderata.

The robustness notion in Ollár and Penta (2022b) reflects the idea that the designer does
not know how many or which agents might be potentially faulty, and the criterion with which
he/she assesses the robustness of the mechanism is the worst-case scenario across all possible
configurations of sets of faulty agents. The measure of the fragility of the mechanism is therefore
provided by the largest misreport consistent with a solution concept, RFε

i , which characterizes
the behavioural implication of assuming common knowledge that a subset F of players may

18. As a comparison, Bergemann and Morris (2009a) characterize belief-free rationalizable implementation via
direct mechanisms in environments with monotone aggregators (i.e. such that ∀i , vi (x, θ) = wi (x, hi (θ)) for some
wi : X × R →R and hi : � → R strictly increasing in θi ) in terms of strict ep-IC and the following “contraction prop-
erty” (Def.5, p.1183, ibid.): ∀β : � → 2� s.t. θ ∈ β(θ) for all θ , but β(θ ′) �= {θ ′} for some θ ′, there exists i , θi and
θ ′′

i ∈ βi (θi ) with θ ′′
i �= θi such that, for all θ−i and θ ′−i ∈ β−i (θ−i ), sign(θi − θ ′′

i ) = sign(hi (θi , θ−i )− hi (θ
′′
i , θ

′−i )).
With more general preferences and with unrestricted mechanisms, the analogous condition for belief-free rational-
izability is robust monotonicity (Bergemann and Morris, 2011): ∀β : � → 2� s.t. ∃θ, θ ′: θ ′ ∈ β(θ) and f (θ) �=
f (θ ′), ∃i, θi , θ

′′
i ∈ βi (θi ) s.t. ∀θ−i and ψ ∈ �(β−1

−i (θ
′−i )), ∃y ∈ Y : (i)

∑
θ ′−i ∈β−1

−i (θ−i )
ψ(θ−i )ui (y, (θi , θ−i )) >∑

θ ′−i ∈β−1
−i (θ−i )

ψ(θ−i )ui ( f (θ ′
i , θ

′−i ), (θi , θ−i )); and (ii) ∀θ ′′
i , ui ( f (θ ′′

i , θ
′−i ), (θ

′′
i , θ

′−i )) > ui (y, (θ
′′
i , θ

′−i )). Similar

characterizations, alternative to Lemma 1, could be provided for full Bid -implementation.
19. Ollár and Penta (2022b) only focus on the implementation of efficient allocation rules, and for settings in

which the distributions of other players’ types have identical means (but not necessarily identical distributions). Their
results, however, can be extended to more general allocation rules and the Bid -restrictions of this paper.
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be ε-faulty, across all agents and all configurations of the set of faulty agents. As shown in
Ollár and Penta (2022b), in SC-PC environments with symmetric aggregators, among the set
of transfers that achieve full implementation, the transfers that are the most robust in this sense
are characterized by an equal redistribution of the given total strategic externalities, among the
opponents of every player.

The intuition behind this result is simple: as explained, the loading transfers induce a very
hierarchical strategic structure, in which the contractiveness of the mechanism is completely
determined by the two agents with smallest preference interdependence. But loading all strategic
externalities on these agents also makes the mechanism especially vulnerable to the possibility
of these agents being faulty. In that case, the loading transfers would perform rather poorly. To
avoid this risk, and not knowing which of the agents may potentially be faulty, the safest solution
for the designer is to redistribute the strategic externalities uniformly across all players, so that
no player is especially critical for the mechanism.

Beyond SC-PC environments. Ollár and Penta (2022a) also consider environments that do
not satisfy the SC-PC restriction. In those settings, the key difficulty is that the canonical strate-
gic externality matrix may not be constant over the domain of types and reports, and hence
operationalizing the general principle of redistributing the strategic externalities subject to the
incentive compatibility constraints requires tracing how they vary over the entire domain. One
way to approach this problem is to construct the modification of the baseline transfers, based
on a midpoint between the lowest and highest strategic externalities generated by the environ-
ment. Theorem 3 in Ollár and Penta (2022a) shows that such a design strategy ensures full
Bid -implementation, if the strategic externalities at such a midpoint are not too large for at least
two agents, and as long as the strategic externalities do not vary too much across the entire
domain. So, in that sense, the main qualitative insight obtained under the SC-PC restriction carry
over to general settings, provided that the design of the loading transfer is suitably generalized.

5. CONCLUSIONS

This paper continues a long tradition of works on implementation, that have taken up Wil-
son (1987) and Jackson (1992)’s call for a greater “relevance” of full implementation theory,
through a repeated weakening of common knowledge assumptions on the environment, and
the exploration of restricted classes of mechanisms.20 In this paper, we focused specifically on
implementation via transfers that only elicit agents’ payoff-relevant information, under weak
common knowledge assumptions that reflect a natural economic idea: namely, that agents’ types
are drawn from an identical distribution. Our main results characterize the transfer schemes that
achieve, respectively, partial and full implementation whenever possible, under such a “common
belief in identicality” restriction, as well as the conditions on the agents’ preferences and on the
allocation rule under which these notions of implementation are possible. Despite the restric-
tion to the class of mechanisms, which ensures a clear economic interpretation of the results,
we uncovered surprisingly permissive results. For instance, we showed that the possibility of

20. For instance, under standard common knowledge assumptions, Jackson (1992) studied implementation via
bounded mechanisms, and Bergemann and Morris (2009a), Oury and Tercieux (2012) studied implementation via direct
mechanisms; With unrestricted mechanisms, Bergemann and Morris (2011), Müller (2020) studied implementation
in belief-free settings; papers that included both non-standard (weak) common knowledge restrictions and restricted
mechanisms, include Bergemann and Morris (2009a, 2009b) and Ollár and Penta (2017); etc.
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full implementation is determined by the strength of the preference interdependence of the two
agents with the least amount of preference interdependence, regardless of the number of the
other agents, and of their preferences.

Our analysis also revealed that the joint restrictions on the mechanisms and on the common
knowledge assumptions impose a peculiar mathematical structure on the implementation prob-
lem, which enabled us to recast the mechanism design problem as one of “optimally” designing
a network of strategic externalities, subject to suitable constraints. The objective of this design
exercise (dictated by the aim of identifying the transfer schemes that achieve full implementa-
tion whenever possible) is to minimize the spectral radius of the matrix of strategic externalities;
the constraints (which are dictated by incentive compatibility under “common belief in identi-
cality”) require preserving the total level of such externalities. Aside from the implementation
results in a strict sense, this formulation of the problem generates further insights, which may
prove valuable for other strands of the literature.

For instance, Galeotti et al. (2020) recently studied the problem of optimally intervening on
the nodes of a game with networked externalities. The interventions considered in that paper
concern the idiosyncratic (non-strategic) components of players’ preferences, taking as given
a network of externalities which is assumed to induce contractive best replies and uniqueness
of equilibrium. In contrast, our analysis concerns the design of the very network of strategic
externalities (subjects to certain constraints, as we discussed in the previous paragraph). The
objective of minimizing the spectral radius, within a class of networks of strategic externali-
ties, may prove useful in itself, as several properties of a networked economy may be related
to the spectral radius of its matrix of strategic externalities: for instance, when the spectral
radius is less than one, it is closely related to Cournot stability of the associated Nash equilib-
rium (cf. Moulin, 1984). Our solution to the spectral radius-minimization problem is thus also
informative about structural properties of networks, well beyond the full implementation prob-
lem from which it stemmed in this paper. In fact, the solution we identified (namely, the star
network that describes the strategic externalities induced by the loaded transfers in Theorem
2) has interesting structural features, which we think are quite revealing from a pure network
perspective.

Our characterization of full implementation in terms of a spectral radius condition on a suit-
able matrix of strategic externalities is also related to Elliott and Golub (2019)’s characterization
of efficient allocations in economies with networked externalities, which is also based on a
spectral radius condition of a matrix of externalities. The main difference is that their spectral
radius condition refers to a matrix of payoff externalities, which are captured by the first-order
derivatives of agents’ payoff functions. In contrast, our condition refers to a matrix of strate-
gic externalities, which describes how players’ best responses are affected by others’ actions,
and hence are described by the second-order derivatives of agents’ payoff function. Nonethe-
less, both papers provide clear cases in point on how a network approach may shed a new light
on classical problems, and enable novel results. For the problem, we consider, specifically, this
connection favours a more clear integration of full implementation theory with more famil-
iar concepts of mainstream economics, such as transfers schemes, networks and externalities.
The other important difference is that Elliott and Golub (2019) consider complete information
settings, whereas we allow for incomplete information with both private and interdepenndent
values. From this viewpoint, our results also contribute to the growing literature on network
games with incomplete information (e.g.Calvó-Armengol and De Martı́, 2007; Galeotti et al.,
2009; Calvó-Armengol et al., 2015; De Martı́ and Zenou, 2015; Golub and Morris, 2017; Myatt
and Wallace, 2019; Leister, 2020; Leister et al., 2020). With respect to this literature, our results
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OLLÁR AND PENTA IDENTICAL BUT UNKNOWN DISTRIBUTIONS 23

on the spectral radius of the strategic externality matrix provide sufficient conditions for equi-
librium uniqueness (as well as a characterization of uniqueness of rationalizable solutions) for
incomplete information games, with both private and interdependent values.

With respect to robust mechanism design, this paper contributes to the literature which has
explored environments with limited information about agents’ beliefs, intermediate between
standard Bayesian settings (e.g. Postlewaite and Schmeidler, 1986; Jackson, 1991), and the
belief-free benchmark (e.g.Bergemann and Morris, 2005, 2009a). Compared with Ollár and
Penta (2017), which introduced general belief-restrictions and studied sufficient conditions
under which full implementation may be achieved via a reduction of strategic externalities,21

this paper represents an example of a specific belief restriction based on an interesting class
of economic environments (namely, the common belief assumption only about identicality). As
discussed, these restrictions turn out to induce a tractable mathematical structure, that translates
into a different design principle—namely, a redistribution of the strategic externality—that also
enables strong implementation results. Interesting directions for future research include explor-
ing other belief restrictions, similarly motivated to capture primitive qualitative properties of
beliefs, without imposing the standard common prior assumption. For instance, it would be inter-
esting to study implementation under qualitative restrictions such as independence, affiliation,
positive correlation, etc., without the extra common knowledge assumptions of standard models.

In a similar spirit, it would also be important to explore different restrictions to the class of
mechanisms, especially tailored to specific environments, or by imposing specific properties on
the mechanism.22 This is important because, if direct mechanisms are ideal to provide economic
insights on incentive compatibility, they are not always the simplest to implement in practice.
In some settings, indirect yet simpler mechanisms may also achieve implementation (auctions
are a classical example). While our results are silent on such specific indirect mechanisms, the
general idea of focusing on the matrix of strategic externality, and to pursue contractive best
replies via the addition of belief-dependent terms (cf. Appendix 2), is based on general game
theoretic principles which are applicable to other baseline mechanisms as well.

Finally, we note that the characterization of full implementation under common belief in
identicality may have potentially interesting implications from a broader market design per-
spective: for instance, if full implementation cannot be achieved for a given set of agents, then
adding two more agents whose preferences do not depend much on others’ information would
suffice to make full implementation possible. In practical problems of market design, however,
these possibility results ought to be weighted against other considerations, which may entail a
different structure for the implementing mechanism. One such example, which we discussed in
Section 4.3, is robustness with respect to “mistakes in play” (Ollár and Penta, 2022b), which
suggests a more even redistribution of the strategic externalities. Exploring further desiderata
and robustness criteria is another interesting direction for future research.

21. For instance, Ollár and Penta (2017) show that (under certain preference restrictions) strategic externalities
can always be eliminated in common prior models with independent or affiliated types and hence full implementation
be achieved in (interim) dominant strategies. When strategic externalities cannot completely eliminated, they provide
sufficient conditions for contractive best replies, so as to obtain uniqueness of the rationalizable strategy profiles.

22. In recent years, many papers have re-visited standard implementation problems imposing extra desiderata on
the mechanisms. Deb and Pai (2017), for instance, pursue symmetry of the mechanism; Mathevet (2010) and Mathevet
and Taneva (2013) pursue supermodularity; Healy and Mathevet (2012) and Ollár and Penta (2017) pursue contractive-
ness. In the classical literature, the broader idea of modifying ex-post incentive compatible transfers using information
about beliefs has been pursued, among others, by d’Aspremont et al. (1979), Arrow (1979), Cremer and McLean (1988).

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/advance-article/doi/10.1093/restud/rdac084/7000773 by U

niversity of Edinburgh user on 01 M
arch 2023



24 REVIEW OF ECONOMIC STUDIES

APPENDIX A. ON PARTIAL B I D-IMPLEMENTATION

A.1. On the Proof of Theorem 1: main ideas

The key for the proof of Theorem 1 is provided by the following Lemma:

Lemma 3 (Bid -IC Transfers: necessary and sufficient conditions). [Necessity:] If (d, t) is twice
differentiable and Bid -IC, then for all i , and for all m ∈ M ≡ �,

ti (m) = t∗
i (m)+ τi (m−i )︸ ︷︷ ︸
belief-free transfers

(ep-IC characterization)

+
∫ mi

θ

Ki (si ,m−i ) dsi︸ ︷︷ ︸
belief-based component

(A.1)

where τi : M−i → R and Ki : M → R are differentiable functions and Ki is such that:23

E
bθi (Ki (θi , θ−i )) = 0 for all θi and for all bθi ∈ Bid

θi
. (A.2)

[Sufficiency:] If (d, t) is twice differentiable, t satisfies (A.1) and (A.2 ), and the resulting
payoffs are such that E

bθi (∂2Ui (mi , θ−i ; θ)/∂2mi ) < 0 for all mi and bθi ∈ Bid
θi

, then (d, t) is
Bid -IC.

Equation (A.1) implies that, as far as Bid -IC is concerned, it is without loss of generality
to design transfers starting from the canonical transfers, and then adding a belief-based term
Ki : M → R. The sense in which the extra component is “belief-dependent” is clarified by the
condition in Equation (A.2), which has to be satisfied for all beliefs consistent with Bid . Note
that any twice continuously differentiable mechanism is Bid -IC if the truthful profile satisfies
the first- and second-order conditions of agents’ optimization problem, for all interior types and
for all beliefs consistent with the Bid restrictions. Moreover, the associated payoff function must
be such that, for all θi ∈ (θ, θ̄ ) and bθi ∈ Bid

θi
, (i) E

bθi (∂Ui (θi , θ−i ; θi , θ−i )/∂mi ) = 0 and (ii)
Ebθi (∂2Ui (θi , θ−i ; θi , θ−i )/∂

2mi ) ≤ 0. But if t partially implements d, then by Lemma 3 it can
be written as in (A.1), and hence—letting U ∗ denote the payoff function of the canonical direct
mechanism—for any θi ∈ (θ, θ̄ ) and bθi ∈ Bid

θi
, we have

E
bθi (∂Ui (θi , θ−i ; θi , θ−i )/∂mi ) = E

bθi (∂U ∗
i (θi , θ−i ; θi , θ−i )/∂mi )+ E

bθi (Ki (θi , θ−i )), and

E
bθi (∂2Ui (θi , θ−i ; θi , θ−i )/∂

2mi ) = E
bθi (∂2U ∗

i (θi , θ−i ; θi , θ−i )/∂
2mi + E

bθi (∂Ki (θi , θ−i )/∂mi ).

Condition (A.2) in Lemma 3 implies that the second term on the right-hand side of the first
equation is zero, and hence the first-order conditions of any Bid -IC mechanism coincide with
those of the canonical direct mechanism. Furthermore, it can be shown that any Ki function
which satisfies condition (A.2) also ensures that the second term of right-hand side of the second
equation is zero, for all beliefs bθi ∈ Bid

θi
. Hence, the first- and second-order conditions are met

in (d, t) if and only if they are met in the canonical direct mechanism. Theorem 1 expands on
this observation.

A.2. Incentive compatibility and moment conditions

Further intuition on the belief-based components in condition (A.2) of Lemma 3 can be gathered
by looking at the special case in which the Ki function can be written as Ki (m) = Li (m−i )−

23. For any f : � → R, θi ∈ �i and bθi ∈ Bid
θi

, we let E
bθi ( f (θi , θ−i )) := ∫

�−i
f (θi , θ−i ) dbθi .
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OLLÁR AND PENTA IDENTICAL BUT UNKNOWN DISTRIBUTIONS 25

fi (mi ), for some Li : �−i → R and fi : �i → R. Then, the expected value condition (A.2) can
be written as

E
bθi (Li (θ−i )) = fi (θi ) for all θi and for all bθi ∈ Bid

θi
. (A.3)

If a collection (Li , fi )i∈I of functions Li : �−i → R and fi : �i → R satisfies (A.3) for every
i , then it means that under the belief restrictions Bid , agents commonly believe that, for every
i , his expectation of moment Li (θ−i ) of others’ types varies with θi according to fi . Hence,
this condition expresses commonly known assumptions on agents’ conditional expectations on
a moment of others’ types. Based on this observation, Ollár and Penta (2017) introduced the
following notion:

Definition 7. A moment condition is represented by a collection (Li , fi )i∈I such that Li :
�−i → R and fi : �i → R. It is consistent with the Bid -restrictions if it satisfies (A.3) for all i ;
it is a linear moment condition if Li is linear for every i .

Setting Ki (θ) = Li (θ−i )− fi (θi ) in the statement of Lemma 3, Eq. (A.1) specializes to

ti (m) = t∗
i (m)+ τi (m−i )︸ ︷︷ ︸

characterization
of ep-IC transfers

+ Li (m−i )mi −
∫ mi

fi (si ) dsi︸ ︷︷ ︸
moment condition-based term

. (A.4)

This is precisely the class of transfers for which Ollár and Penta (2017) provide sufficient con-
ditions for full implementation.24 By Lemma 3, there may exist incentive compatible transfers
which cannot be written as in Equation (A.4), since not all functions Ki : � → R in that Lemma
are equivalent to moment conditions in the sense of Definition 7. Nonetheless, understanding the
set of moment conditions which are commonly known under given belief restrictions is a useful
way of looking at the possibilities that the designer has to device incentive compatible transfers
under these easy-to-interpret belief-based components. Being concerned with full implementa-
tion under general belief restrictions, and particularly on sufficient conditions, Ollár and Penta
(2017) did not characterize the set of available moment conditions. That task can be difficult
in general, but such a characterization is possible for the belief restrictions considered in this
paper, and it provides particularly clean insights into the set of transfers which are available to
the designer:

Lemma 4 (Moment conditions under Bid : characterization). The moment condition (Li , fi )i∈I

is consistent with Bid if and only if

1. fi (θi ) = c for some c ∈ R, for all θi ;
2. Li is constant at identical types and agrees with c: Li (θ) = c for all θ s.t. θi = θ j for all i, j ;
3. Li is additively separable across players: there exist real functions Li j such that Li (θ−i ) =∑

j �=i Li j (θ j ) for all θ−i ∈ �−i .

Proof of Lemma 4. Setting Ki := Li − fi in Step 1 of the Proof of Theorem 2 below, which
gives the characterization of Bid -consistent Ki functions, implies this Lemma.

24. In particular, Ollár and Penta (2017) show that if the belief-restrictions admit moment conditions with certain
properties, then this design strategy ensures full implementation. They also illustrate the usefulness of those sufficient
conditions in common prior environments and in settings in which only the conditional averages are common knowledge.
(Note that, under the Bid restrictions of this paper, the conditional averages of types are neither common knowledge nor
known to the designer.)
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26 REVIEW OF ECONOMIC STUDIES

An interesting question is how our analysis would change if, beyond common knowledge
of identicality, one also assumed common knowledge of independence across different players.
This can be formalized by replacing the Bid -restrictions with the stronger belief restrictions Bi id ,
which also require beliefs bθi ∈ �(�−i ) in condition (2.1) to be the independent product of an
identical distribution over [θ, θ ]. It can be shown that results analogous to Lemma 3 obtain for
Bi id -restrictions, as well as a characterization analogous to Lemma 4, with the only difference
that part 3 of Lemma 4 is not required. Intuitively, the stronger information that the designer
has about agents beliefs in Bi id , compared with Bid , allows a richer set of moment conditions
which can be used to design incentive compatible transfers. Interestingly, however, such extra
freedom does not really expand the possibility of implementation: it can be shown that, under
the Bi id -restrictions, the characterizations of both partial and full implementation is the same as
in Theorems 1 and 2.

A.3. Proofs

Proof of Lemma 3. Assume that t ensures Bid -incentive compatibility which, by t’s differentia-
bility and the applicability of Leibniz’s rule, means that for all i and θi

E
bθi (∂(vi (d(mi , θ−i ), θ)+ ti (mi , θ−i ))/∂mi )|mi =θi = 0 for all bθi ∈ Bid

θi
.

The canonical transfer t∗
i also satisfies this equation, thus for the difference between ti and t∗

i ,

E
bθi (∂(ti (mi , θ−i )− t∗

i (mi , θ−i ))/∂mi )|mi =θi = 0 for all bθi ∈ Bid
θi
.

Let the difference between ti and t∗
i be Di (m) := ti (m)− t∗

i (m). By the smoothness assumptions
of this Lemma, Di is differentiable. Consider the part of Di that is independent from mi and let
this part be τi (m−i ) := Di (m)− ∫ mi

θ
∂Di
∂mi
(si ,m−i ) dsi , and further let Ki (m) := ∂Di (m)/∂mi

for all m. Then, the transfer ti takes the form ti (m) = t∗
i (m)+ τi (m−i )+ ∫ mi

θ Ki (si ,m−i ) dsi

for all m and Ki satisfies the expected value condition in (A.2). Moreover, if (d, t) is twice
differentiable, then by the definition of canonical transfers t∗ is twice differentiable, and thus Ki

is differentiable. Since Ki is differentiable in all its arguments, τi is twice differentiable, which
completes the proof of the necessity part of this Lemma.

If (d, t) is twice differentiable and t satisfies the characterization in (A.1) and the expected
value condition in (A.2), then

E
bθi (∂Ui (θ; θ)/∂mi ) = E

bθi (∂vi (θ; θ)/∂mi + ∂ti (θ; θ)/∂mi )

= E
bθi (∂vi (θ; θ)/∂mi + ∂t∗

i (θ; θ)/∂mi )+ 0 + E
bθi (Ki (θ; θ))

= E
bθi (∂vi (θ; θ)/∂mi − ∂vi (θ; θ)/∂mi )+ 0 + 0 = 0,

and thus the message mi = θi is an extreme point. For all beliefs in Bid
θi

, the corresponding
expected utility, by assumption, is strictly concave, therefore this extreme point is a global opti-
mum for all beliefs in Bid

θi
, and thus (d, t) is Bid -IC which completes the proof of the sufficiency

part of this Lemma.

Proof of Theorem 1. Step 1: If Ki : M → R satisfies condition (A.2), then for all θi

E
bθi (Ki (mi , θ−i )) = 0 for all mi and for all bθi ∈ Bid

θi
.

To show this step, recall the expected value condition in (A.2), E
bθi (Ki (θi , θ−i )) = 0 for all

θi and for all bθi ∈ Bid
θi

. Fix p ∈ Bid
θi

. It is a consequence of identicality that if p ∈ Bid
θi

, then
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p ∈ Bid
mi

for all mi ∈ [θ, θ ], that is E
p(Ki (mi , θ−i )) ≡ 0 as a function of mi , and this holds for

any p ∈ Bid
θi

, which proves this Step.25

To show the Theorem, if (d, t) partially implements d, then by Lemma 3, t can be writ-
ten as in (A.1), and hence—letting U ∗ denote the payoff function of the canonical direct
mechanism—for any θi and bθi ∈ Bid

θi
:

E
bθi (∂Ui (mi , θ−i ; θi , θ−i )/∂mi ) = E

bθi (∂U ∗
i (mi , θ−i ; θi , θ−i )/∂mi )+ E

bθi (Ki (mi , θ−i ))

= E
bθi (∂U ∗

i (mi , θ−i ; θi , θ−i )/∂mi ),

where the latter is a well-defined function of mi . Hence, for all types, the set of optimal reports
for all beliefs in Bid are equivalent in (d, t) and (d, t∗), which proves this Theorem.

APPENDIX B. PROOFS OF RESULTS FROM SECTION 4

Proof of Lemma 1. 26 (i) (Sufficiency: eigenvalue condition for full implementation.)27 Fix
θi in(θ, θ) and examine the kth round of eliminations: fix mi ∈ Rk

i (θi ). Thus for mi , there exists
a conjecture which supports mi as a best reply and is concentrated on Rk−1

−i . (Recall that a con-
jecture of agent i is a probability distribution over M−i ×�−i .) Let this conjecture be μL . At
the same time, since (d, t) is Bid -IC, θi is best-reply to truthtelling conjectures. In particular,
consider a truthtelling conjecture which is concentrated on Rk−1

−i , let this conjecture be μT ; and
pick μT such that marg�−i

μT = marg�−i
μL .

We use the notation EUμ
i (mi ; θi ) to denote the expected utility of type θi , given this type’s

conjecture μ, when reporting mi .
First, if mi is an interior point, then we have that

0 = ∂i EUμL
i (mi ; θi )− ∂i EUμT

i (θi ; θi )

= ∂i EUμL
i (mi ; θi )− ∂i EUμL

i (θi ; θi )︸ ︷︷ ︸
difference due to own action

+ ∂i EUμL
i (θi ; θi )− ∂i EUμT

i (θi ; θi )︸ ︷︷ ︸
difference due to external (others’) actions

.

Examining these two differences, notice that applying a mean value theorem to each of these
two differences gives that there exist si and m−i , s−i ∈ Rk−1

−i (θ−i ) such that

−∂2
i i EUμL

i (si ; θi )(mi − θi ) =
∑
j �=i

∂2
i jUi (θi , s−i ; θ)(m j − θ j ).

Second, let bl ≤ bu be the boundary points of the set of k − 1-rationalizable messages of θi . If
mi is such that mi = bl , then, because mi is best reply,

−∂2
i i EUμL

i (si ; θi )(mi − θi ) ≥
∑
j �=i

∂2
i jUi (θi , s−i ; θ)(m j − θ j ).

25. Note that Ki need not be the 0 function. For example, (θ j − θk )θi satisfies the expected value condition

for all identical distributions. Moreover, if K 1
i and K 2

i satisfy the condition, then any linear combination αK 1
i + βK 2

i
satisfies the condition as well.

26. The sufficiency of the eigenvalue condition for full implementation and the points in this lemma are stated
for identical distributions but, as it is clear from the proofs, they generalize beyond Bid to arbitrary belief restrictions.

27. Recall that to extend the spectral radius operator to the affinely extended reals, given a non-negative matrix
A, we let AK be such that [AK ]i j := K if Ai j = ∞ and [AK ]i j := Ai j otherwise. We let ρ(A) := limK→∞ ρ(AK ).
Beyond the standard extensions of operators, we adopt the understanding that 0/0 = ∞ and ∞/∞ = ∞.
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28 REVIEW OF ECONOMIC STUDIES

If mi is boundary such that mi = bu , then, because mi is best reply,

−∂2
i i EUμL

i (si ; θi )(mi − θi ) ≤
∑
j �=i

∂2
i jUi (θi , s−i ; θ)(m j − θ j ).

After examining the signs of ∂2
i i EUμL

i (si ; θi ) and the respective signs of (mi − θi ) in the latter
two cases, we can summarize that for all, either boundary or inner, mi ∈ Rk

i (θi ) there exist
not-yet eliminated messages si , s−i ,m−i such that

|∂2
i i EUμL

i (si ; θi )||(mi − θi )| ≤
∣∣∣∣∣∣
∑
j �=i

∂2
i jUi (θi , s−i ; θ)(m j − θ j )

∣∣∣∣∣∣ .
From this, for each agent j and round k, letting lk

j := maxθ j ,m j ∈Rk
j (θ j ) |θ j − m j |, and letting l0

j =
l = θ − θ , we have

|mi − θi | ≤
∑

j �=i |∂2
i jUi (θi , s−i ; θ)|lk−1

j

|∂2
i i EUμL

i (si ; θi )| ≤ [|SEt
max|lk−1]i .

Since this inequality holds for all k, we can apply it iteratively, which gives that in the kth round
for all mi ∈ Rk

i (θi ),

|mi − θi | ≤ [|SEt
max|lk−1]i ≤ [|SEt

max||SEt
max|lk−2]i ≤ · · · ≤ [|SEt

max|k1l]i .

Since ρ(|SEt
max|) < 1, we have |SEt

max|k → 0, and thus full Bid -implementation follows.
(ii) (Necessity: eigenvalue condition for failure of full implementation.) The key step for this

part is to show that for all rounds k there is an agent i such that for all types θi , there is a kth
round B-rationalizable message—a message in Rk

i (θi )—which falls outside a positive measure
open set around θi . In particular, consider the largest subset of agents whose interaction matrix
in |SEt

min| is irreducible and features no 0 eigenvalues. (Such subset IE ⊆ I of the agents exists
and, since ρ(|SEt

min|) > 1 and the diagonal contains 0s, it has at least two agents.) We maintain
the ordering of the agents and use notation E for this irreducible block of |SEt

min|. We will
show next, that for each round k for some i ∈ IE , there is a best reply outside the open set
(θi ± [E · lk−1

min,E ]i ) ∩ int cl Rk−1
i (θi ). The notation lkmin,E is such that: for each agent j ∈ IE and

round k, let lk
j,min,E := infθ j min{supm j ∈Rk

j (θ j );m j ≤θ j
(θ j − m j ); supm j ∈Rk

j (θ j );m j>θ j
(m j − θ j )}, and

let l0
j,min := θ − θ .28

To show this, consider an internal type θi for some agent i ∈ IE . First notice that the pre-
vious statement is true for k = 1. Moreover, since the truthtelling profile is never eliminated,
Rk

i (θi ) is always non-empty. Next, consider round k and let mi be a message that is best reply
to a conjecture μE

L ∈ �(M−i ×�−i ) that is consistent with B, with round k − 1 rationalizabil-
ity; and is such that (i) for all j ∈ IE , μE

L it places probability one on positive misreports that
are lk

j,min,E apart from θ j if the absolute smallest ∂2
i jUi is positive and places probability one

on negative misreports if it is negative; and (ii) for all j /∈ IE , μE
L it places probability one on

the true type θ j being reported. (Here, we write Ui for the payoffs resulting from the given
t .) Now, if the considered mi is an extremal point of cl Rk−1

i (θi ), then we are done. However,

28. The intuition for lkmin,E is that it is a vector that keeps track of the minimum distance of worst-case positive
or negative misreports; resulting from interactions based on the irreducible E , among agents in IE .
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if it is an internal point, then ∂2
i i EU

μE
L

i (mi ; θi ) ≤ 0 and there is a small ε such that the mod-

ified function EU
μE

L ,ε

i := EU
μE

L
i (si ; θi )− ε(si − mi )

2 admits mi as a strict optimizer. For the
difference between the derivative of this function and the expected utility at the correspond-
ing truthtelling conjecture; using mean value theorems, we can establish that for mi there exist
messages si , s−i ,m−i such that m j reflects the distances in μE

L and

−∂2
i i EU

μE
L ,ε

i (si ; θi )(mi − θi ) =
∑

j �=i,i∈IE

∂2
i jUi (θi , s−i ; θ)(m j − θ j ).

Taking absolute values and lower bounding by the relevant minimum partial derivatives, we get
that for all small ε > 0

(−∂2
i i EU

μE
L

i (si ; θi )+ ε)|(mi − θi )| ≥
∑
j �=i

min
m,θ

|∂2
i jUi (m; θ)|lk−1

j,min,

which further implies for such mi that

|mi − θi | ≥
∑

j �=i minm,θ |∂2
i jUi (m; θ)|lk−1

j,min

|∂2
i i EU

μE
L

i (si ; θi )|
≥ [E lk−1

min ]i .

Thus, summarizing this, for each k, there is a kth round rationalizable message that is out-
side the set (θi ± [E · lk−1

min,E ]i ) ∩ int cl Rk−1
i (θi ), which when iterated gives that it is outside the

set (θi ± [Ek · l0min,E ]i ) ∩ (θ i , θ i ). Iteratively, one can see that l0min,E , l1min,E are strictly positive.
Assuming that lk−1

min,E is strictly positive, and by the irreducibility of the non-negative E , we have
that lkmin,E is strictly positive. From this, we can see that if the spectral radius ρ(|SEt

min|) ≥ 1,
then the sequence {Ek}∞k=1 of non-negative matrices is bounded away from 0 and thus there are
rationalizable messages for agents in IE which are distinct from their true types; and thus full
B-implementation fails.

Proof of Lemma 2. First, we give a characterization of belief-based terms under Bid . (The
following step is again used in Theorem 2 below.)

Step 1: (Belief-based components under Bid : characterization) A differentiable function Ki :
M → R satisfies the expected value condition in (A.2) if and only if it can be written as

Ki (m) =
∞∑

k=0

mk
i

∑
j �=i

H k
i j (m j ),

where {H k
i j } j �=i,k∈N are polynomials H k

i j : M j → R such that

for all m−i for which ml = m j for all j, l �= i :
∑
j �=i

H k
i j (m j ) = 0.

To show this step, assume, that Ki satisfies the expected value condition in (A.2) under Bid .
Since Ki is a continuous function, it can be approximated by Bernstein polynomials such that
Ki (m) = limn→∞

∑n
v=0 Ki (m/n)bv,n(m). Since Ki is bounded, this polynomial expression can

be reorganized into a power series of mi and thus there exist polynomials Hk : M−i → R such
that Ki (m) = ∑∞

k=0 Hk(m−i )mk
i .

In the next two sub-steps, we show that, since Ki satisfies the expected value condition in
(A.2) under Bid , these Hks are additively separable and at identical profiles, they are 0.
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Step 1a: (Each Hk is additively separable.) From the polynomial format and since Ki satisfies
the expected value condition, we have that for all k, E

bθi (Hk(θ−i )) = 0 for all beliefs bθi ∈ Bid
θi

for all θi . Fix a type θi . Assume, by way of contradiction, that Hk is not separable in its variables.
More specifically and without loss of generality, assume that Hk is not separable in its first argu-
ment and, to avoid confusions in indexing, refer to this agent as j . This step relies on comparing
two constructed joint distributions which both represent identical distributions but one of them
represents perfectly correlated random variables, while the other one represents independence;
that is, the j th random variable is independent from the other n − 2 variables while these n − 2
variables are again perfectly correlated.29

By the assumed non-separability, there exist θ1 ∈ [θ, θ ] and θ2 ∈ [θ, θ ] such that θ1 �= θ2

and

Hk(θ
1, θ2, . . . , θ2)− Hk(θ

2, θ2, . . . , θ2) �= Hk(θ
1, θ1, . . . , θ1)− Hk(θ

2, θ1, . . . , θ1). (B.5)

Consider the following two joint distributions over �−i . Let pcorr be such that it prescribes
perfect correlation for all agents in I \ {i}, and let pindep be such that it prescribes perfect cor-
relations for all agents in I \ {i} except for j , where j’s type is independent of the others’
types. Let these two joint distributions further be such that on all their margins, they are equal
and concentrated on the two specific values θ1 and θ2 such that for all k �= i , marg�k

pcorr =
marg�k

pindep, and on θ1: marg�k
pcorr({θk = θ1}) = marg�k

pindep({θk = θ1}) = 0.5, and on θ2:
marg�k

pcorr({θk = θ2}) = marg�k
pindep({θk = θ2}) = 0.5. Observe that both pcorr and pindep

are available under the belief restrictions Bid , formally, pcorr ∈ Bid
θi

and pindep ∈ Bid
θi

. For ease of
notations, let p be a probability measure over [θ, θ ] such that p({θk = θ1}) = p({θk = θ2}) =
0.5 and let f p be p’s distribution function.

Consider the perfectly correlated joint distribution pcorr, and observe that

E
pcorr
(Hk(θ−i )) =

∫
�−i

Hk(θ−i ) dpcorr =
∫ θ

θ

Hk(θ, θ, . . . , θ) f p dθ

= 0.5Hk(θ
1, θ1, . . . , θ1)+ 0.5Hk(θ

2, θ2, . . . , θ2).

Consider the joint distribution, with independence from θ j , pindep, and observe that

E
pindep

(Hk(θ−i )) =
∫ �−i

Hk(θ j , θ− j,−i ) dpindep =
∫ θ

θ

∫ θ

θ

Hk(θ j , θ, θ, . . . , θ) f p · f p dθ j dθ

= 0.25Hk(θ
1, θ1, . . . , θ1)+ 0.25Hk(θ

1, θ2, . . . , θ2)+ 0.25Hk(θ
2, θ1, . . . , θ1)

+ 0.25Hk(θ
2, θ2, . . . , θ2)

�= 0.5Hk(θ
1, θ1, . . . , θ1)+ 0.5Hk(θ

2, θ2, . . . , θ2).

The last negation follows from Equation (B.5), which recall was the consequence of non-
separability, and this negation implies that E

pindep
(Hk(θ−i )) �= E

pcorr
(Hk(θ−i )), which would

imply the contradiction that Ki does not satisfy the expected value condition. And therefore,
Hk must be separable.

Step 1b: (Each Hk gives 0 at identical profiles.) Fix a type θi . Consider beliefs of i which are
identical point-distributions; distributions which are concentrated on the same type of all other

29. This proof is a proof by coupling, a proof technique here applied to distributions over continuous support.
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OLLÁR AND PENTA IDENTICAL BUT UNKNOWN DISTRIBUTIONS 31

agents. Formally, consider a belief bθi such that, for some θ ∈ [θ, θ ], the probability bθi ({θ j =
θ for all j �= i}) is 1 for all j �= i . Then, bθi is included in Bid

θi
, moreover such point-beliefs

exist for all θ . Fix this (independent) point belief bθi . The expected value condition implies that
for the polynomial format 0 ≡ ∑∞

k=1 E
bθi (Hk(θ−i ))θ

k
i and thus for any k E

bθi (Hk(θ−i )) = 0. At
identical profiles as represented by bθi , this latter means that Hk(θ, θ . . . , θ) = 0 for all θ ∈
[θ, θ ], which proves that the Hk are 0 at identical profiles.

To prove the other direction of this Step 1, assume that Ki satisfies the two conditions above,
that is Hks are additively separable and Hks give 0 at identical profiles. For a type θi and belief
bθi ∈ Bid

θi
, by the separability of Hks and by the boundedness of Ki , the conditional expectation

is such that

E
bθi (Ki (θ)) =

∫
�−i

∞∑
k=1

Hk(θ−i )θ
k dbθi =

∫
�−i

∞∑
k=1

∑
j �=i

Hk j (θ j )θ
k dbθi

=
∞∑

k=1

∑
j �=i

[∫
� j

Hk j (θ j ) d marg� j
bθi

]
θ k (B.6)

Let p denote the identical distribution over [θ, θ ] such that p := marg� j
bθi for all j �= i . With

this notation, Equation (B.6) is

E
bθi (Ki (θ)) =

∞∑
k=1

∑
j �=i

[∫ θ

θ

Hk j (θ) dp

]
θ k =

∫ θ

θ

∞∑
k=1

∑
j �=i

Hk j (θ)θ
kdp

=
∫ θ

θ

Ki (θi , θ, θ, . . . , θ) dp,

and the two conditions,

E
bθi (Ki (θ)) =

∫ θ

θ

Ki (θi , θ, θ, . . . , θ) dp =
∫ θ

θ

0 dp = 0.

and thus Ki satisfies the expected value condition under Bid and thus proves the characterization
result in this Step.

If Ki satisfies the expected value condition in (A.1), then based on the characterization in
Step 1 of Proof of Lemma 1, we have

(1) ∂Ki (mi ,m−i )/∂mi = ∑∞
k=0 kmk−1

i

∑
j �=i H k

i j (m j ) = ∑∞
k=0 kmk−1

i 0 = 0 for all mi and m−i

such that ml = m j for all j, l �= i ; and
(2)

∑
j �=i (∂Ki (mi ,m−i )/∂m j ) = ∑

j �=i (
∑∞

k=0 mk
i

∑
s �=i H k

is(ms)) = 0 for all mi and m−i such
that ml = ms for all s, l �= i .

If (d, t) is Bid -IC, then by Lemma 3, there exist Ki : M → R which satisfies the expected
value condition in (A.1); and is such that ∂U t

i (m; θ)/∂mi = ∂U ∗
i (m; θ)/∂mi + Ki (mi ,m−i ).

This equation and the two properties above imply the points of the lemma. Finally, the
characterization’s application to SC-PC environments and constant curvature in t proves this
Lemma.

Proof of Theorem 2. Consider the loading transfers t l . It is useful to characterize the resulting
sets of rationalizable strategies from the step by step eliminations of Bid -rationalizability.
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32 REVIEW OF ECONOMIC STUDIES

Step 1: In every round k, for all i and θi , the set of rationalizable messages Rid,k
i (θi | t l) is a

closed interval around θi .30

To show this, note that by construction θi ∈ Rid,k
i (θi | t l). By the boundedness (which is

implied by the differentiability) of v, d, t l and by the SC-PC conditions, the best reply map is
single valued and continuous. Using this, one can show in a proof by induction that for every k,
the set of conjectures which are consistent with the k − 1-st round and with identicality is closed
in the sup-norm. By continuity of the best reply function, the set of best replies is closed, and
thus Rid,k

i (θi | t l) is a closed interval which contains θi .
Recall that agents are ordered according to the absolute value of the ratio of the sum of

their canonical externalities and own concavity, from the lowest to the highest, such that ξi j :=
∂2U ∗

i /(∂mi∂m j ) = −(∂2vi/∂x∂θ j ) · (∂d/∂θi ), ξi := ∑
j �=i ξi j/ξi i and |ξ1| ≤ |ξ2| ≤ · · · ≤ |ξn|.

Recall that under SC-PC, these canonical externalities and the cross-derivatives in the resulting
payoff functions in the loading mechanism (d, t l) are constants.

Step 2: In the loading mechanism, in every two rounds, the rate of shrinkage of the best reply
sets in the iterative eliminations is |ξ1ξ2| for all agents.

To show this step, consider the loading direct mechanism (d, t l) and the iterative elimination
process of Bid -rationalizability.

In the first round of iterations, the size of the intervals which contain the strategies that
survive the elimination derive from the loaded externality matrix such that:

SEl =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ξ1 0 . . . 0

ξ2 0 0 . . . 0

ξ3 0 0 . . . 0

...
...
...
. . .

...

ξn 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and [Rid,1
i (θi | t l)]i∈I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[θ1 ± ξ1] ∩ [θ, θ ]
[θ2 ± ξ2] ∩ [θ, θ ]
[θ3 ± ξ3] ∩ [θ, θ ]

...

[θn ± ξn] ∩ [θ, θ ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In the second round of iterations:

(SEl)2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ1ξ2 0 0 . . . 0

0 ξ1ξ2 0 . . . 0

0 ξ1ξ3 0 . . . 0

...
...

...
. . .

...

0 ξ1ξn 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and [Rid,2
i (θi | t l)]i∈I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[θ1 ± ξ1ξ2] ∩ Rid,1
i (θ1 | t l)

[[θ2 ± ξ1ξ2] ∩ Rid,1
i (θ2 | t l)

[θ3 ± ξ1ξ3] ∩ Rid,1
i (θ3 | t l)

...

[θn ± ξ1ξn] ∩ Rid,1
i (θn | t l)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

30. Note that this property is stated for tl but it extends in SC-PC to every bounded and smooth Bid -IC t .
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In the third round of iterations:

(
SEl

)3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ξ 2
1 ξ2 0 . . . 0

ξ1ξ
2
2 0 0 . . . 0

ξ1ξ2ξ3 0 0 . . . 0

...
...

...
. . .

...

ξ1ξ2ξn 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and [Rid,3
i (θi | t l)]i∈I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[θ1 ± ξ 2
1 ξ2] ∩ Rid,2

1 (θ1 | t l)

[θ2 ± ξ1ξ
2
2 ] ∩ Rid,2

2 (θ2 | t l)

[θ3 ± ξ1ξ2ξ3] ∩ Rid,2
3 (θ3 | t l)

...

[θn ± ξ1ξ2ξn] ∩ Rid,2
n (θn | t l)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

And so on, in the kth round of iteration, the size of the intervals which contain the strategies that
survive the elimination derive from the loaded externality matrix to the power k and, if k is even,
these intervals are given by

[Rid,k
i (θi | t l)]i∈I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[θ1 ± ξ
k/2
1 ξ

k/2
2 ] ∩ Rid,k−1

1 (θ1 | t l)

[θ2 ± ξ
k/2
1 ξ

k/2
2 ] ∩ Rid,k−1

2 (θ2 | t l)

[θ3 ± ξ
k/2
1 ξ

k/2−1
2 ξ3] ∩ Rid,k−1

3 (θ3 | t l)

...

[θn ± ξ
k/2
1 ξ

k/2−1
2 ξn] ∩ Rid,k−1

n (θn | t l)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and, if k is odd, these intervals are given by

[Rid,k
i (θi | t l)]i∈I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[θ1 ± ξ
(k+1)/2
1 ξ

(k−1)/2
2 ] ∩ Rid,k−1

1 (θ1 | t l)

[θ2 ± ξ
(k−1)/2
1 ξ

(k+1)/2
2 ] ∩ Rid,k−1

2 (θ2 | t l)

[θ3 ± ξ
(k−1)/2
1 ξ

(k−1)/2
2 ξ3] ∩ Rid,k−1

3 (θ3 | t l)

...

[θn ± ξ
(k−1)/2
1 ξ

(k−1)/2
2 ξn] ∩ Rid,k−1

n (θn | t l)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In words, this means that in every even round of iteration, for each type of agent 1, the rational-
izable set is either given by the previous rationalizable set or it is shrank to |ξ2| of this set and,
for each type of agent j �= 1, the rationalizable set is either the previous rationalizable set or it is
shrank to |ξ1| of this set. Similarly, it holds for every odd round of iteration that for each type of
agent 1, the rationalizable set is either the previous rationalizable set or it is shrank to |ξ1| of this
set and, for each type of agent j �= 1, the rationalizable set is either the previous rationalizable
set or it is shrank to |ξ2| of this set. Combining the conclusions for odd and even rounds, we get
that in every two rounds of iterations, for each type of each agent, the rationalizable set is either
unchanged or it is shrank to |ξ1ξ2| of this previous rationalizable set.

And thus this step implies that if the sum of canonical externalities is such that |ξ1ξ2| < 1,
then the size of the k-rationalizable sets converges to 0, and Rid

i (θi | t l) = {θi } for all i for all
θi . On the other hand, if |ξ1ξ2| ≥ 1, then |ξ2| ≥ 1 and in every round k, Rid,k

2 (θ2 | t l) = [θ2 ±
(θ − θ)] ∩ [θ, θ ] = [θ, θ ], in other words, all reports remain rationalizable for all types of agent
2 (and for all agents with an index larger than 2, too) and thus full implementation via t l fails
(which will lead to the characterizing inequalities in part 2 of this Theorem).
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Recall that in this proof for Part 1, we need to show that the allocation function d is Bid -
implementable if and only if it is Bid -implementable via the loading transfers t l in Equation
(4.2). The if part is straightforward. The only if part, relies on the following step, which shows
that a Bid -IC transfer scheme ensures that the step-by-step iterative eliminations result in sets of
k-rationalizable strategies whose sizes reflect the canonical externalitites.

Step 3: (Iterations and canonical externalities, given Bid .) Consider a twice differentiable,
Bid -IC direct mechanism (d, t). In relation to the canonical direct mechanism, for all θi, there
exist message profiles s+ and s+′

such that the message

proj
Rid,k−1

i (θi )

(
θi +

∑
j �=i ∂

2
i jE

bθi U ∗
i (s

+; θi )l
k−1,+
o,i

|∂2
i iE

bθi U ∗
i (s

+′; θi )|

)

is in Rid,k
i (θi ), and there exist message profiles s− and s−′

such that the message

proj
Rid,k−1

i (θi )

(
θi −

∑
j �=i ∂

2
i jE

bθi U ∗
i (s

−; θi )l
k−1,−
o,i

|∂2
i iE

bθi U ∗
i (s

−′; θi )|

)

is in Rid,k
i (θi ) too.

To show this step, fix θi ∈ (θ, θ) and fix some type θo ∈ (θ, θ) and some message mo ∈ (θ, θ)
for i’s opponents. Since t defines a Bid -IC mechanism, θi is best-reply to truthtelling con-
jectures. In particular, it is best-reply to the conjecture which, assigns probability 1 to the
event that all opponents types are θ j = θo and report their true types. Let this—concentrated
truth-reporting—conjecture be μT ∈ �(M−i ×�−i ). There exists also a message of i which is
best-reply to the conjecture that assigns probability 1 to the event that opponents are θ j = θo

and report mo regardless of their types. Denote this undominated strategy by mi and let
this—concentrated mo-reporting—conjecture be μL ∈ �(M−i ×�−i ). Note that both μT and
μL are consistent with Bid . Consider the message mi which is best reply to μL .

First, if mi is an interior point, then we have that

0 = ∂i EUμL
i (mi ; θi )− ∂i EUμT

i (θi ; θi ) = ∂i EU ∗
i
μL (mi ; θi )− ∂i EU ∗

i
μT (θi ; θi )

= ∂i EU ∗
i
μL (mi ; θi )− ∂i EU ∗

i
μL (θi ; θi )︸ ︷︷ ︸

difference due to own action

+ ∂i EU ∗
i
μL (θi ; θi )− ∂i EU ∗

i
μT (θi ; θi )︸ ︷︷ ︸

difference due to external (others’) actions

,

where the first equality holds because of the canonical representation of (d, t) in Lemma 3, the
of belief-based terms in step 1 of Theorem 1 and because of the conjectures μT and μL are
constructed such that they satisfy identicality on the margins of the messages too.

In this step, we simplify the notation of those profiles in which opponents’ elements are
identical in that instead of (so, . . . , so, θi , so, . . . , so) we write (θi , so

−i ).
Examining the two differences above, notice that by the mean value theorem, there exists si

such that

∂i EU ∗
i
μL (mi ; θi )− ∂i EU ∗

i
μL (θi ; θi ) = ∂2

i i EU ∗
i
μL (si ; θi )(mi − θi ),

and there exists so such that

∂i EU ∗
i
μL (θi ; θi )− ∂i EU ∗

i
μT (θi ; θi ) =

∑
j �=i

∂2
i jU

∗
i (θi , so

−i ; θi , θ
o
−i )(mo − θo).

Note that any kth-round best-reply mi is either inner point (as above) or a boundary point. Let
bl ≤ bu be the boundary points of the set of k − 1-rationalizable messages of θi .
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Second, if mi is boundary such that mi = bl , then, because mi is best reply,

0 ≥ ∂i EUμL
i (mi ; θi )− ∂i EUμT

i (θi ; θi ) = ∂i EU ∗
i
μL (mi ; θi )− ∂i EU ∗

i
μT (θi ; θi ),

which, following the steps as above, gives that there exists si and so such that

0 ≥ ∂2
i i EU ∗

i
μL (si ; θi )(mi − θi )+

∑
j �=i

∂2
i jU

∗
i (θi , so

−i ; θi , θ
o
−i )(mo − θo).

This gives that mi = bl only if there exists profiles such that

θi −
∑

j �=i ∂
2
i jU

∗
i (θi , so

−i ; θi , θ
o
−i )(mo − θo)

∂2
i i EU ∗

i
μL (si ; θi )

≤ bl = mi .

Third, if mi is boundary such that mi = bu , then, because mi is best reply,

0 ≤ ∂i EUμL
i (mi ; θi )− ∂i EUμT

i (θi ; θi ) = ∂i EU ∗
i
μL (mi ; θi )− ∂i EU ∗

i
μT (θi ; θi ),

which gives that, for some profile,

θi −
∑

j �=i ∂
2
i jU

∗
i (θi , so

−i ; θi , θ
o
−i )(mo − θo)

∂2
i i EU ∗

i
μL (si ; θi )

≥ bu = mi .

For this step, let l0,+
i,o = l0,−

i,o := θ − θ . To measure the size of higher-than-true misreports, let

lk,+
i,o := min j �=i maxθ j max

m j ∈RatB
id ,k

j (θ j )
(m j − θ j ) and similarly, for lower-than-true misreports,

let lk,−
i,o := min j �=i maxθ j max

m j ∈RatB
id ,k

j (θ j )
(θ j − m j ).

We summarize the above three cases and note that, for every θi , one can set θo and mo such
that mo − θo = lk−1,+

i,o , which gives that there exists so and si such that

mi = proj
Rid,k−1

i (θi )

(
θi −

∑
j �=i ∂

2
i jU

∗
i (θi , so

−i ; θi , θ
o
−i )l

k−1,+
i,o

|∂2
i iU

∗
i (si ,mo

−i ; θi , θ
o
−i )|

)
∈ Rid,k

i (θi ),

Now, for every θi , it is also possible to set θo and mo such that mo − θo = −lk−1,−
i,o . Considering

the corresponding kth round best reply mi being interior or boundary, and following the previous
steps we have that there exists s ′

o and s ′
i such that

mi = proj
Rid,k−1

i (θi )

(
θi +

∑
j �=i ∂

2
i jU

∗
i (θi , so′

−i ; θi , θ
o
−i )l

k−1,−
i,o

|∂2
i iU

∗
i (s

′
i ,mo

−i ; θi , θ
o
−i )|

)
∈ Rid,k

i (θi ),

which, completes the proof of this Step.
Step 3 as established above is the key step to the if and only if result. In words, it implies

that in any Bid -implementing direct mechanism, the externalities cannot be reduced beyond the
sum of externalities in the canonical direct mechanism. The consequence of such irreducibility
of externalities is reflected in each k-rationalizable set of the step-by-step iterations; for all Bid -
IC t . Next, the final step below formalizes the observation that it is the loading transfer scheme
that minimizes the size of rationalizable sets, given the constraint on necessary externalitites and
therefore leads to full implementation whenever that is possible.
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Step 4: We use Step 3 of this proof to show that in every round k, for all i and θi , the set of
rationalizable messages of the loading direct mechanism Rid,k

i (θi | t l), which we characterized
in Step 1, are contained in Rid,k

i (θi | t) for any partially implementing direct mechanism (d, t).
To show this, fix a direct mechanism (d, t). Under SC-PC environments, Step 3 implies that

every k-rationalizable interval of θi of any implementing (d, t) direct mechanism contains the
following set:

proj
Rid,k−1

i (θi | t)

[θi − ξi · lk−1,−
i,o , θi + ξi · lk−1,+

i,o ] ⊆ Rid,k
i (θi | t).

Recall that lk−1,+
i,o is the largest distance between positive misreport and the true type, which can

arise for all opponents of i based on the previous round of iteration and lk−1,−
i,o is similarly this

largest distance for negative misreport.
Next, we compare the k-rationalizable sets of (d, t) to the k-rationalizable sets of (d, t l),

where the latter sets are already given in Step 2 of this proof. In particular, for the first round of
iteration,

[θi − ξi , θi + ξi ] ∩ [θ, θ ] ⊆ Rid,1
i (θi | t).

For the second round of iteration,

[θ1 − ξ1ξ2, θ1 + ξ1ξ2] ∩ [θ, θ ] ⊆ Rid,2
i (θi | t) if i = 1

and [θi − ξiξ1, θi + ξiξ1] ∩ [θ, θ ] ⊆ Rid,2
i (θi | t) if i �= 1.

For the third round of iteration,

[θ1 − ξ1(ξ1ξ2), θ1 + ξ1(ξ1ξ2)] ∩ [θ, θ ] ⊆ Rid,3
i (θi | t) if i = 1

and [θi − ξi (ξ1ξ2), θi + ξi (ξ1ξ2)] ∩ [θ, θ ] ⊆ Rid,3
i (θi | t) if i �= 1.

For the forth round of iteration,

[θ1 − ξ1(ξ1ξ
2
2 ), θ1 + ξ1(ξ1ξ

2
2 )] ∩ [θ, θ ] ⊆ Rid,4

i (θi | t) if i = 1

and [θi − ξi (ξ
2
1 ξ2), θi + ξi (ξ

2
1 ξ2)] ∩ [θ, θ ] ⊆ Rid,4

i (θi | t) if i �= 1.

Observe that in these expressions on the left-hand side, the iterated sets derived in Step 3, for
every k, coincide with the iterated rationalizable sets of the loaded direct mechanism (d, t l),
and thus by induction, for all k, Rid,k

i (θi |t l) ⊆ Rid,k
i (θi |t).31 This latter holds for any partially

implementing direct mechanism (d, t), which completes the proof of this Step.
Turning to Part 1, if t l ensures full Bid -implementation, then, clearly, d is fully Bid -

implementable. If the direct mechanism (d, t) achieves full Bid -implementation, by the con-
tainment above, we must have that as k → ∞, |Rid,k

i (θi |t l)| → 0, and thus (d, t l) achieves full
Bid -implementation too, which completes the proof of Part 1 of this Theorem. Applying Lemma
1 to the loaded externality matrix, completes Part 2 of this Theorem.

31. Notice that the matrix algebraic content of this latter line is that |SEl |k1 ≤ |SEt
max|k1 for all k. By Gelfand’s

formula (that is by ρ(A) = limk→∞ ||Ak ||1/k ) and by the definition of the norm, we have that ρ(|SEl |) ≤ ρ(|SEt |)
for every t that is B-IC.
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