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Summary

Air pollution is the biggest environmental risk to global health and it is estimated that,
globally, 7 million deaths can be attributed to air pollution each year (WHO, 2018).
The World Bank estimates that, in 2016, the overall cost of ambient air pollution to
the global economy was an estimated US $5.7 trillion or 4.4 per cent of global GDP
(World Bank, 2016). A number of different air pollutants have been associated with
adverse health effects, including fine particulate matter (PM2.5), nitrogen dioxide and
ozone. In studies of the effects of air pollution, exposure information is often obtained
from a fixed number of monitoring sites within the region of interest. However, an
increasing number of models of air pollution are being used that provide estimates of
concentrations. These are used to represent exposures at every location in a health
study area, rather than just at a number of fixed measurement locations. Another
use of modelling of air pollution is to provide short-term forecasts that can be used to
inform the behaviour of vulnerable people.

In this thesis, we develop statistical approaches to modelling, and forecasting, daily
concentrations of PM2.5 in urban areas. We consider two different approaches, both in
terms of model formulation and performing inference. The first approach is Dynamic
Space-Time Models (DSTM). Under this framework, a data model relates observa-
tions (measurements) to a process model that specifies the dynamic evolution of the
”true” underlying process. This approach is implemented using two different methods
for estimation: methods of moments and expectation-maximisation. We also develop
an approach using Bayesian Hierarchical Spatio-Temporal modelling (BHSTM). The
inference is done using computational efficient methods for Bayesian inference (inte-
grated nested Laplace approximations). This model allows predictions of daily PM2.5

over both space and time, which can be used to interpolate both past measurements
and future predictions. Both approaches were implemented using data from Greater
London, with their performance evaluated in terms of their ability to predict daily con-
centrations of PM2.5 over time at different measuring sites. Both methods were able
to accurately predict future values of daily PM2.5 at different locations, with one-day
ahead predictions being more accurate than those used for longer periods, as might be
expected. One of the major advantages of the BHSTM approach is that it provides a
straightforward method for producing estimates of the uncertainty that is associated
with predictions.
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Chapter 1

Introduction

Air pollution is a significant risk to public health and globally is considered to be the
leading environmental risk to health Davies (2017); World Health Organization (2016);
Royale College of Physicians (2016); Parliament UK (2018) The WHO has estimated
that 4.2 million deaths per year worldwide are attributed to ambient (outdoor) fine
particulate matter air pollution (PM2.5). A problem of local and national concern is
the large scale pollution of the atmosphere. Modern research into air pollution started
from the middle of the twentieth century. Since then, there has been an increasing
interest about the possible effects of air pollution on health. This interest was gener-
ated by several early air pollution episodes, one of them in Belgium (1930). In this
case, 63 people died due to high concentrations of sulfur dioxide in the Meuse River
Valley (Heimann, 1961; Ayres et al., 1972; Pope et al., 1995; Anderson, 2009). Another
incident occurred in 1948 when 20 people died from cardiac and respiratory disease and
approximately 6,000 people suffered from respiratory problems in Donora, Pennsylva-
nia (Anderson, 1967; Snyder, 1994; Chew et al., 1999). One final example occurred in
1950, when 22 people died and 320 were hospitalised mainly because of an accidental
release of hydrogen sulfide at Poza Rica, Mexico (Collins & Lewis, 2000).

A number of different air pollutants have been associated with adverse health effects,
including fine particulate matter, nitrogen dioxide and ozone. Particle matter (PM)
consists of fine solid and liquid droplets, other than pure water, that are dispersed in air.
PM originates from natural as well as anthropogenic sources. Natural sources include:
wind-blown soil dust, volcanic ash, forest fires, sea salt and pollen. Anthropogenic
sources include: thermal power plants, industries, commercial and residential facilities
and motor vehicles which use fossil fuels. A major source of these particles, and the
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other pollutants, are combustion processes, in particular diesel combustion. Many
studies have implicated particle matter air pollution as contributing to the incidence
and severity of respiratory disease Pope & Dockery (1992); Pope et al. (1995). Decreases
in pulmonary function associated with particle pollution levels have been observed.
PM pollution is a concern because it contains toxic metals and sulphuric acid, and it
can penetrate the respiratory system. Several epidemiological studies have consistently
reported associations between a variety of pollutants and both mortality and morbidity,
Laden et al. (2000); Dominici et al. (2000, 2002).

Nitrogen dioxide is a primary gas released into the atmosphere after burning of fuel. It
is a strong oxidising agent that plays an important role in atmospheric transformation
reactions and is converted into gaseous nitric acid, toxic organic nitrates and tropo-
spheric ozone (a major component of smog). It is identified as one of the important
air pollutants having significant impacts on human health. High NO2 concentration
causes short-term exposure health problems, such as cardiovascular and respiratory dis-
eases. Cancer and stunted mental development in children are examples of long-term
exposure diseases related to this pollutant. There are natural sources of NO2, such
as atmospheric oxidation of ammonia, microbial activities in soil and lightning, but
anthropogenic sources are more prevalent than natural sources. Due to the oxidation
processes in the atmosphere, oxides of nitrogen and primary NO convert into NO2. In
the presence of O3, the reaction happens at a high rate. In most of the cases, formation
of NO2 is under the influence of ground-level O3.

Pollutants in general have varying atmospheric lifetimes, but all can persist in the
environment, including PM. The atmospheric lifetime of particulate matter is strongly
related to particle size, but may be as long as 10 days for particles of about 1mm in
diameter Onursal & Gautan (1997); Richter & Williams (1998).

In Europe, there is a long history of national and international regulatory approaches
to air quality management. Starting with the Clean Air Act of 1956 in the United
Kingdom, successive legislation, including the European emission standards passed in
the European Union in 1992, has succeeded in reducing ambient air pollution levels over
time (Shaddick & Zidek, 2014; Turnock et al., 2016; Guerreiro et al., 2014; Kuklinska
et al., 2015).

In recognition of these risks associated with fine particle matter, national and inter-
national ambient air quality standards have been set for a range of pollutants. These
standards include particle matter with an aerodynamic diameter equal or less than a
10µg/m3 and for even smaller particles, 2.5µg/m3, (PM10 and PM2.5 respectively) as
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well as other pollutants, including NO2 and ozone.

Current statutory limits state that annual average concentrations of NO2 and PM2.5

should not exceed 40 µg/m3 and 25 µg/m3 respectively (European Commission, 2017).
The World Health Organisation (WHO) Air Quality Guidelines (AQG), that are de-
signed to protect the public from the adverse health effects of air pollution were, until
recently, the same as the EU statutory limits for NO2, stating annual averages should
not exceed 40 µg/m3, but much lower than the EU statutory limits for PM2.5, stating
annual averages should not exceed 10 µg/m3 (World Health Organization, 2005). In
2021, the WHO re-issued the air quality guidelines and notably reduced guideline for
annual average PM2.5 from 10 µg/m3 to 5 µg/m3 (Weltgesundheitsorganisation et al.,
2021), reflecting the increasing evidence of adverse health effects of air pollution at
lower levels.

Many epidemiological research studies across the world have shown that exposure to
poor air quality impacts on people’s health. Some effects are nearly immediate, known
as acute effects, while some happen over a longer term, known as chronic effects.

The short terms effects of air pollution on health are especially great during air pollution
”episodes” (Anderson, 1999). Periods of higher levels tend to occur in episodes that
can last several days. These episodes often happen when the weather conditions cause
pollutant concentrations to build up above normal levels. They can also be caused by
the route the air has travelled over previous days. For example, if the air passes over
Europe, it can pick up pollutants on the way. This is different from changes in local
sources, i.e traffic on the road, which tend to remain fairly constant in general. In
the past, episodes in the winter have been known as ”winter smog” or ”pea soupers”.
The most infamous incident caused by coal burning was the London smog in 1952.
It is often referred to as the ”Great Smog”, in which levels of black smoke, an early
measure of particulate matter, exceeded 4,500 µg/m3. That episode lasted five days
and has been associated with between 4,000 to 12,000 deaths (Polivka, 2018). These
extreme episodes happened by burning huge quantities of domestic and industrial coal.
However, due to the availability of mains natural gas and the Clean Air Acts, these
kind of regular episodes seen in the 1950s have been eliminated, at least in the UK.

Nowadays, in London, air pollution is particularly high between 3 and 8 times a year.
When this happens, air quality advice is broadcast by the Mayor and Transport for
London across the city. This happens at tube stations, bus stops and along major
roads. The aim is to allow the public, and particularly vulnerable people, to make
informed choices. People decide how much time they spend outdoors, where they go,
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and what they do. Daily information on air pollution in London can be found at
www.londonair.org.uk, which also has information on predicted air pollution episodes.

The World Meteorological Organization (WMO) Global Atmosphere Watch (GAW)
Programme runs the Global Air Quality Forecasting and Information System (GAFIS).
It provides air quality forecasting and information systems, from the global level to
more local levels for urban areas. Daily air quality forecasts at the global scale are
provided by institutions such as the Copernicus Atmosphere Monitoring Service. They
provide global air quality forecasts of the effects of anthropogenic emissions, desert
dust and wild fires on air quality at a resolution of about 40 km (Zhang et al., 2020).
Regional forecasts can be more accurate than the global forecast, as they use more
detailed spatial information of the emission, the chemistry and the transport. In North
America and Europe, such regional models are already operational, including the DE-
FRA forecasts. In the UK, these forecasts are provided by the Met Office (https://uk-
air.defra.gov.uk/forecasting). The Met Office model is a regional model that represents
the background and regional air quality and has a 12km grid resolution. However, it
does not represent the localised increases in pollution that happen in cities, roads or
in urban centres.

Numerical models are based on existing knowledge of a number of factors that will
affect air quality, including:

• Emissions of pollutants

• Transport and dispersion of pollutants by winds

• Chemical reactions amongst reactive gases and aerosols

• Removal processes, such as rain and deposition on surfaces.

These chemical transport models (CTMs) (Brauer et al., 2003) predict concentrations
of air pollutants over various spatial locations, but have a number of limitations. The
numerical computer models that represent these deterministic models can take a long
time to run and the uncertainty associated with these estimates is not generally avail-
able. Also, they generate outputs for grid cells which may be large (Kalnay, 2003)
and although their output may be perfectly valid at that scale they do not reflect local
spatio–temporal patterns in air pollution levels.

A different approach is to use statistical models that are based on local measurements of
data and model the spatial and temporal relationships in data to produce predictions.
These predictions can either be for previous time points, i.e. producing estimates of
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underlying levels of pollution accounting for potential errors or anomalies in recorded
data, or for filling in missing data, or for predicting future periods in time (forecast-
ing). Unlike numerical models, statistical models are designed to provide estimates of
uncertainty. Statistical models, in particular, spatio-temporal statistical models, are
the focus of this thesis.

A traditional approach to performing spatial interpolation of air pollution data, in
order to produce spatial predictions at unmeasured locations, has been kriging. For
further details, see chapter 6. Some examples can be found in Cressie (1993), Chiles
& Delfiner (1999), Stein (1999) Janssena et al. (2008) Montero et al. (2015). Bayesian
versions of kriging have been developed and applied to air pollution data in a number
of studies, for early examples, see Le & Zidek (1992); Handcock & Stein (1993); Ecker
& Gelfand (1997). The use of Bayesian modelling to perform spatial modelling, based
upon similar concepts to kriging includes Shaddick et al. (2013) who modelled NO2 in
Europe using MCMC (see section 3.4) and Vicedo-Cabrera et al. (2013) who modelled
NO2 and SO2 in Italy to provide exposure estimates for a health study. Both of these
last two examples used WinBUGS (Lunn et al., 2000) to perform the MCMC.

The idea of extending spatial modelling to spatio-temporal modelling of air pollution
within a Bayesian context has been explored by a number of authors. Furthermore, it
has seen many advances in recent years. For example, Zidek et al. (2002) implemented
an approach suggested by Le et al. (1997), to model the space-time field of daily PM10 in
Vancouver, Canada. For simplicity, they analysed each monitoring site separately and
chose an AR(1) model to represent the temporal structure. In this study, a hierarchical
Bayesian model is proposed and the spatial covariance is not specified in the first level.
Then, uncertainty about the spatial covariance is incorporated into a second level prior.
In Shaddick & Wakefield (2002), a hierarchical dynamic linear model is proposed, with
spatial structure on the residuals, to model daily observations of four pollutants at
eight monitoring sites in London. They considered a separable model, implemented via
Markov chain Monte Carlo sampling (using WinBUGS). Sahu et al. (2007) developed
a spatio-temporal model for the analysis of daily ozone observations in Ohio, U.S.
They fitted a stationary auto-regressive model for the temporal correlation and an
exponential covariance structure for the spatial correlation. The model is specified
within a Bayesian framework and is fitted using MCMC methods. In another example,
(Lee & Shaddick, 2010) used a spatio-temporal model for four pollutants (CO, NO2,
O3 and PM10) in London, again using MCMC, incorporating the predictions into the
model for analyses of health risks.

More recently, there has been great interest in using computational efficient methods
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of performing Bayesian inference, notably INLA (Rue et al., 2009) when fitting spatio-
temporal models to air pollution data. Cameletti et al. (2011, 2013) used a separable
spatio-temporal model to analyse PM10 data in the Po valley (northern Italy). They
proposed a representation of a Gaussian Field with Matérn covariance function as
a Gaussian Markov Random Field. This was done through the Stochastic Partial
Differential Equations (SPDE) approach (Lindgren et al., 2011). This is the approach
used in chapter 7 and more details on the use of INLA and the SPDE approach can be
found in Section 7.2.

In other examples, (Shaddick et al., 2018b,a) used INLA when fitting a Bayesian hi-
erarchical model to global air pollution that had nested random effects representing
countries and region. They used the model to produce high-resolution estimates of
PM2.5 on a grid (10o × 10o resolution) that were used for health burden calculations.
This model was extended in Shaddick et al. (2020b) to a spatio-temporal model, fol-
lowing the same structure as Cameletti et al. (2013) including a continuous spatial
process and a random walk. This allowed for within grid-cell variability, where there
was enough local data and the use of multi-year measurements. This model was used in
Shaddick et al. (2020a) to estimate trends in global air pollution and to provide one of
the United Nations Sustainable Development Goal (SDG) indicators related to air pol-
lution: SDG 11.6.2 (annual average exposure to fine particulate matter air pollution in
cities). Another example of using INLA in this context can be found in Morrison et al.
(2016) who modelled the relationships between healthcare utilisation and air pollution
in British Columbia, Canada. They used a multivariate temporal model to forecast
dispensations of medication and visits to primary care (for asthma-related complaints)
during increased levels of air pollution (PM2.5) during a wildfire season.

1.1 Overview of thesis

The overall aim of this thesis is to develop and compare different prediction models
for daily concentrations of PM2.5. Two different approaches are explored to produce
predictions of air pollution levels, using data from London to show how they can be
implemented.

The two approaches that we consider are:

1. Dynamic Space-Time Models (DSTM)

2. Bayesian Hierarchical Spatio-Temporal Models (BHSTM)

The fundamental difference in these two approaches is how spatial dependence is in-
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corporated into the models. In the first approach, dependencies between data from
different locations is integrated into the transition matrix that governs how the un-
derlying spatio-temporal process (the underlying pollution field) transitions from one
time to the next. The DSTM approach has a number of advantages, including the fact
that dependencies are based solely on correlations between the data and so can readily
be used with large datasets that include both spatial data and complex interactions
between multiple pollutants.

One disadvantage is the lack of a defined spatial structure, i.e. a model that determines
the spatial relationships between data from different locations. This means that it is
not straightforward to perform spatial prediction, i.e. predict levels of pollutants at
unmeasured locations, which would enable maps to be produced. This ability is very
useful in understanding spatial patterns in pollutants and in being able to assign levels
of pollution to subjects in epidemiological studies.

In the second approach (BHSTM), spatial dependence is explicitly modelled, which
enables such prediction (at unmeasured locations) but does require knowledge of the
nature of the dependence, which, if not known entirely (which will usually be the case),
will mean making assumptions that simplify the process. Pollutants such as PM2.5

are complex combinations of particles and therefore, making such assumptions can be
restrictive and possibly unrealistic. For example, assuming space-time anisotropy into
a model to analyse PM2.5 is unrealistic and often there may not be enough data to fully
justify all assumptions. However, in all modelling it is necessary to take a pragmatic
approach: balancing the need to make such assumptions, in order to achieve the goals
of the analysis and produce useful results, e.g. spatial mapping, while respecting the
complexity of the underlying processes being studied (in this case air pollutants) and
the data it generates.

In this thesis, we investigate the use of these two different approaches in the temporal
and spatial prediction of air pollutants and highlight the advantages, and disadvan-
tages, of each. In each case, we evaluate the ability of the different methods to produce
predictions and short-term forecasts of PM2.5. Depending on the method being con-
sidered, we perform evaluation based on the models ability to predict over time and/or
space. For example, in temporal prediction, three days of data from a specified time
period are omitted from the dataset used to fit the model, and the model is then used
to predict the concentrations on those days. The accuracy of the predictions is assessed
by calculating the mean squared prediction error (MSPE).

Throughout the thesis, these models are implemented, using data from the London
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Air Quality Network. Then, they are compared with respect to their ability to model
spatio-temporal patterns in the data. Following this introduction, chapter 2 provides
some basic exploratory analysis on this to gain insights and to identify some trends
and outliers in the air pollution data from London.

The remainder of the thesis is organised as follows. Chapter 3 introduces the concepts
of hierarchical modelling, including both frequentist and Bayesian approaches. This
chapter also includes a background to Bayesian inference, which is the basis of the
latter chapters of the thesis. In chapter 4, an overall view of spatio-temporal statistical
modelling is given, including details of covariances, semi-variograms and an application
of empirical based approaches of these to the London data.

In chapter 5, the framework for dynamical spatio temporal models (DSTM) is pre-
sented. DSTMs are different from the approaches described in chapter 6 and 7, which
are largely based upon the characterisation of the covariance and how it represents de-
pendencies structure in space and time. Some methods for inference, such as Bayesian
inference using INLA (see chapter 7 and (Rue et al., 2009) for more details) can be
computationally efficient. However, in some cases it may be more efficient to use dy-
namical models to characterise (spatio-temporal) dependencies, leading to dynamic
spatio-temporal models (DSTMs) (Wikle & Hooten, 2010).

One of the big challenges with the specification of such models has been the curse
of dimensionality. Even with fairly simple models (for example, linear models based
on first-order Markovian temporal structure with Gaussian errors), they can be over
parameterised. One solution is to use a hierarchical model which helps with this by
allowing dependency among groups of parameters. Within a DSTM, the main objec-
tive is to make inference on the unobserved states, which are the underlying process
from which measurements are made (with noise). The first step is choosing an ade-
quate DSTM representation, then the estimation is done by computing the conditional
distributions of the quantities of interest, given the available information and using
the Kalman filter or smoother. In chapter 5, details of estimation for linear DSTMs
with Gaussian errors are given based upon methods developed for state-space models
with consideration of methods for dimension reduction. A selection of methods for
inference (including methods of moments and an EM algorithm) are implemented us-
ing the London air quality data and evaluated in respect to their abilities to produce
accurate short-terms forecasts of PM2.5. An advantage of this approach is the ability
to analyses multiple pollutants, for example PM2.5 and PM10, NO2) simultaneously in
a computationally efficient manner, without the need to specify the possibly complex
relationships between them (and over time and space).
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In chapter 6, covariance-based methods for spatio-temporal modelling are described,
including kriging. It is one of the most commonly used methods used for spatial predic-
tion, and has been extended for the spatio-temporal case. Kriging is a covariance-based
method that can be used to interpolate, in which interpolated values are modelled by
a Gaussian process. Different types of kriging models are discussed, including simple
kriging, ordinary kriging and universal kriging, and their spatio-temporal extension.
This chapter also contains a discussion of kriging methods that incorporate dimension
reduction, including fixed rank kriging (FRK). The chapter includes the application of
spatio-temporal kriging and FRK to the London air quality data. They have shown
their ability to produce maps of air pollution based on measurements at a distinct
number of locations.

In chapter 7, we describe a spatio-temporal model within a Bayesian hierarchical mod-
elling framework. It is based upon a Gaussian spatial field, in which spatial structure
defined by its covariance and a state process is characterised by a first order autore-
gressive process. To allow for efficient computation when doing Bayesian inference, we
use the stochastic partial differential equation (SPDE) introduced by Lindgren et al.
(2011). This model is applied to the log(PM2.5) data from London and evaluated with
respect to its ability to predict accurately over time and space. This approach requires
the spatial relationship between data from different locations to be explicitly stated,
i.e. the form of the relationship between correlation and distance (between locations),
which will require making certain assumptions as described above) but does mean that
spatial prediction is possible and thus it can be used to produce maps of pollution over
the study area.

Finally, chapter 8 provides a summary of the key findings from this thesis, together
with overall conclusions and suggestions for future research.
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Chapter 2

Air pollution monitoring in
London

The amount of monitored pollution data that is available is increasing around the
world. In London, air pollution remains a serious problem. Workplaces and people
are concentrated not only in the heart of the city, but also in surrounding areas. As
one of the largest cities in Europe, its data is provided by the London Air Quality
Network (LAQN). This was formed in 1993 to coordinate and improve air pollution
monitoring in London. The majority of London’s 33 boroughs supply measurements to
the network with additional measurements from local authorities surrounding London,
thereby providing an overall perspective of air pollution in London and the Home
Counties. The LAQN is operated and managed by the Environmental Research Group
(ERG) at Imperial College London.

The R package ggmap together with Open Street or Google Maps can be used to display
spatial data. London suffers from high levels of pollution in a similar way to most
major UK cities. Due to the interest in reducing these levels, it is natural that London
and its surroundings have an extended air quality network.

NO2, PM10 and PM2.5 daily observations will be used in 19 different stations across
the Greater London area from 01 August 2015 to 15 March 2016. All data is accessible
trough the R package openair, (R Core Team, 2020; Carslaw, 2019; openair web page,
2021). This package was developed for the purpose of analysing atmospheric composi-
tion data, Carslaw & Ropkins (2012). It includes some features such as access to UK
air pollution monitoring sites and utility functions.
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The R package ggplot2 can also be used to display spatial data. London is currently the
main area failing to comply with the legally binding limits set by the EU, London Air
Quality Network (2018). The size of the city, along with a dense road network and high
buildings, means that central London tends to be one of the most polluted cities in the
UK. Pollution can build up in London when it becomes trapped between buildings, or
in the local area during invariable weather. Most of the monitoring sites are located in
the central area along the River Thames. The 19 sites part of the air quality network in
Greater London can be seen in figure 2-1 and their respective coordinates, code names
and site type in table 2.1.

Some considerations have been taken for the selection of the monitoring sites. The first
condition is that sites must lie between latitude: 51.0 to 52.0 and longitude: -0.6 to
0.4. Another condition is that PM2.5 must be measured at the monitoring location.
Although there are a few more sites monitoring this pollutant, these ones does not have
measurements during the period of interest, therefore they were discarded. The pe-
riod of interest includes from 01/August/2015 to 14/March/2016 and three more days
to evaluate the forecasts. Two more intervals of time were considered, from 12/Au-
gust/2015 to 25/March/2016 and from 01/March/2015 to 13/October/2015. Finally,
it should be notice that all the observations were imported from openair through the
importKCL function.

2.1 Exploratory Analysis

It is a common practice in meteorology to consider log-scale for pollutant observations,
in particular PM data is measured in µg/m3 units. The reason for making a logarithmic
transformation of the raw data and working with the log of PM is that PM daily
measurements do not follow a Gaussian distribution. This convention will be followed
in this work for fitting and plotting purposes, all comparisons were made in the original
scale.

The locations of the monitoring sites to be analysed can be seen in Figure 2-1 and their
respective coordinates in table 2.1. As one can observe, most of these sites are located
in the central area of London, the coordinates are also shown. The codes and names
correspond to those sites considered for this thesis, it is accessible through openair.
The administrative boundaries for London boroughs in figure 2-1 were taken from the
Greater London Authority (GLA). The London data tore is an open data-sharing
portal where free data relating to the capital can be found.

In trying to explore the data, there are particular challenges in spatio-temporal data vi-
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Longitude Latitude Code Site name Site type
-0.125848 51.522287 BL0 Camden-Bloomsbury Urban Background
0.184877 51.465983 BX1 Bexley-Slade Green Suburban

-0.175284 51.544219 CD1 Camden-Swiss Cottage Kerbside
-0.128774 51.527975 CD9 Camden-Euston Road Roadside
-0.077765 51.513847 CT3 City of London-The Aldgate School Urban Background
0.074003 51.490532 GN0 Greenwich-A206 Burrage Grove Roadside
0.017697 51.492571 GN2 Greenwich-Millennium Village Industrial
0.095111 51.486957 GN3 Greenwich-Plumstead High Street Roadside
0.070766 51.452580 GR4 Greenwich-Eltham Suburban
0.040725 51.456357 GR9 Greenwich-Westhorne Avenue Roadside

-0.068218 51.599302 HG1 Haringey-Haringey Town Hall Roadside
-0.298775 51.617327 HR1 Harrow-Stanmore Urban Background
0.205460 51.520787 HV1 Havering-Rainham Roadside

-0.213492 51.521046 KC1 Kensington and Chelsea-North Ken Urban Background
-0.178809 51.495503 KC2 Kensington and Chelsea-Cromwell Road Roadside
-0.441627 51.488780 LH0 Hillingdon-Harlington Urban Background
-0.039641 51.474954 LW2 Lewisham-New Cross Roadside
-0.141661 51.389286 ST5 Sutton-Beddington Lane north Industrial
-0.008418 51.515046 TH4 Tower Hamlets-Blackwall Roadside

Table 2.1: Coordinates, codes names and site type of the air quality network in Greater
London composed by 19 monitoring sites.

sualisation, since one has at least three dimensions to consider. Exploring data through
visualisation or summaries can be difficult, since one has one or more dimensions in
space and one in time.
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Figure 2-1: Air quality network in Greater London composed by 19 monitoring sites
obtained from the LAQN.
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log(PM2.5) at Camden − Bloomsbury 2016 
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Figure 2-2: Calendar plot for log-scale PM2.5 concentrations from 01/August/2015 to
15/March/2016 at Camden-Bloomsbury (BL0), one of the sites from the air quality
network in Greater London area.
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Sometimes, it is useful to visualise data in a variety of ways and this can be done
through some functions available in openair. Daily concentrations can be shown in a
calendar format, see figure 2-2. The idea is to provide some information on meteo-
rological conditions for each day. This kind of plot can also help to highlight those
conditions where daily maximum concentrations are above a particular threshold. In
particular, in 2-2 one can observe that high concentrations in PM2.5 correspond to
some days during Autumn and Spring. One can also note that there were low level of
PM2.5 concentrations from August to September during 2015; a similar behaviour was
observed for the rest of the sites.
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Figure 2-3: Boxplots: sites summaries across pollutants from 01 August 2015 to 15
March 2016 from the air quality network in Greater London area.
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It could be helpful to generate boxplots across pollutants for each site, see Figure 2-3.
Concentrations of NO2, fine particle matter PM10 and PM2.5 in log-scale are shown
for 19 sites in Greater London area. The boxes represent the interquartile range from
the 25th to 75th percentile and the empirical average is also shown. For the NO2

levels, one can observe that concentrations are more widely dispersed across the sites,
in contrast with the particle matter pollutants. Differences between PM10 and PM2.5

are small across the sites; this can be explained due the high correlation. In particular,
the monitoring site based on Camden (BL0), Greenwich-Millennium Village (GN2)
and Harlington (LH0) show a wide range in concentrations for all these pollutants. In
general, just a few outliers are observed for this data set based on the figure 2-3.

Visualisation is an important preliminary task that needs to be carried out before the
data-analysis stage and the modelling stages. In this case, data is collected at stations
that are fixed in space. According to the Figure, 2-4 one can get an idea of the overall
spatio-temporal variation of the observed data. In the same figure, Greater London
boundaries are plotted with data locations to give a better geographic perspective.
One can see that the data set contains data for all pollutants (NO2, PM10 and PM2.5)
during 07, 08, 09, 10, 11, 12, 13 and 14 March 2016.

Calculating trends for air pollutants is one of the most important and common tasks to
be done in statistical analysis. Some trends can be observed from plotting the PM2.5

concentration levels versus time, such analyses are useful for understanding how con-
centrations have changed through time. However, if one is interested in understanding
why trends are as they are, more statistical analysis should be done. In Figures 2-5, 2-6
and 2-7 one can observe the time series associated with the log-scale of NO2, PM10 and
PM2.5 in the data set respectively. They correspond to observations from 01 August
2015 to 14 March 2016 for all 19 locations. Due the time series are relatively short,
visually it is not possible to detect any clear trend.

2.2 Interpolation methods

Spatio-temporal interpolation involves predicting the concentration at locations using
a sample set of measured points from within the same area and period of time. One
advantage of interpolation is that it allows us to create a continuous air pollution
surface on the basis of relatively few point locations/time.

The estimation of concentrations at these locations is usually based on information from
the nearest available measuring sites/times. Interpolation can be based on either deter-
ministic or stochastic models. Deterministic methods considers mathematical functions
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to interpolate a surface from the measured points, while stochastic methods incorporate
randomness and apply statistical models to the measurements to create the surface.

In Burrough et al. (1998) two main types of deterministic methods are considered:
local and global interpolators. Local interpolators calculate predictions on the basis of
the nearest (in space or time) measurement points. In contrast, global interpolators
fit a smooth surface defined by a function to the input data points across the whole
study area. Global interpolators are mostly used for identifying the effects of global
variations or trends in the data. Few studies have used deterministic methods to
predict air pollution concentrations. For example, Abbey et al. (1993) used the Inverse
Distance Weighting (IDW) to derive NO2 concentrations. In Li et al. (2014), PM2.5

data interpolation is conducted in the continuous space-time domain by integrating
space and time simultaneously, using an extension approach. A main disadvantage
of deterministic methods is that they do not provide estimates of uncertainty. In
contrast, geostatistical methods can estimate both the predicted values and estimate
the associated standard errors.

Inverse Distance Weighting (IDW)

An important statistical characteristic of spatio-temporal data is that nearby obser-
vations tend to be more alike than those far apart. One could find specific examples
when the opposite can happen, but in general spatio-temporal data should be analysed
jointly.

There are some cases where observations over time are unequally spaced or where
there are missing observations. In these cases, an interpolation (in space and time)
algorithm could be applied. For two-dimensional spatial data that are on an irregular
lattice, smoothed plots can be created.

One of the simplest ways to perform spatio-temporal prediction would be averaging the
data to give more weight to the nearest observations in space and time. One option to
do this is through inverse distance weighting (IDW). If one has spatio-temporal data
given by

{Z(s11; t1), Z(s21; t1), . . . , Z(sm11; t1), . . . , Z(s1T ; tT ), Z(s2T ; tT ), . . . , Z(smtT ; tT )},

where for each time tj one has mj observations. The IDW predictor at some location
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s0 and time t0 is given by

Ẑ(s0; t0) =
T∑
j=1

mj∑
i=1

wij(s0; t0)Z(sij ; tj), (2.1)

where in this case t1 ≤ t0 ≤ tT and

wij(s0, t0) ≡ w̃ij(s0; t0)∑T
k=1

∑mk
l=1 w̃lk(s0; t0)

, (2.2)

w̃ij(s0; t0) ≡ 1
d((sij ; tj), (s0; t0))α , (2.3)

d((sij ; tj), (s0; t0)) is the distance between the location (sij ; tj) and the prediction lo-
cation (s0; t0), and α is the positive power coefficient. This parameter controls the
smoothing and often α = 2, often referred to as the bandwidth parameter. The IDW
is a weighted average of the data points, giving the closest locations more weight. The
distance d(·; ·) is usually the Euclidean, but another one can be considered, in particular
if time and space need to be treated differently.

The IDW is a particular case of a spatio-temporal kernel predictor, that is

w̃ij(s0; t0) = k((sij ; tj), (s0; t0); θ), (2.4)

where k((sij ; tj), (s0; t0); θ) is a kernel function that quantifies the dissimilarity between
(sij ; tj) and (s0, t0) and θ is a bandwdith parameter. An example of a kernel function
is the Gaussian radial basis kernel,

k((sij ; tj), (s0; t0); θ) ≡ exp
(

−1
θ
d((sij ; tj), (s0; t0))2

)
(2.5)

where θ is proportional to the variance parameter in a Gaussian distribution.

One of the main criticism about IDW is that space and time have the same treatment,
of course this is not a sensible assumption for most of the cases. A simple variation
of this approach is proposed in Li et al. (2014). The idea is to adapt the traditional
spatial IDW method and consider the spatio-temporal interpolation formula based on
a extension of that approach. In this case, a different distance for 2.3 is considered,

d∗((sij ; ctj), (s0; ct0))α,

where c > 0. The choice of the factor c is commonly empirical, based on observation
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or experience. In particular, the proposed c factor is,

c = 1
T − 1

(lonmax − lonmin) + (latmax − latmin)
2 ,

where lon and lat are the longitude an latitude respectively; and max and min denote
the maximum and minimum respectively. When performing a spatio-temporal analysis
using these methods, it is important that both space and time are on the same scale
to avoid patterns in one domain dominating the other based solely on the scale of the
data. Here, the scaling is controlled by the parameter, c, and the idea is to make the
temporal scale equal to the average range of the spatial differences.

2.2.1 Implementation using the LAQN data

IDW is not just helpful for prediction, in practice it can also be used to generate a
smoothed visual representations of certain data in a specific time. In other words, it
can be used to obtain a smoothed spatial grid without time variance. In figure 2-8, one
can observe a smoothed spatial plot of 15 of March 2016. The plot is generated with
inverse distance power α = 2, a Gaussian radial basis kernel with bandwidth θ = 0.5
and considering the data from 15 March 2015.

As with any other prediction, IDW must be used carefully. The 15th panel in figure 2-9
shows the smoothed levels of PM2.5 levels for 15 of March 2016 considering the data
from 01 August 2015 to 15 March 2015 data set. This plot was obtained using IDW
with α = 2 and θ = 0.5. If the prediction is compared with figure 2-8, it is clear that
is over smoothed. Setting α to a greater value would give a less smooth surface since
less weight is given to observations that are distant from the prediction locations. The
predictions are similar considering different settings for θ.

2.3 Discussion

In this chapter, we have performed initial data analysis on data from the LAQN and
specified the study period and spatial domain of the analyses that will be performed
within the thesis. This resulted in the extraction of a subset of the available data, based
on pollutant, time and space. This was followed by a number of ways of visualising the
data, which is an important preliminary task that can give insights into the data and
help to inform the more complex modelling that will follow. This understanding can
also be gained by implementing simpler statistical approaches (than the DSTM and
BHSTM that are the focus of the work in this thesis). One such approach that was
used here to assess spatial patterns in the data is Inverse Distance Weighting (IDW),
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which is based on estimating relationships between data points empirically. Although
useful for visualising patterns, IDW has a number of disadvantages, in that correlations
over both space and time are estimated in the same way, i.e. there is no allowance for
possible differences in scale, which may not be a tenable modelling assumption; it does
not allow the production of a forecast over time, nor for uncertainties to be estimated.
However, it can be a useful option if one is interested in assessing spatial patterns, and
in performing simple spatial prediction, as IDW is relatively easy to implement.

In the next chapter, we move from initial data analysis and visualisation with the
implementation of empirical methods, to an introduction of more formal modelling,
namely using Bayesian Hierarchical Models.
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Figure 2-4: NO2, PM10 and PM2.5 levels in log-scale during 07, 08, 09, 10, 11, 12, 13
and 14 March 2016 from the air quality network in Greater London area. The points
correspond to each monitoring site and the grey points are missing values.
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Figure 2-5: NO2 time series from 01 August 2015 to 15 March 2016 for all sites from
the air quality network in Greater London area.
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Figure 2-6: PM10 time series from 01 August 2015 to 15 March 2016 for all sites from
the air quality network in Greater London area.
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Figure 2-7: PM2.5 time series from 01 August 2015 to 15 March 2016 for all sites from
the air quality network in Greater London area.
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Figure 2-8: Grid with PM2.5 levels in 15 of March 2016, Greater London. The panel was
generated through the inverse distance weighting (IDW) with inverse distance power
α = 2, and a Gaussian radial basis kernel with bandwidth θ = 0.5. The model was
fitted using data from 15 March 2015.
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Figure 2-9: IDW smoothed levels of PM2.5 levels, spanning the temporal interval of
the data, 01 March 2016 to 15 March 2016. The time considered to fit the model is 01
August 2015 to 15 March 2016. It was generated with inverse distance power α = 2,
and a Gaussian radial basis kernel with bandwidth θ = 0.5.
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Chapter 3

Hierarchical modelling

In the following, we follow the terminology proposed by Berliner (1996), who defined a
Hierarchical Model (HM) to include a data model, a process model, and a parameter
model.

At the top level is the data model which expresses the distribution of the data given a
latent process. Underneath the data model is the process model. Unknown parameters
can be present, in both the statistical model for the data, conditioned on the process,
and the statistical model for the process. When the parameters are given by prior
distributions at the bottom level of the hierarchy, the HM is called Bayesian hierarchical
model (BHM) (Gelman et al., 2013; Shaddick & Zidek, 2015; Congdon, 2019). This
probability model at the lowest level can be called parameter level.

Another advantage of the data-process-parameter modelling paradigm in an HM is
that conditional-dependence structures usually come naturally. For example, it is often
reasonable to assume that the data covariance matrix (given the corresponding values of
the hidden process) is a diagonal matrix of measurement-error variances. This admits
the process covariance matrix to capture the ”pure” spatio-temporal dependence. Often
this knowledge comes from physical or mechanistic knowledge.

The product of the conditional-probability components of the HM gives the joint prob-
ability model for all random quantities. The HM could be either a BHM or an EHM.
It depends on whether a prior distribution is assigned on the parameters or the pa-
rameters are estimated respectively. A hybrid situation arises when some but not all
parameters are estimated and the remaining have a prior distribution put on them.

The BHM also allows one to find the posterior distribution of the parameters given
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the data, whereas the EHM requires an estimate of the parameters. Predictive and
posterior distributions are obtained using Bayes’ rule as it will be seen below.

If it is agreed the notation [A] and [A|B] for marginal and conditional probability of A
given B, respectively, then the joint distribution of A and B can be written as

[A,B] = [A|B][B], (3.1)

and the law of total probability can be written as

[A] =
∫

[A|B][B]dB, (3.2)

where it is recalled that
∫
g(B)[B]dB. It denotes the expectation, or a summation in

the case is where B is a discrete random quantity, of some function g(B) of B. In terms
of this notation, Bayes’ theorem can be written as

[B|A] = [A|B][B]∫
[A|B][B]dB = [A|B][B]

[A] . (3.3)

The predictive and posterior distributions cannot be calculated in closed form, in which
case one relies on computational methods to deal with it. Nowadays, Monte Carlo
samplers from a Markov chain whose stationary distribution the posterior distribution
of interest have been used for this purpose (Gelfand & Smith, 1990). These Markov
chain Monte Carlo (MCMC) methods have transformed the use of HMs for complex
modelling applications, such as those found in spatio-temporal statistics.

3.1 Empirical hierarchical models (EHM)

The idea in this alternative approach is to assume that the parameters are fixed in
the top two levels using the data. In this case, the model is known as an empirical
hierarchical model (EHM). In certain cases the EHM can be preferred, one could choose
to avoid informative priors on parameters. For further details see Cressie & Wikle
(2011) and Jones (2001). This approach can be useful if there is lack of knowledge of
the process or if computational efficiencies are favoured.

The following model is called a EHM:

An EHM uses just the first two levels, from which the predictive distribution is
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1. Data model: [Z|Y, θ]
2. Process model: [Y |θ],

[Y |Z, θ] = [Z|Y, θ][Y |θ]
[Z|θ] , (3.4)

where [Z|θ] =
∫

[Z|Y, θ][Y |θ]dY . One can replace (3.4) with [Y |Z, θ̂], where θ̂ is an
estimator of θ, which can also be estimated from an independent study.

Depending on the complexity of the data model and the process model, sometimes
it is possible to consider the frequentist statistical estimation for the parameters θ.
In the context of EHM, common approaches include maximum likelihood estimation,
the Expectation-Maximisation (EM) algorithm, conditional likelihood and pseudo-
likelihood methods (Demidenko, 2013).

3.2 Frequentist approach

The HM introduces data Z, process Y and parameters θ; frequentist approach has only
data Z and parameters θ, i.e., inference is based on the likelihood, [Z|θ]. An estimation
of the parameter θ, given the observed data Z could be found by maximising the
likelihood or equivalently the log-likelihood function, that is finding θ̂ such as

log([θ̂|Z]) > log([θ|Z]) ∀θ, (3.5)

where θ̂ is the maximum likelihood estimator (MLE). On the other hand, Bayesians base
their inferences on the posterior distribution, [θ|Z], which requires both a likelihood
and prior, [θ], to be specified.

In the HM approach, there are some cases where models can be simplified due to
practical concerns. The computational issues given formulation are limiting, which can
lead to a modification of the model. Such concerns are not limited to HM inference, it
can happen in any complicated modelling scenarios, see Casella & Berger (2002).

3.3 Bayesian hierarchical models (BHM)

A BHM is often useful for complex-modelling situations, because the parameters them-
selves can exhibit complex spatio-temporal structure. Or they could depend on other
covariates and hence could be considered as processes by itself. The BHM approach al-
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lows complex processes to be modelled by the hierarchy, but at each level the conditional-
probability model can be simple. Other frameworks such as Machine learning uses a
similar approach with its deep models. A potential advantage of the BHM approach
is that it provides a unified probabilistic framework that allows one to account for
uncertainty in data, model, and parameters.

Consider Z, Y and θ generic random variables; Z can be thought as data, Y as a
hidden process and θ as unknown parameters. In general, these random quantities can
be complicated, a spatial statistical mapping of a region’s air quality in a given day,
for instance. The three levels of a Bayesian hierarchical models are

1. Data model: [Z|Y, θ]
2. Process model: [Y |θ]
3. Parameter model: [θ]

Note that the join distribution can be decomposed recursively.

[Z, Y, θ] = [Z, Y |θ][θ]

= [Z|Y, θ][Y |θ][θ]. (3.6)

The conditional distribution of Y and θ, given the data Z, which is called the pos-
terior distribution, can be obtained from the application of Bayes’ Rule (3.3) to the
hierarchical model,

[Y, θ|Z] = [Z|Y, θ][Y, θ]∫ ∫
[Z|Y, θ][Y, θ]dY dθ

= [Z|Y, θ][Y |θ][θ]∫ ∫
[Z|Y, θ][Y, θ]dY dθ

= [Z|Y, θ][Y |θ][θ]
[Z] . (3.7)

All inference on Y and θ in the BHM depends on this distribution within the Bayesian
framework. Numerical evaluation of this predictive (or posterior) distribution is needed,
since the BHM’s normalising constant cannot generally be calculated in closed form.
An example of the BHM approach can be found in Wikle et al. (1998), where a Markov
chain Monte Carlo framework is applied to an atmospheric data set of monthly maxi-
mum temperature.

There are some difficulties related to building Bayesian hierarchical models and then
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carrying out valid inferences. A common criticism of Bayesian methods is that they
require ”subjective” specification of prior information on the parameters. However,
one can notice that there is also subjectivity in the specification of the likelihood in
frequentist models.

Computational issues in the Bayesian implementation of hierarchical spatial models
are covered in the book Diggle & Ribeiro (2007). The dominant method is a MCMC
approach. In cases where parameters are random, one should be careful about compu-
tational considerations such as convergence and efficiency. In addition, a prior distribu-
tion on parameters must be assumed. For instance, Gaussian-process usually include
parameter associated with the variance, spatial dependence and smoothness. In many
Bayesian analysis, the smoothness parameter is assumed to be known. In this case, one
is focused on the variance and spatial-dependence parameters. For example, inverse
gamma or discrete uniform priors are often chosen for the spatial-dependence parame-
ter. On the other hand, the use of noninformative priors for variance components can
be problematic (Gelman, 2006).

3.3.1 Bayesian Inference

The Bayesian approach considers that uncertainty can be described in terms of prob-
ability distributions. However, in many cases it implies a high number of parameters
involved into a model. What follows is a brief introduction to some of the concepts
involved in performing Bayesian analysis.

For a more information, see Gelman et al. (2013), Bernardo & Smith (1994). In as-
signing the prior distributions of the parameters, θ, the Bayesian perspective gives a
natural framework for dealing with hierarchical models. This approach incorporates
the uncertainty in the estimates of the parameters.

One could be interested in making conclusions about the unknown parameters, θ during
statistical analyses. In other contexts the interest is in predicting values, Z, of the
response variable for particular values of the explanatory variables. When data, Y ,
is observed, such inference will be expressed as π(θ|Y ) and π(Z|y) for the cases of
parameter estimation and prediction respectively.

Let us considers the prior distribution, π(θ) and the density function of y given the
value of the parameters, π(y|θ). Then, the joint probability distribution relating the
parameters, and the observed values, π(θ, y), can be expressed as a product of two
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densities.

π(θ, y) = π(y|θ)π(θ). (3.8)

As a result of using the Bayes’ theorem, the posterior density, π(θ|y), representing the
updated beliefs about θ after the data has been observed, can be obtained

π(θ|y) = π(θ, y)
π(y) = π(y|θ)π(θ)

π(y) (3.9)

where π(y) =
∫
θ π(y|θ)π(θ)dθ, over all the possible values of θ. This is true for the case

of a continuous parameter, θ.

Assuming that y has been observed, then, the denominator, π(y), does not depend on
any unknown quantities. It is considered fixed and known as the normalising constant.
The equation 3.9 can be simplified to

π(θ|y) ∝ π(y|θ)π(θ). (3.10)

The prior distribution allows knowledge from previous studies or experiments to be
incorporated. However, an increased level of complexity can be introduced into the
calculations. In some circumstances there are actual data available that can be used to
assign priors. But, commonly decisions have to be based on knowledge of other sources.

If one is interested in prediction, there are two cases to consider, the first one is before
data y has been observed. The marginal distribution of y, π(y), gives a distribution
function for y. It is known as prior predictive distribution and does not depend on any
previous observations.

In the second case, when the data, y, have been observed, a predicted value, Z, is
obtained, as follows

π(Z|y) =
∫
π(Z, θ|y)dθ

=
∫
π(Z|y, θ)π(θ|y)dθ

=
∫
π(Z|θ)π(θ|y)dθ (3.11)

It is assumed that the predicted value, Z, is conditionally independent of the observed
data y given θ.

47



If a point estimate from the posterior distribution of the unknown parameters is re-
quired, then the posterior mean can be calculated by

θ = E(θ|y) =
∫
θπ(θ|y)dθ. (3.12)

However, this is not necessarily an easy task. Alternatively, if samples can be taken from
the posterior distribution, using, for example Gibbs sampling (see Section 3.4.1), then
the mean and median together with credible intervals can be obtained. A 100(1 −α)%
Credible Interval, I, for this point estimate can be found by choosing a and b, with the
set I = (a, b) such that for a given α, π(θ ∈ I|y) =

∫ a
b π(θ|y)dθ = 1 − α.

3.4 Computation

In Bayesian inference, in most cases, the posterior distribution of the parameter θ is
analytically intractable. This means that it is not possible to get closed form summaries
of the posterior distribution such as its mean and variance of a particular parameter.
Simulation-based inference is a standard solution, the posterior distribution can be
formulated in terms of simulation from an periodic and irreducible Markov chain.

3.4.1 Markov Chain Monte Carlo Methods

One approach to finding the posterior probabilities, which avoids the problems of inte-
gration, is to use simulation techniques, such as Markov Chain Monte Carlo (MCMC).
For further information on MCMC see Robert & Casella (2004) and Gamerman &
Lopes (2006). The Markov chain is constructed so that the stationary distribution
is the posterior distribution. Two such Markov chains are the Metropolis-Hastings
algorithm and the Gibbs sampler, which are now briefly described.

If one is able to draw θ1, . . . , θN , independent and identically distributed samples from
the posterior distribution of θ, the standard Monte Carlo method can be considered.
The mean of any function g(θ) having finite posterior expectation can be approximated
by a sample average

Eπ(g(θ)) ≈ N−1
N∑
j=1

g(θj). (3.13)

We should notice that, in general, independent samples are not easy to obtain, and 3.13
holds for certain Markov chains. Markov chain Monte Carlo (MCMC) is the generic
algorithm to perform the numerical analysis required by Bayesian data analysis.

Let us consider an irreducible, aperiodic and recurrent Markov chain (θt)t≥1, follow-
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ing the invariant distribution π. It can be shown that for every initial value θ1, the
distribution of θt tends to π as t increases to infinity. Then, for M sufficiently large,
θM+1, . . . , θM+N are all approximately distributed according to π. Jointly, these draws
have statistical properties similar to an independent sample from π. By the law of large
numbers, Eπ(θ) can be approximated by

Eπ(g(θ)) ≈ N−1
N∑
j=1

g(θM+j). (3.14)

In practice, it is important to determine M , these first realisations correspond to the
”burn-in” period and they should be discarded to calculate 3.14. In the remainder of
this section, the most popular MCMC algorithms for simulating from a given distribu-
tion π are briefly explained.

3.4.2 Gibbs sampler

Let us suppose that the unknown parameter is multidimensional, then the distribution
is multivariate. In this case, θ = (θ(1), . . . , θ(k)) and the target density is π(θ) =
π(θ(1), . . . , θ(k)). The Gibbs sampler starts from an arbitrary point θ0 = (θ(1)

0 , . . . , θ
(k)
0 )

in the parameter space and updates one component at a time by drawing θ(i), for
i = 1, . . . , k.

Algorithm: Gibbs sampler
Initialise the starting point: θ0 = (θ(1)

0 , . . . , θ
(k)
0 ).

for j = 1 to N do
1. Obtain θ

(1)
j from π(θ(1)|θ(2) = θ

(2)
j−1, . . . , θ

(k) = θ
(k)
j−1)

2. Obtain θ
(2)
j from π(θ(2)|θ(1) = θ

(1)
j , θ(3) = θ

(3)
j−1, . . . , θ

(k) = θ
(k)
j−1)

...
k. Obtain θ

(k)
j from π(θ(2)|θ(1) = θ

(1)
j , . . . , θ(k−1) = θ

(k−1)
j−1 )

end for

In some applications, the algorithm 3.4.2 is applicable when one or more of the com-
ponents θ(i) is itself multidimensional. The Gibbs sampler updates in turn blocks of
components of θ, drawing from their conditional distribution, given all the remaining
components.
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3.4.3 Metropolis–Hastings algorithm

The Metropolis-Hastings is a general algorithm that allows us to generate the next
state of the chain from an arbitrary distribution. It starts with the target density π.
Suppose that the chain is currently at θ, then the proposal is obtained from a density
q(θ|·). In practice, this algorithm can be implemented when q is easy to simulate. The
proposal θ̃ is accepted as the new state of the chain with probability

α(θ, θ̃) = min
{

1, π(θ̃)q(θ̃, θ)
π(θ)q(θ, θ̃)

}
. (3.15)

Algorithm: Metropolis–Hastings
Initialise the starting point: θ0.
for j = 1 to N do

1. Obtain θ̃j from q(θj−1, ·)
2. Calculate α = α(θj−1, θ̃j) de acording with (3.15)
3. Generate an independent random variable Uj ∼ Bernoulli(α)
k. If Uj = 1 set θj = θ̃j , otherwise set θj = θj−1

end for

If the proposal is rejected, the chain stays in the current state θ. The involved steps
are shown in 3.4.3, assuming the chain starts at an arbitrary value θ0. The selection of
q is crucial, in particular if q is symmetric the expression 3.15 can be simplified as,

α(θ, θ̃) = min
{

1, π(θ̃)
π(θ)

}
. (3.16)

The Gibbs sampler and Metropolis–Hastings algorithm can work simultaneously in
Markov chain simulation, they can be combined and used together. Within a Gibbs
sampling simulation, it could be unfeasible to sample from one or more conditional
distributions. Suppose for example that π(θ1|θ2) does not have a standard form and
is difficult to simulate from. In this situation one can, instead of generating θ1 from
π(θ1|θ2), update θ1 using a Metropolis–Hastings step. The invariant distribution of the
Markov chain is not altered.

3.4.4 Analytical approximations

In some cases it is possible to find analytical expressions for posterior distributions.
However, in most of the situations it is not possible to evaluate the posterior model

50



probabilities. In that case, it is necessary to calculate integrals of the form p(y) =∫
p(y|θ)p(θ)dθ. One alternative is considering the Bayesian statistics and computational

techniques (MCMC) that were discussed in previous section, see Gelman et al. (2013)
and Robert & Casella (2004).

Another approach is to use an analytic approximation such as Laplace’s method, which
is based on the Taylor series expansion of a real valued function f(u)∫

ef(u)du ≈ (2p)r/2|H|1/2 exp{f(u∗)} (3.17)

where r is the length of the vector u, u∗ is the value of u at which f attains its maximum
and H is minus the inverse Hessian information of f evaluated at u∗.

The integrated nested Laplace approximation (INLA) for approximate Bayesian infer-
ence was developed by Rue et al. (2009). It is an alternative to traditional MCMC
methods. A wide variate of models of INLA can be found in Krainski et al. (2018).

Now, a general description of INLA is given, see Krainski et al. (2018). Let us consider
a a vector of observed variables whose distribution is in the exponential family, y =
{y1, y2, . . . , yn}. The mean, µi is linked to the linear predictor ηi using an appropriate
link function. This linear predictor can include terms on covariates (fixed effects) and
different types of random effects. The vector of all latent effects will be denoted by x.
And, the distribution of y will depend on some vector of hyperparameters, θ1.

The distribution of the vector of latent effects x is assumed to be Gaussian Markov
random field (GMRF). The GMRF will have a zero mean and precision matrix Qθ2 ,
with θ2 a vector of hyperparameters. The vector of all hyperparameters in the model
will be denoted by θ = (θ1,θ2). If the observations are assumed to be independent
given the vector of latent effects and the hyperparameters. Then, the the likelihood is
given by

π(y|x,θ) =
∏
i∈I

π(yi|ηi,θ).

Here, νi is the latent linear predictor and the set I contains indices for all observed val-
ues of y. The idea of the INLA methodology is to approximate the posterior marginals
of the model effects and hyperparameters. This is done by exploiting the computational
properties of GMRF and the Laplace approximation for multidimensional integration.
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The joint posterior distribution of the effects and hyperparameters is given by

π(x,θ|y) ∝ π(θ)π(x|θ)
∏
i∈I

π(yi|xi,θ)

∝ π(θ)|Qθ|1/2exp
{

− 1
2x′Qθx +

∑
i∈I

log(π(yi|xi,θ))
}
.

Here, Qθ is the precision matrix of the latent effects and |Qθ| denotes the determinant
of that precision matrix. In particular, when i ∈ I then xi = ηi. The marginal
distributions for the latent effects and hyperparameters can obtained by

π(xi|y) =
∫
π(xi|θ,y)π(θ|y)dθ,

and
π(θj |y) =

∫
π(θ|y)dθ−j .

where integration is done over the space of the hyperparameters. A good approximation
to the joint posterior distribution of the hyperparameters is required. In Rue et al.
(2009), π(θ|y) is approximated and denoted by π̃(θ|y). Then, the posterior marginal
of the latent parameter xi can be approximated by

π̃(xi|y) =
∑
k

π̃(xi|θk,y) × π̃(θk|y) × ∆k,

where ∆k are the weights associated with a vector of values θk of the hyperparameters
in a grid.

3.5 Discussion

In this chapter, we introduce the concept of a hierarchical model, which is comprised of
a data model which expresses the distribution of the data given a latent (unobserved)
process. This latent process is represented by a statistical model that describes the
underlying dependencies within the process that generates the data. In the case of a
Bayesian model, a third level, the parameter level, assigns (prior) distributions to all of
the parameters in the model. We summarise different approaches to performing infer-
ence, including empirical, frequentist and Bayesian methods. For the latter, we describe
different methods for computation, including Markov Chain Monte Carlo simulation
(Gibbs Sampling and Metropolis-Hastings) and the use of analytical approximations.
The latter, through the use of integrated nested Laplace approximation (INLA) is used
for the Bayesian Hierarchical Spatio-Temporal Models (BHSTM) presented in Chapter
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7 and offers a computationally efficient way of implementing complex spatio-temporal
Bayesian models.
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Chapter 4

Spatio-temporal modelling

We now present a brief summary of spatio-temporal statistical modelling, and the back-
ground of the concepts and methods that are used in this thesis. One can distinguish
between the underlying spatio-temporal process and the process in which measurements
are made. In particular, let {Y (s; t) : s ∈ Ds, t ∈ Dt} denote a spatio-temporal random
process that is a statistical model for a phenomenon involving the spatio-temporal in-
dex set Ds × Dt. For instance, Y (s; t) can be measured air pollution at geographical
coordinates s = (latitude,longitude) at time t. Conceptually, Ds = plane and Dt = R.
This process is not directly measurable, but the realisations Y (s; t) can be obtained by
taking measurements, possibly with an error.

The mean and covariance function can be estimated from the data, they also can be
used to describe the spatial trend and for prediction at unsampled locations. Spatio-
temporal covariance functions offer an informative summary of a random process on
Ds × Dt, indeed, the covariance function can be thought as a characterisation of the
spatio-temporal process Y (·; ·). The covariance function and the semivariogram are
both functions that summarise the relation in terms of distance and differences in
time.

One should note that for most of the real-world problems in spatio-temporal statistics,
there is a relatively small number of monitoring sites for a large area of interest. Due
to the sparsity of such sites, one should be able to interpolate or extrapolate the
measurements at these sites in order to obtain a spatio-temporal predictions. There are
different interpolation methods, one of the most simple consist of a weighted average
of all spatial and temporal points within a certain neighbourhood of a chosen point,
(s0, t0). One of these deterministic methods is discussed in section 2.2. Another popular
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method for spatio temporal prediction is kriging, this is discussed in section 6.1. A
classic reference for the purely spatial kriging is Cressie (1993). For a further discussion
about spatio-temporal kriging see Le & Zidek (2006); Cressie & Wikle (2011).

4.1 Covariance Functions

A covariance function is a nonnegative-definite function and vice versa. This is why
spatio-temporal statistics is interested in the study of nonnegative-definite functions in
space and time.

Definition 4.1.1. A function {f(u,v) : u,v ∈ D} defined on D × D is said to be
nonnegative-definite, if for any complex numbers {ai : i = 1, . . . ,m} any {ui : i =
1, . . . ,m} in D, and any m, one has

m∑
i=1

m∑
j=1

aiājf(ui,uj) ≥ 0, (4.1)

where it is recalled that ā denotes the complex conjugate of a.

If the inequality above is strictly positive one says that f(·, ·) is positive-definite when-
ever a ≡ (a1, . . . , am)′ is a nonzero vector.

If D is a subset of integers Z, f is a temporal covariance function for a discrete-index
time series. On the other hand, if D ∈ Rd, then f is a spatial covariance function for a
continuous-index spatial process. In the spatial-temporal setting, D could be a subset
of Rd× {. . . ,−1, 0, 1, . . . } or Rd×R. Then, a spatial covariance function in Rd+1 could
be used as a spatio-temporal covariance function in Rd × R. One can write u = (s; t)
and f(ui,uj) ≡ f((si; ti), (sj , tj)), to obtain a spatio-temporal covariance function.

The equation 4.1 can be rewritten in terms of C(·; ·) which is defined on Rd × R,

m∑
i=1

m∑
j=1

aiājC(si − sj , ti − tj) ≥ 0, (4.2)

for any {ai}, any (si, ti) and any m.
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4.1.1 Stationarity in Space and Time

Definition 4.1.2. It is said that f is a stationary spatio-temporal covariance function
on Rd × R, if it is a nonnegative-definite function and can be written as

f((si; tj), (sk, tl)) = C(si − sk; tj − tl), si, sk ∈ Rd, tj , tl ∈ R. (4.3)

If a random process Y (·; ·) has a constant expectation and a stationary covariance
function, CY (h; τ), then it is said to be second-order (or weakly) stationary. Strong
stationary of Y (·; ·) corresponds to the equivalence of the two probability measures
defining the random process Y (·; ·) and Y (· + h; · + τ), respectively, for all h ∈ Rd and
all τ ∈ R. When there is no ambiguity, one can omit dependence on Y and write,
C(h; τ).

The stationary spatio-temporal correlation function associated with C(·; ·) is

ρ(h; τ) ≡ C(h; τ)/C(0; τ) h ∈ Rd, τ ∈ R. (4.4)

The correlation function 4.4 represents spatio-temporal dependence in a continuous-
space (Rd), continuous time (R) model.

Stationarity of the covariance function can be considered separately for space and time.
Spatial stationarity of the covariance function corresponds to

cov(Y (si, tj), Y (sk, tl)) ≡ C(si − sk; tj , tl) (4.5)

and temporal stationarity of the covariance function corresponds to

cov(Y (si, tj), Y (sk, tl)) ≡ C(si, sk; tj − tl) (4.6)

The spatio-temporal stationarity of the covariance function corresponds to

cov(Y (si, tj), Y (sk, tl)) ≡ C(si − sk; tj − tl). (4.7)

Similar to spatial stationarity, spatial isotropy corresponds to

cov(Y (si, tj), Y (sk, tl)) ≡ C(||si − sk||; tj , tl). (4.8)

Spatio-temporal kriging predictions require that one knows the spatio-temporal covari-
ances between the hidden random process evaluated at any two locations in space and

56



time. It is important to note that not any function can be used as a covariance function,
a formal definition was given in 4.1.1.

In practice, for classical-kriging implementations, second-order stationarity is assumed;
recall definition in 4.1.2. There are some advantages of the second-order stationarity
assumption, such as it allows us to give more parsimonious parameterisations of the
covariance function. It also helps to estimate parameters, say θ, involved in the covari-
ance function. The parameterisation of these covariance functions is one of the most
challenging problems in spatio-temporal statistics.

4.2 Separability and Full Symmetry

Definition 4.2.1. A random process Y (·; ·) is said to have a separable spatio-temporal
covariance function if, for all si, sk ∈ Rd, tj , tl ∈ R, it is obtained

cov(Y (si, tj), Y (sk, tl)) = C(s)(si, sk) · C(t)(tj , tl) (4.9)

where C(s) and C(t) are spatial and temporal covariances functions, respectively.

A simple case of spatio-temporal covariance functions can be obtained as a conse-
quence of equation 4.9. When C(s) and C(t) are spatially and temporally stationary,
respectively, then

C(h; τ) = C(s)(h) · C(t)(τ), h ∈ Rd, τ ∈ R. (4.10)

Separability implies that the spatio-temporal correlation function ρ(·, ·) given by equa-
tion 4.4 satisfies

ρ(h; τ) = ρ(s)(h; 0) · ρ(t)(0; τ) h ∈ Rd, τ ∈ R, (4.11)

where ρ(s)(h; 0) and ρ(t)(0; τ) are the corresponding marginal spatial and temporal
correlation functions, respectively. The converse is true, and then equation 4.11 is a
characterisation of separability in second-order stationary process. This result allows
one to make a visual inspection of separability. One can compare the contours of
C(h; τ) with those of C(h; 0) · C(0; τ)

Definition 4.2.2. A random process Y (·; ·) is said to have a fully symmetric spatio-
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temporal covariance function if, for all si, sk ∈ Rd, tj , tl ∈ R,

cov(Y (si, tj), Y (sk, tl)) = cov(Y (si; tl), Y (sk; tj). (4.12)

Considering such covariances to model spatio-temporal dependence is not always rea-
sonable for real-world processes. One should notice that in general, separable covariance
functions are always fully symmetric, while the converse is not true.

4.2.1 Examples of Separable (in Space and Time) Covariance Func-
tions

Separable classes of spatio-temporal covariance functions have been used in spatio-
temporal modelling because they offer a convenient way to verify validity. These classes
have been defined in 4.2.1, recall the equation 4.10,

C(h; τ) = C(s)(h) · C(t)(τ), h ∈ Rd, τ ∈ R (4.13)

which is valid if both the spatial covariance function and the temporal covariance
function are valid.

There are many classes of valid spatial and valid temporal covariance functions in the
literature. For example the Matérn, the power exponential, and Gaussian classes.

The Matérn family of correlation functions is commonly used; it is written as

Cν(d) = σ2 21−ν

Γ(ν)

(√
2ν d
ρ

)ν
Kν

(√
2ν d
ρ

)
, d > 0, (4.14)

where Γ(·) is the gamma function, Kν(·) is the modified Bessel function of the second
kind, and ρ, ν > 0 are parameters of the covariance Abramowitz & Stegun (1972).

Some examples of these classes of spatial covariance functions can be defined as the
distance between two locations, i.e., d ≡ ||h|| where h ∈ Rd and ρ ≡ as, see table 4.1.

In all cases, σ2
s is the variance parameter and as is the spatial-dependence (or scale)

parameter in units of distance. The larger as is, the more dependent the spatial process
is. In figure 4-1 one can observe the different behaviour of the exponential, spherical and
Gaussian models with the same variance (σ2

s = 1) and also the same scale parameter
(as = 1/3).

In a similar way, a valid temporal covariance function can be defined, such as the
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Model Spatial covariance function Parameters

Exponential C(s)(h) = σ2
s exp

(
−||h||
as

)
0 < ||h||

Spherical C(s)(h) = σ2
s

(
1 − 3

2
||h||
as

+ 1
2

( ||h||
as

)3)
0 < ||h|| < 1

as

Gaussian C(s)(h) = σ2
s exp

(
−||h||2

a2
s

)
0 < ||h||

Powered exponential C(s)(h) = σ2
s exp

(
−
( ||h||
as

)p)
0 < ||h||, 0 < p

Table 4.1: Spatial covariance functions: exponential, spherical, Gaussian and power
exponential.

temporal exponential covariance function,

C(t)(τ) = σ2
t exp

(
−|τ |
at

)
. (4.15)

Another reason to consider separable models is that they can make computation easier.
Let us consider the observations Z(sij , tj), for the same i = 1, . . . ,mj = m locations at
at each time point j = 1, . . . , T . One can consider,

CZ = C(t)
Z ⊗ C(s)

Z , (4.16)

where ⊗ is the Kronecker product (see appendix). In this case, C(t)
Z is the T × T is

temporal covariance matrix, and C(s)
Z is the m × m spatial covariance matrix. Using

the property,
C−1
Z = (C(t)

Z )−1 ⊗ (C(s)
Z )−1, (4.17)

instead of taking the inverse of the mT ×mT matrix CZ , one can take the inverses of
T × T and m×m matrices.

Due to the separability property, the temporal evolution of the process at a given spatial
location does not depend directly on the temporal evolution at other locations. As a
consequence, other classes of spatio-temporal covariance functions shall be developed;
below are some of these approaches:

• sums-and-products formulation.

• construction by a spectral representation,
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Figure 4-1: Exponential, spherical, and Gaussian models with σ2
s = 1 and as = 1/3.

• covariance functions from the solution of stochastic partial differential equations
(SPDEs).

A general discussion about these approaches can be found in Cressie & Wikle (2011).

4.2.2 Sums and Products of Covariance Functions

Due to the fact that the sum and product of two nonnegative-definite functions are
nonnegative, valid spatio-temporal covariance functions can be proposed:

C(h; τ) ≡ p C(s1)(h) · C(t1)(τ) + q C(s2)(h) · C(t2)(τ), (4.18)

where p > 0, q > 0, and r > 0, C(s1) and C(s2) are spatial covariances functions and
C(t1) and C(t2) are temporal covariance functions.
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There are other special cases; consider, for example the fully symmetric spatio-temporal
covariance functions previously defined in equation 4.12. Although it could be appro-
priate under certain conditions, in general, the fully symmetric covariance function is
not an appropriate choice.

4.3 Spatio-Temporal Semivariogram

There is another way to express dependence, related to the covariance function.

Definition 4.3.1. The spatio-temporal semivariogram of the process Y (·; ·) is defined
to be

γY (si, sk; tj , tl) ≡ 1
2var(Y (si; tj) − Y (sk; tl)), si, sk ∈ Rd, tj , tl ∈ R. (4.19)

If the covariance depends only on displacements in space and differences in time, then

γY (h; τ) = 1
2var(Y (s + h; t+ τ) − Y (s; t))

= CY (0; 0) − cov(Y (s + h; t+ τ) − Y (s; t))

= CY (0; 0) − CY (h; τ),

(4.20)

where h = sk − si is a spatial lag and τ = tl − tj is a temporal lag.

Observe that equation 4.20 does not always hold. Even when γY is defined as a function
of spatial lag h and temporal τ , the stationary covariance function CY (h; τ) is not
necessarily defined.

Generally, the semivariogram is a non-decreasing monotone function, then the variabil-
ity of the first increments of the random process increases with distance. The slope
of the semivariogram represents the change in the dissimilarity of the values of the
regionalised variable with distance. The limiting value of the semivariogram is called
the sill (m), meanwhile the distance at which the sill is reached is called the range. It
defines the threshold of spatial dependence, that is, the zone of influence of the random
process.

In other words, the range is the distance beyond which the values of the regionalised
variable have no spatial dependence. In figure 4-2 it can be observed that the larger
the range, the larger the zone of influence of the random process.
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Figure 4-2: Example of semivariogram and its respective covariogram.

4.3.1 The Nugget Effect

The behaviour of the semivariogram at the origin is related to the continuity and
degree of regularity of the random process. The more continuous and regular across
space the rf, the smoother the more regular the behaviour of the semivariogram for
short distances.

If the covariance function of the process is well defined, then the semivariogram is
generally characterised by the nugget effect, the sill, and the partial sill, see figure 4-3.

The nugget effect is given by γY (h; τ) when h → 0 and τ → 0. Although the semivari-
ogram must be identically null at the origin, sometimes in practice this does not occur.
It usually indicates that the regionalised variable is irregular, maybe discontinuous.

The sill is γY (h; τ) when h → ∞ and τ → ∞ while the partial sill is the difference
between the sill and the nugget effect. The limiting case of the nugget effect is the
pure nugget effect. In particular, the semivariogram is constant for any given distance,
indicating the absence of spatial dependence. A complete revision and examples of
these concepts can be seen in Montero et al. (2015).
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Figure 4-3: Example of the nugget effect, the sill, and the partial sill.

4.4 Application of empirical approaches to LAQN data

Visualisation of data is an important component of exploratory data analysis. In ad-
dition, in some circumstances it is necessary exploring spatio-temporal data in terms
of summaries of first-order and second-order characteristics. Some visualisations of
empirical means and empirical covariances, spatio-temporal covariograms and semivar-
iograms are considered in this section. These concepts will be used to calculate the
EOFs for the models described in section 5.1. The spatial mean that is specified in this
section will be used to detrend the data set that will be considered later. Moreover,
the empirical covariance matrices described here will be used to perform the DSTMs.

4.4.1 Empirical Spatial Means and Covariances

Assume that one has a realisation of a general spatio-temporal process, Z(si; tj), for
spatial locations {si = 1, . . . ,m} and times {tj = 1, . . . , T}.

Definition 4.4.1. The empirical spatial mean for location si, µ̂z,s(si), is defined by
averaging over time

µ̂z,s(si) ≡ 1
T

T∑
j=1

Z(si; tj). (4.21)

Considering the mean of all spatial locations and if it is assumed that one has T

observations at each locations, one has the spatial mean as an m-dimensional vector,
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µ̂z,s, where

µ̂z,s ≡


µ̂z,s(s1)

...
µ̂z,s(sm)

 =



1
T

T∑
j=1

Z(s1; tj)

...

1
T

T∑
j=1

Z(sm; tj)


= 1
T

T∑
j=1

Zt,j , (4.22)

and Zt,j ≡ (Z(s1, tj)), . . . , Z(s1, tj))′. This mean vector is a spatial quantity whose
elements are indexed by their location.

The empirical spatial mean for NO2, PM10 and PM2.5 can be plotted as in figure 4-4
per each site. Based on these plots, one can say that highest levels of PM2.5 can be
observed in areas nearby Inner London. A high relation can be observed between the
latitude and longitude of some locations and their respective PM2.5 levels. In general,
one can conclude that there is a trend in the empirical spatial mean of PM2.5 with the
longitude and latitude. The trend is similar to that one for PM10, with the highest
levels observed in the central area. In the case of NO2, the behaviour of this pollutant
is slightly different, observing a wider gap within the spatial means across London.
Higher concentrations of NO2 can also be found in Inner London.

One can average across space and plot the associated time series. In a similar way, one
can define the empirical temporal mean across the space for tj ,µ̂z,t(tj),

µ̂z,t(tj) ≡ 1
m

m∑
i=1

Z(si; tj). (4.23)

In figure 4-5, one can see the time series of NO2, PM10 and PM2.5 for each pollutant
from the data set. The blue lines correspond to a station, and the empirical temporal
mean, µ̂z,t(tj)), is the black line computed from equation 4.23. Time is in units of days,
ranging from 01 August 2015 to 15 March 2016. A seasonal trend cannot be observed
for all the pollutants, it could be due to the time series are not long enough. For NO2

concentrations, a higher variability can be observed in contrast with PM levels for the
same period of time. Visually, from figure 4-5 is not possible to conclude that PM10

and PM2.5 levels have a seasonal behaviour. PM10 and PM2.5 levels show a similar
trend in time, however PM2.5 has a larger variability. The last two plots of this figure
confirm the high relation between these two pollutants.
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Figure 4-4: Empirical spatial mean in log-scale, µ̂z,s(si), of NO2, PM10 and PM2.5.
Summaries for the air quality network in Greater London area from 01 August 2015 to
15 March 2016.

65



pm25

pm10

no2

Oct Jan

2

3

4

5

1

2

3

4

0

1

2

3

4

Date

lo
g(

un
its

)

Figure 4-5: Empirical temporal mean in log-scale across the space for NO2, PM10 and
PM2.5 (black line). Time series per pollutant for all sites (light blue lines). Summaries
for the air quality network in Greater London area from 01 August 2015 to 15 March
2016.
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It can also be informative to consider the empirical spatio-temporal covariance as a
function of space and/or time.

Definition 4.4.2. The empirical lag-τ covariance between spatial locations si and sk
is given by

Ĉ(τ)
z (si, sk) ≡ 1

T − τ

T∑
j=τ+1

(Z(si; tj) − µ̂z,s(si))(Z(sk; tj − τ) − µ̂z,s(sk)), (4.24)

for τ = 0, 1, . . . , T − 1.

It is also useful to consider an m × m empirical (averaged over time) lag-τ spatial
covariance matrix given by

Ĉ(τ)
z ≡ 1

T − τ

T∑
j=τ+1

(Ztj − µ̂z,s)(Ztj−τ − µ̂z,s)′; (4.25)

for τ = 0, 1, . . . , T − 1, in which the (i, k)th element is given by equation 4.1. Due to
locations in a two-dimensional space not having a natural ordering, finding a intuition
from these matrices can be difficult.

4.4.2 Empirical Spatio-Temporal Covariograms and Semivariograms

It is needed to characterise the joint spatio-temporal dependence structure of a spatio-
temporal process in order to perform optimal prediction. Thus, it is important to
examine the empirical covariance function at various space and time lags, making the
assumption that the first moment (mean), depends on space but not on time, and the
second moment (covariance) depends only on spatial and temporal lag differences.

Definition 4.4.3. Then the empirical spatio-temporal covariogram for spatial lag h
and time lag τ is given by

Ĉz = 1
|Ns(h)|

1
|Nt(τ)|

∑
si,sk∈Ns(h)

∑
tj ,tl∈Nt(τ)

(Z(si; tj) − µ̂z,s(si))(Z(sk; tl) − µ̂z,s(sk)),

(4.26)

where it is recalled that µ̂z,s = (1/T )∑T
j=1 Z(si, tj), Ns(h) refers to the pairs of spatial

locations with spatial lag within some tolerance of h, Nt(τ) refers to the pairs of time
points with time lag within some tolerance of τ , and |N(·)| refers to the cardinality
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of the set N(·). Assuming isotropy, consider the lag only as a function of distance,
h = ||h||, where || · || is the Euclidean norm.

4.4.3 Empirical Semivariogram

One could be interested in the empirical spatio-temporal semivariogram, when the
covariance only depends on the displacements in space and the time lags, it can be
obtained from the equation 4.26 as

γ̂z(h; τ) = Ĉz(0; 0) − Ĉz(h; τ). (4.27)

If one has a constant spatial mean µz,s, the equation 4.20 can be written as

γz(h; τ) = 1
2E(Z(s + h) − Z(s; t))2. (4.28)

Another estimate is

γ̂z(h; τ) = 1
|Ns(h)|

1
|Nt(τ)|

∑
si,sk∈Ns(h)

∑
tj ,tl∈Nt(τ)

(Z(si; tj) − Z(sk; tl))2, (4.29)

where the notation has used above in 4.26.

Thinking about spatio-temporal correlation simultaneously is not as simple as spatial or
temporal correlation separately. To obtain an empirical spatio-temporal semivariogram
that can be visually interpreted, one often groups together space-time lags into a set
of space-time bins, this can be done trough the package gstat. The figure 4-6 shows
a empirical semivariogram obtained from the data set for the PM2.5 levels from 01
August 2015 to 15 March 2016. In particular, the cutoff (or separation) distance up
to which point pairs are included in semivariance estimates is 1Km. The width of
subsequent distance intervals into which data point pairs are grouped is 0.1Km and
the time lags come from 0 to 5 days. The empirical semivariogram can be thought of
as a measure of dissimilitude in space/time. The lower the semivariogram value, the
higher the correlation between two pairs of data points. One can note that a temporal
correlation up to 5 days apart is observed and a strong spatial correlation up to 0.6 Km
is present. In addition, a clear nugget effect is observed due to the noisy data. Finally,
one can conclude that the plot exhibits some spatial-temporal interaction.

68



distance

tim
e 

la
g 

(d
ay

s)

0

1

2

3

4

5

0.0 0.2 0.4 0.6

0.0

0.1

0.2

0.3

0.4

Figure 4-6: Empirical spatio-temporal semivariogram of daily PM2.5 data set from
01 August 2015 to 15 March 2016. The plot is produced with cutoff=1Km, bin
width=0.1Km and time lags from 0 to 5 days.

4.5 Discussion

In this chapter, a summary of methods used for spatio-temporal modelling and in par-
ticular spatial interpolation is presented. The concept of stationarity and separability
are introduced, which is an assumption that can simplify the process of spatial (and
temporal) prediction. However, the effects of making these assumptions need to be
understood and decisions made on whether they are tenable. Often, there may not
be enough evidence to fully justify such assumptions, but pragmatic choices may have
to be made in order to achieve desired outcomes. In such cases, it is important that
any modelling decisions are taken into account when drawing conclusions, and in us-
ing the outputs (e.g. spatial predictions) in further analyses (e.g. estimating risks in
epidemiological studies). In addition to the description of the theoretical aspects of
spatial and temporal prediction, analysis of data from the LAQN is presented using
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empirical spatio-temporal covariograms and semi-variograms. The application of these
methods to a selection of data (from August 2015 to March 2016) showed the presence
of temporal correlation up to 5 days apart, and a strong spatial correlation up to 0.6
KM after which it reduces over further distance.
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Chapter 5

Dynamic Spatio-Temporal
Models

Different approaches have been proposed to model spatio-temporal processes. Tradi-
tional spatial statistics techniques consider time as an extra dimension, see Cressie
(1993). But, these approaches do not consider the differences between space and time.
From a multivariate geostatistical perspective, one should specify convenient space-time
covariance functions. However, this approach is limited by the fact that such covariance
functions are often not realistic for more complex models, see Cressie & Huang (1999).
In section 6 two covariance-based models were proposed.

Spatio-temporal processes can also be considered from the multiple time series perspec-
tive, Lütkepohl (2005). That is, each spatial location is associated with a time series.
Then, multivariate time series techniques can be expressed as a space-time problem.
However, such approaches do not notice the differences between space and time, and
prediction at locations for which data were not observed is limited. Moreover, such
methods are difficult to implement in cases where the dimensionality of the number of
spatial locations is high.

In this chapter, the focus is on hierarchical spatio-temporal models. These methods
offer several advantages over traditional approaches. Firstly, physical and dynamical
components can be easily incorporated into the conditional formulation. The consid-
eration of simple and more realistic conditional models leads to a more complicated
spatio-temporal covariance structure than can be specified directly. Moreover, by mak-
ing use of the sparse structure inherent in the hierarchical approach, the models can be
computed with larger data sets. This modelling approach can be helpful for a great va-
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riety of problems in the air pollution. The idea behind dynamic spatio-temporal models
(DSTM) is the hierarchical (HM) state-space perspective that has been described in
chapter 3.

A natural approach to spatio-temporal modelling for complex dynamical processes is a
combination of spatial and time series techniques. It can be accomplished by a spatio-
temporal dynamic model formulation, see Cressie & Wikle (2011, 2019). However, the
estimation can be problematic due to the high dimensionality of the state process in
DLM context. One alternative is is to reduce dimensionality by projecting the state-
process on some set of spectral basis functions, see Mardia et al. (1998); Wikle &
Cressie (1999) for further details. Another option is specifying a simple random walk
dynamics such as in Huerta et al. (2004). Alternatively, if one knows explicitly the
model parameters, they can be incorporated directly into the parameterisation, Wikle
et al. (2001).

The standard approach where model parameters are unknown uses the EM algorithm
to estimate parameters, Shumway & Stoffer (1982). Estimation in the spatio-temporal
dynamical model setting can be achieved through a state-space framework. Given
parameters, the unobserved state-process can be estimated via the Kalman filter or
Kalman smoother. In Wikle & Cressie (1999); Xu & Wikle (2007) estimation and
prediction using Kalman filtering/smoothing and reduced-dimension processes are per-
formed. An review of spatio-temporal Kalman filter implementations can be seen in
Cressie & Wikle (2011).

In this chapter, an efficient estimation approach for spatio-temporal dynamic models
is described, in which the covariance matrices are parameterised. The EM algorithm
to carry out this estimation is implemented. In addition, the idea of spatio-temporal
dimension reduction is introduced. The key is to change the state vector in a lower di-
mensional space by using a spectral basis. Although one could use any set of orthonor-
mal basis functions such as Fourier, wavelets, or empirical functions, the empirical
orthogonal functions (EOFs) are chosen for this chapter. This selection is convenient
since they are widely used in meteorological studies, see chapter 5 in Cressie & Wikle
(2011).

5.1 Hierarchical DSTM Models

In this section, a general scheme of hierarchical modelling in the context of a DSTM
is given. If it recognised that observing a process perfectly is not possible, then it is
required mapping that relates observations to the ”true” process. In the context of
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DSTMs, one could specify a data model level that gives a model for the data, condi-
tioned on the true process of interest and some parameters. At the next level, a process
model can specify the dynamic evolution of the (hidden/latent/state) process, given
some parameters. At the third level, one can have parameters models for the parame-
ters from the previous two stages (Bayesian hierarchical model, BHM), or estimates of
the parameters (empirical hierarchical model, EHM).

5.1.1 Data Models

The distribution of the data can be written as

[{Z(x; r) : x ∈ Ds, r ∈ Dt}|{Y (s; t) : s ∈ Nx, t ∈ Nr},θD], (5.1)

where Z(s; r) is an observation at spatial location s and time r, Y (s; t) represents the
(hidden or latent) process of interest at spatial location s and time t, and θD refers to
data-model parameters than can vary in space and/or time. The spatial neighbourhood
of x can be represented as Nx and, the past neighbourhood of r as Nr. That is, it is the
observations at possible different supports, conditional on values of the true process
of interest at some other locations of support and some parameters. The form of the
DSTM data model shown in 5.1 is extremely general to be useful. It is more convenient
to give specific types of models that are more useful for spatio-temporal models and
that show the flexibility of the conditional framework.

5.1.2 Process Models

The DSTM process distribution can be written as

[Y (s; t)|{Y (w; t− τ1) : w ∈ N (1)
s }, . . . , {Y (w; t− τp) : w ∈ N (p)

s },θP ], (5.2)

where N (1)
s , . . . ,N (p)

s are neighbourhoods of spatial locations s, corresponding to the
lags 0 < τ1 < . . . < τp, and θP refers to the process-model parameters. Again, the
form of 5.2 is general but not necessarily useful, in section 5.2 specific formulations will
be discussed. One the most relevant problems of using DSTMs is the computational
burden due to the dimensionality.

5.1.3 Parameter Models

Finally, the parameter-model distribution is presented as

[θD,θP |θh], (5.3)
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where θh refers to hyperparameters. This is a general framework but some assumptions
need to be made to have more useful models, as one can see in the next section. in
many cases, it is assumed conditional independence in the parameters distributions,
such as [θD,θP |θh] = [θD,θh][θP |θh]. One should notice that in some cases it would
be sufficient to specify or estimate any of the three levels, rather than model them
at this third level of hierarchy. Moreover, one could need even lower levels in more
complicated scenarios. It is the case that the choice of these prior distributions is
driven by the underlying specific problem.

5.2 Latent Linear Gaussian DSTMs

DSTM are widely used models in which the process models are assumed to have additive
Gaussian error distributions and linearity in an evolution operator. Unless otherwise
stated, it is assumed that the locations can have either point or areal support. Different
supports for the prediction locations and data locations can be also assumed.

From section 5.1 one can consider, Dt = {0, 1, 2, . . .}, as discrete time with temporal
domain with a constant time increment. One can denote the data and potential data
by {Zt(s) : s ∈ Ds; t = 0, 1, . . .}; the latent process is denoted by {Yt(s) : s ∈ Ds; t =
0, 1, . . .}, where Ds is a spatial (discrete/continuous) domain. About Zt0(s0), there is
no available data but even in this case one can make inference on Yt0(s0).

5.2.1 Data Models

The relationship between the observations and the latent spatio-temporal process can
be described through a data model,

Zt(·) = Ht(Yt(·),θD,t, ϵt(·)), t = 1, . . . , T, (5.4)

where Z(·) corresponds to the data at time t, and (·) represents any spatial location.
The mapping Ht (linear or not linear) connects the data to the latent process. The
spatio-temporal variability, is given by ϵt(·), and data-model parameters are represented
by the vector, θD,t.

The power of the data model comes from conditioning, if one assume that Z(·) are
independent in time. When conditioned on the true process, Y (·), parameters θD,t
have the joint distribution represented in product form,

[{Zt(·)}Tt=1|{Yt(·)}Tt=1, {θD,t}Tt=1] =
T∏
t=1

[Z(·)|Y (·),θD,t]. (5.5)
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It will be considered that the component distributions on the right-hand side of the
equation 5.5 to be Gaussian, but other members of the exponential family of distribu-
tions can also be considered.

5.2.2 Process Models

If a first-order Markov assumption is made for the process model, when conditioning on
the past, only the recent past is important to explain the present. One have the next
simplification,

[Yt(·)|Yt−1(·), . . . , Y0, {θP,t}Tt=0] = [Yt(·)|Yt−1(·),θP,t], t = 1, 2, . . . (5.6)

If one uses the chain rule, then the joint distribution can be written as,

[Y0(·), Y1(·), . . . , Yn(·)] = [YT (·)|YT−1(·), . . . , Y0(·)] . . . [Y1(·)|Y0(·)][Y0(·)], (5.7)

under this assumption and considering equation 5.6, one have a simpler expression for
the conditioned joint distribution

[Y0(·), Y1(·), . . . , YT (·)|{θP,t}Tt=0] =
(

T∏
t=1

[Yt(·)|Yt−1(·),θP,t]
)

[Y0(·)|θP,0]. (5.8)

A stochastic model for Yt(·) can be specified, in general, a dynamical model can be
written as

Y (·) = M(Yt−1(·),θP,t, ηt(·)), t = 1, 2, . . . , (5.9)

where M is a function at the previous time, called evolution operator. Meanwhile,
θP,t are parameters (possibly with spatial or temporal dependence) that describe the
dynamical transition and ηt(·) is a spatial error term process that is independent in
time. One should notice that a distribution for the conditioned initial state, Y0(·|θP,0),
needs to be specified or or conditioned on it. The evolution operator can be linear
or nonlinear and the associated distribution can be Gaussian or non-Gaussian with
additive or multiplicative errors. Higher-order Markov assumptions can be considered
but this formulation could increase dimensionality. First-order representation in terms
of probability distributions in general is enough.
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5.2.3 Parameters Models

A Bayesian approach requires distributions to be assigned to the parameters defined
in the data model and the process model, {θD,t,θP,t}. Spatially or temporally vary-
ing dependence on covariate information should be specified for the parameters. As
mentioned in section 3, one of the most important aspects of Bayesian hierarchical
modelling is the specification of these distributions. In that case, an important mod-
elling challenge in DSTMs is to come up with ways to effectively reduce the parameter
space.

In some cases, it is possible to estimate the parameters in an EHM context. If one decide
to follow this approach, it is not needed to specify a distribution for the parameters
defined in the data model and the process model. This is frequently done in state-space
models in time series and sometimes the expectation-maximisation (EM) algorithm is
implemented. Ir that the choice of the estimation approach is a specific problem.

5.3 Linear Data Model with Additive Gaussian Error

Let us suppose some data at locations {rjt : j = 1, . . . ,mt; t = 0, 1, . . . , T}. A different
number of data locations for each observation time can be considered, with a finite set
of m possible data locations, i.e., mt < m. Let {si : i = 1, . . . , n} a set of locations
associated to a Gaussian latent process Yt(si), and M the linear evolution operator,
both defined as in the equation 5.9.

Consider the mt-dimensional data vector, Zt ≡ (Z(r1t), . . . , Z(rmtt))′, and the n-
dimensional latent process vector, Yt ≡ (Yt(s1), . . . , Yt(sn))’. The linear data model
with additive Gaussian error for the jth observation at time t, is written as

Zt(rjt) = bt(rjt) +
n∑
i=1

ht,jiYt(si) + ϵt(rjt), (5.10)

for t = 1, . . . , T , where bt(rjt) is an additive offset term for the jth observation at time
t, {ht,ji}ni=1 ≡ h′

t,j are coefficients that map the latent process to the jth observation
at time t, and the error term ϵt(·) is independent of Yt(·). Since j = 1, . . . ,mt, the data
model can be written in vector matrix form as

Zt = bt + HtYt + εt, εt ∼ iid Gau(0,Cϵ,t), (5.11)

where bt is the mt-dimensional offset term, Ht is the mt × n matrix mapping, which
jth row corresponds to h′

t,j , and Cϵ,t is an mt ×mt error covariance matrix.
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5.3.1 Latent Spatio-Temporal Dynamic Process

The main issue with dynamic spatio-temporal process, Yt, is specifying how the process
transitions from one time to the next, this is where our modelling effort shall be focused.
Unless specified otherwise, it is assumed Yt has a mean of zero; and as before, a first-
order Markov assumption can be made to describe its evolution. A further description
of this component will be given after.

5.3.2 Additive Offset Term

Despite the simplicity in the general DSTM framework, there are circumstances where
one could include another level of sophistication, such as an additive bias in the ob-
servations. If one is interested, it is possible to infer the additive offset term, bt, from
5.11, some assumptions can be made with this in mind. It is possible that the additive
offset term, bt(rjt), can be fixed through time, space, or constant across space and
time; that is bt(rjt) ≡ b(rjt), bt(rjt) ≡ bt or bt(rjt) ≡ b respectively. It can also be
defined it in terms of covariates bt(rjt) ≡ x′

t,jβ or bt(rjt) ≡ x′
tβj where xt,j and xt are

q-dimensional vectors of covariates and β and βj are q-dimensional parameter vectors.
One can also consider the offset parameters to be either spatial or temporal random
processes with distributions assigned at another level of hierarchy into the model. In
this case, bt ∼ Gau(Xtβt,Cb) where Cb is a positive-definite matrix such as it was
described in chapter 6.

5.3.3 Observation Mapping Matrix/Function

The observation mapping matrix, Ht, is varying in time and can accommodate potential
observation networks at each time. One of the simplest cases is when it is an incidence
matrix of zeros and ones. In this case, data location is associated with one or more of the
process locations. The incidence matrix can accommodate missing data or can serve as
an interpolator such that each observation is related to some weighted combination of
the process values. It is possible to parameterise the mapping matrix and/or estimate
it directly in some cases, but it is more common to assume that it is known.

There is another situation where one can know the elements of the incidence vector,
ht,j , it is called the change-of-support problem. In situations where this change is used,
implications for the measurement covariance matrix should be taken into account and
it is also possible that the weights Ht will change with the time. See chapter 7 of
Cressie & Wikle (2011), for details.
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5.3.4 Error Covariance Matrix

The additive error process {ϵt(rjt)} is assumed to have mean of zero, is Gaussian, and
usually one assumes that the errors are independent in time, but they could include
dependence in space or time. Let εt ≡ (ϵt(r1t)), . . . , ϵt(rmt), where ϵ(·) is defined at a
finite set of mt observation locations. Now our goal shall be to specify time-varying
covariance matrices {Cϵ,t}, in practice, one can assume that these data-model errors
are time/space independent with constant variance, i.e., Cϵ,t = σ2

ϵ Imt , where σ2
ϵ is

the measurement-error variance. Stating a covariance matrix depends on the specific
problem, but one can take advantage of hierarchical modelling to simplify the problem.

There are some scenarios where the data-model error covariance matrix is assumed
constant over time, Cϵ,t = Cϵ, and mt = m, in this case one could try to estimate
Cϵ or parameterise it in terms of some valid spatial covariance functions if if there is
spatial dependence.

5.4 Process Model

Specifying a transition process in a spatio-temporal statistical setting can be difficult
due to the inconvenience of high dimensionality. The linear-evolution equation with
Gaussian errors describes how the process at location j at the previous time influences
the process at location i at the current time, it can be written in a matrix form,

Yt = MYt−1 + ηt, ηt ∼ iid Gau(0,Cη). (5.12)

This is a particular version of the process shown in 5.9, where the n × n transition
matrix is given by M with (possible unknown) elements {mij} and the additive spatial
error process, {ηt}, independent over time and Gaussian with mean zero and covariance
matrix Cη; ηt is independent of Yt−1. Unless specified otherwise, one shall assume {Yt}
has a mean of zero throughout this work. The stability condition in this case requires
that the maximum modulus of the eigenvalues of M be less than 1, see appendix A.

Consider the ith element of Yt and the associated evolution implied by the process
5.12,

Yt(si) =
n∑
j=1

mijYt−1(sj) + η(si), (5.13)

where the weights mij correspond to the ith row and the jth column of M. It is
unlikely having a real world problem where one knows the elements of M, but when
n is relatively small, one can estimate M. In spatio-temporal dynamic modelling, the
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fundamental problem is how M can be parameterised with relatively few parameters.
In general, obtaining reliable estimates of the n × n propagator matrix M can be
challenging. However, M and Cη are often assumed to depend on parameters θp and
θη respectively, to reduce the curse of dimensionality. In some applications of fairly low
dimensionality and large sample sizes (when n is small and T ≫ n) one can estimate
n × n matrices M and Cη directly in an EHM. This is commonly done in state-space
models of time series, in particular, this approach will be followed.

There are other approaches that one can consider to parameterise the evolution matrix
for the first-order, some of these are motivated by the underlying dynamical process.
See chapter 7.2 Cressie & Wikle (2011), for details. Some of these approaches are
briefly described here. In particular, the approach that will be followed later in section
5.9 is the integro-difference equation (IDE).

5.4.1 Spatio-Temporal Random Walk

Perhaps one of the simplest parameterisation of DSTM process. It is a multivariate
extension of the random walk. That is,

Yt = Yt−1 + ηt, ηt ∼ iid Gau(0,Cη). (5.14)

In this case, the process value at location si and time t is the value at the same location
si at the previous time (t− 1), plus some noise. It is clear that M = I in the equation
5.12. There is a possibility that term ηt is spatially dependent. The advantage of this
parameterisation is that there are few parameters. But the disadvantage is that it is
not stationary in time. Then, this parameterisation is not realistic for most of the
process on large spatial and temporal scales.

5.4.2 Spatial Autoregresive Model

A natural extension of the simple autoregressive model is to allow the AR parameters
to vary heterogeneously across space. For example, for n locations it can be written
as,

Yt = diag(m)Yt−1 + ηt, ηt ∼ iid Gau(0,Cη), (5.15)

where m ≡ (m(s1), . . . ,m(sn))′. Once more, the advantage is that there are relatively
few parameters and it is fairly to estimate the parameters. But this model can not
handle direct interactions between space and time for multiple spatial locations.
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5.4.3 ”Lagged Nearest-Neighbour” Model

Let M be parameterised such that only the mij corresponding to the location si and its
nearest neighbour {sj : j ∈ Ni} at the previous time are important. This assumption
can be made in the context of a process with areal support or on a regular grid, with
point or areal support. The model can be written as

Yt(si) =
∑
j∈Ni

mijYt−1(sj) + ηt(si), (5.16)

where Ni refers to a specified ”neighbourhood” of si, 1, . . . , n. In general, it can be
assumed that errors are Gaussian: ηt ∼ iid Gau(0,Cη). The matrix M is sparse,
many of its elements are zero. Even in this situation, the estimation of the nonzero
mij can be difficult.

5.4.4 PDE-Based Parameterisation

For some physical and environmental processes, the underlying spatio-temporal pro-
cess can follow partial differential equations (PDEs) or ordinary differential equations
(ODEs). In the case of linear PSEs, standard finite differencing implies linear Markov
spatio-temporal models. Let us consider the general PDE,

∂Y

∂t
= M(Y, ω,θ), (5.17)

where M is some function of the variable of interest, Y , other potential variables, ω,
and process model parameters, θ. It is a deterministic model.

5.4.5 Integro-difference equation (IDE)

In the context of linear Markovian spatio-temporal process models, the value of the
process at a given location at the present time is determined by the past. It is made
up of a weighted combination of the process throughout the spatial domain at previous
times, plus an additive Gaussian innovation. The process can be represented in a
continuous-spatial context through an integro-difference equation (IDE). A first-order
spatio-temporal IDE process model is given by

Yt(s) =
∫
Ds
m(s,x,θp)Yt−1(x)dx + ηt(s) s,x ∈ Ds (5.18)

for t = 1, 2, . . .. In this case, m(s,x,θp) is a transition kernel depending on parameters
θp that specify weights for the process at the previous time over the spatial domain. Ds
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and ηt(·) is a time-varying continuous mean-zero Gaussian spatial process independent
of Yt−1(·).

If it is supposed a finite set of prediction spatial locations (or regions)Ds = {s1, s2, . . . , sn}.
The first-order IDE evolution process model 5.18 can be discretised and written as a
stochastic difference equation,

Yt(si) =
n∑
j=1

mij(θp)Yt−1(sj) + η(si) (5.19)

for t = 1, 2, . . .. And with transition weights mij(θp) that depend on parameters θp.
In particular, the process at Y (si) considers a weighted combination of the values of
the process at time t− 1 and at a discrete set of spatial locations.

The equation 5.19 suggested potential parameterisations of M in terms of few param-
eters. Some of these parametrisations include nonzero off-diagonal elements. Usually,
the propagator matrix is not symmetric, mij(θ) ̸= mji(θ). Some disadvantages can be
observed under this approach. For instance, even if θ is known, the dimensionality of
M can be computationally problematic. An alternative implementation can be more
efficient. This can be done considering the IDE model in spectral form.

Now, if the process vector is denoted as Yt ≡ (Yt(s1), Yt(s2), . . . , Yt(sn))′, then the
equation 5.19 can be written in vector–matrix form as a linear first-order vector au-
toregression DSTM,

Yt = MYt−1 + ηt. (5.20)

The n×n transition matrix is given by M with elements {mij}, and the additive spatial
error process ηt ≡ (ηt(s1), ηt(s2) . . . , ηt(sn)) is independent of Yt−1 and is specified to
be mean-zero and Gaussian with spatial covariance matrix Cη.

Then, Yt can be expanded in terms of some complete class of spatial spectral basis
vectors, given by the columns of Φ, one can obtain,

Yt = Φαt,

where αt are the associated spectral coefficients. Note that it can be considered as a
linear transformation of the spatial process at time t into the spectral domain. This
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suggest the dynamical relationship

αt = Mαt−1 + γt, (5.21)

where Mα ≡ (Φ′Φ)−1Φ′MΦ is the spectral propagator matrix, and γt = (Φ′Φ)−1Φ′ηt

is the spectrally transformed noise-forcing process. Note that if the basis vector are
orthogonal, then 5.21 can be simplified considering Φ such as Φ′Φ = I. It can represent
some advantages since Mα and the covariance for γt are often simpler than their
equivalent versions in the spatial domain. See Wikle & Cressie (1999).

5.5 Multivariate DSTM

Most real-world processes are not isolated from other processes. For example, a model
to analyse the behaviour of pollutants such as nitrogen dioxide (NO2) and particle
matter (PM), would be possibly better if their relationship is considered. Modelling
joint statistical dependence could extend both joint and conditional formulations for
multivariate DSTM process models.

5.5.1 Multivariate DSTMs: Augmenting the State Process

In dynamical perspective, all the approaches for modelling DSTMs are applicable in
multivariate context. If one has a system of several processes in which first-order linear
dynamics were appropriate, one could augment the state variable by concatenating the
state vectors. Let us consider the process Y(k)

t of dimension nk; k = 1, . . . ,K. The
augmented state is Yt = (Y(1)

t , . . . ,Y(K)
t )′, one could use a dynamical model to capture

its temporal variability,

Yt = MYt−1 + ηt; ηt ∼ iid Gau(0,Qη), (5.22)

which is of dimension n+ ≡
∑
k nk. The propagator matrix M allows each process at

the previous time to have influence on itself and the others at the current time. The
error covariance matrix Qη is in block form, corresponding to the covariance matrix of
each process (the diagonal blocks) and the cross-covariance matrices (the off-diagonal
blocks). Although dimensionality can be a potential problem, first-order lag struc-
ture and non-time-varying propagator matrices are sufficient for general multivariate
modelling issues.
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5.6 Parameter and process dimension reduction in dy-
namic spatio-temporal models

The linear Gaussian DSTM described in section 5.3 has unknown parameters associ-
ated with the data mode Cη, the transition M and the initial-condition distribution
(µ0 and C0 for instance). For the linear Gaussian data model, a simple characterisa-
tion of Cϵ can be made, Cϵ = σ2

ϵ I, for example. Alternatively, the covariance matrix
implied by a spatial random process can have just a few parameters such as a Mátern
spatial covariance function or a spatial conditional autoregressive process. In a com-
plex DSTM modelling context for the process-error spatial variance–covariance matrix,
Cη. One could use a spatial covariance-function representation such as a Matérn func-
tion or a basis-function random effects representation. One of the challenges when
considering DSTMs in hierarchical statistical settings is the dimension associated with
the process-model level of the DSTM. One way to proceed, is reducing the number
of free parameters to be inferred in the model and/or reduce the dimension of the
spatio-temporal dynamic process.

5.6.1 Parameter Dimension Reduction

The linear Gaussian DSTM described in section 5.3 has unknown parameters associated
with the data mode Cη, the transition M and the initial-condition distribution (µ0

and C0 for instance). For the linear Gaussian data model, a simple characterisation
of Cϵ can be made, Cϵ = σ2

ϵ I, for example. Alternatively, the covariance matrix
implied by a spatial random process can have just a few parameters such as a Mátern
spatial covariance function or a spatial conditional autoregressive process. In a complex
DSTM modelling context for the process-error spatial variance–covariance matrix, Cη,
one could use a common spatial covariance-function representations such as a Matérn
function or a basis-function random effects representation.

The transition-matrix parameters require particular attention, since there could be as
many as n2 of them. In simple linear cases of DSTM, the transition matrix M, could
be parameterised as a random walk (M = I), a spatially homogeneous autoregressive
process (M = θpI), or a spatially varying autoregressive process (M = diag(θp)).

The last parameterisation can be more useful, for example, one could have the process
model where Cη = σ2

ηI, and M = diag(θp). The conditional distribution can be
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decomposed as,

[Yt|Yt−1,θp, σ
2
η] =

n∏
i=1

[Yt(si)|Yt−1(si), θp(i), σ2
η], t = 1, 2, . . . (5.23)

where θp = (θp(1), . . . , θp(n))′. At one location, the transition is influenced just by the
Y -value at the previous time, i.e., one has a spatially independent univariate AR(1)
processes at each spatial location.

5.6.2 Dimension Reduction in the Process Model

For DSTM, process models could be helpful to consider a decomposition in terms of
fixed effects and random effects in a basis-function expansion,

Yt(s) = xt(s)′β +
nα∑
i=1

ϕi(s)αi,t +
nξ∑
j=1

ψj(s)ξj,t + ν(s), (5.24)

where xt(s)′β is a term with covariates and fixed components β, the first basis-
expansion term, ∑nα

i=1 ϕi(s)αi,t, contains known spatial basis functions, {ϕi(·)}, and
random effects, {αi,t}; the residual basis-expansion term, ∑nξ

j=1 ψj(s)ξj,t, where the
basis functions, {ψj(·)}, are assumed known, and the random effects, {ξj,t}, can be
non-dynamic or can contain simple temporal behaviour. This component can be used
to capture the variability associated with spatio-temporal process on different spatial
scales. Finally, νt(·) is assumed to be a Gaussian process with mean zero and inde-
pendent in time. The model 5.24 provides a flexible decomposition of spatio-temporal
processes that is focused on the random effects, {αi,t}.

Reductions in process dimension of the n-dimensional vector, Yt, can be helpful since
one could get a lower-dimensional process, {αt}, of dimension nα where nα ≪ n. It
can be convenient to rewrite 5.24 in vector form,

Yt = Xtβ + Φαt + Ψξt, (5.25)

where Xt is an n×p matrix that can be interpreted as a spatial offset and/or covariate
effects, Φ, is an n×nα matrix of basis vectors related to the process, {αt}, and Ψ is an
n×nξ matrix of basis vectors related to the latent coefficient process {ξt}. The vector
{ξt} can have different dynamic characteristics than {αt}, the error process {νt} is
Gaussian and assumed to have mean zero and it is usually independent.

The evolution of the latent process can proceed according to the linear equations in-
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volving a transition matrix,

αt = Mααt−1 + ηt, ηt ∼ iid Gau(0,Cη) (5.26)

where Mα is the nα × nα transition matrix, and ηt are independent of αt−1 and
independent in time. The matrices Mα and Cη in 5.26 usually have simple structure
depending on the process. It should be noticed that even in this low-dimensional
context, in many cases parameter-space reduction may still be necessary.

One could consider the simple structures that were discussed in 5.4 in the context
of linear DSTM process. Random walks, independent AR models, nearest-neighbour
models are examples of these structures. The parameterisation of these matrices (in
particular M) is one of the greatest challenges in DSTMs. It can be facilitated by using
parameter models in a BHM. But, in other applications of lower dimensionality and
large sample sizes, one can estimate n × n matrices M and Cη directly in an EHM.
This procedure is frequently done in state-space models of time series. In particular,
this approach will be followed in the last example in this chapter, for more details see
Cressie & Wikle (2011).

It is also important that the transition operator be non-normal, i.e., Mα
′Mα ̸= MαMα

′.
In which case, the eigenvectors of M are non-orthogonal, but still stable. Nondiagonal
transition matrices can be considered in most cases. If the basis functions given in Φ
are such that the elements of αt not spatially indexed such as some type of empirical
orthogonal functions (EOFs). One can note that mechanistic knowledge can also be
used in this case to motivate parameterisations for Mα. In the section 5.8, Mα and
Cη are estimated by the method of moments and by an EM algorithm.

5.7 Empirical Orthogonal Function (EOF) Analysis

Empirical orthogonal functions (EOFs) are geophysicist’s terminology for the eigen-
value/eigenvector decomposition of covariance (or correlation) matrix (see Cressie &
Wikle (2011) chapter 5). In statistics, EOF analysis is the spatio-temporal manifesta-
tion of principal component analysis (PCA). Depending on the application, EOFs can
have different purposes:

1. In a diagnostic mode, to find principal spatial structures in terms of variance,
along with the corresponding time variation of those structures.

2. To reduce dimensionality in large spatial-temporal data sets while simultaneously
reducing noise.
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One advantage of the EOF approach is that the complicated variability of spatio-
temporal data can be compressed into a smaller set of eigenvectors.

EOFs can be calculated from the spectral decomposition of the empirical lag-0 spatial
covariance matrix. However, they are more often obtained through a singular value
decomposition (SVD), see appendix A and section 5.3.4 in Cressie & Wikle (2011).

For a spatio-temporal data set that does not have missing values, one can define Z ≡
[Z1, . . . ,ZT ]′, the m× T space-wide data matrix of data and let

Z̃ ≡ 1√
T − 1

(Z − 1T µ̂′
Z,s), (5.27)

the “detrended” and scaled data matrix, where 1T is a T -dimensional vector of ones and
µ̂Z,s is the spatial mean vector given by 4.22. Given Ĉ(0)

Z is symmetric and nonnegative
definite, the spectral decomposition,

C(0)
Z = Z̃Z̃′ = ΨΛΨ′, (5.28)

where Ψ ≡ (ψ1, . . . , ψm) is a matrix of spatially indexed eigenvectors given by the vec-
tors ψk ≡ (ψk(s1), . . . , ψk(s1))′ for k = 1, . . . ,m and Λ ≡ diag(λ1, . . . , λm) is a diagonal
matrix of corresponding non-negative eigenvalues. Projections of the detrended data
matrix onto the EOF basis functions, Ψ, are given by

A = (
√
T − 1)Z̃Ψ, (5.29)

which are called the principal component (PC) time series. Their normalised version is
given by Anorm ≡ AΛ−1/2, this normalisation allows the m time series to be plotted on
the same scale, leaving their relative importance to be captured by their corresponding
eigenvalues. The SVD calculation approach has some advantages:

• One does not need to calculate the empirical spatial covariance matrix.

• One gets the normalised PC time series and EOFs simultaneously.

• The procedure still works when T < m, although it can be problematic since C(0)
Z

is not positive-definite.
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5.8 Implementation and Inference

If there is no prior knowledge on how to parameterise components in a hierarchical
model, they can be estimated in the context of a standard state-space modelling frame-
work. When taking this approach, it is important that a low dimensional representation
of the spatio-temporal process is adopted. Since the dimension of the parameter space
increases with the dimension of the process, therefore the model can become over pa-
rameterised.

Although it can be difficult to get analytical formulations for filtering, smoothing and
forecast; in the case of a linear observation operator and Gaussian error distributions,
one can get explicit distributions.

5.8.1 Kalman Filter

The Kalman filter is convenient for a sequential updating when one has linear operators
and Gaussian error distributions, see West & Harrison (1997).

Let us define Z1:t ≡ {Z1, . . . ,Zt} and Y0:t ≡ {Y0, . . . ,Yt}, for t = 0, 1, . . . , T . So that,
the conditional expectations for the filtering and forecast distributions can be defined
as Yt|t ≡ E[Yt|Z1:t] and Yt|t−1 ≡ E[Yt|Z1:t−1], respectively. The conditional error
covariance matrices can be defined for filtering and forecasting as

Pt|t ≡ E[(Yt − Yt|t)(Yt − Yt|t)′|Z1:t] (5.30)

and
Pt|t−1 ≡ E[(Yt − Yt|t−1)(Yt − Yt|t−1)′|Z1:t−1]. (5.31)

Consider the measurement distributions, [Zt|Yt], given by

Zt = HtYt + εt; εt ∼ ind. Gau(0,Cε,t), (5.32)

where Ht is the observation operator that maps the process to the observations, and
Cε,t is the error covariance matrix, where the measurement errors are assumed to be
independent across time.

The process distribution, [Yt|Yt−1], can be considered and is given by the vector au-
toregressive model of order one, (VAR(1)):

Yt = MtYt−1 + ηt; ηt ∼ ind. Gau(0,Cη,t), (5.33)
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where Mt is the linear model operator that maps the evolution of the process in time,
and Cη,t is a covariance matrix representing temporally independent stochastic features.
In general, the measurement error process and the evolution error process are mutually
independent for all time.

Using standard results for conditional-expectation and conditional-variance, the fore-
cast distribution can be obtained by

Yt|Z1:t−1 ∼ Gau(Yt|t−1,Pt|t−1), (5.34)

where the mean vector and covariance are given by

Yt|t−1 = E(E(Yt|Yt−1)|Z1:t−1) = E(MtYt−1|Z1:t−1) = MtYt−1|t−1, (5.35)

and

Pt|t−1 = E(var(Yt|Yt−1)|Z1:t−1) + var(E(Yt|Yt−1)|Z1:t−1)

= E(Cη,t|Z1:t−1) + var(MtYt−1|Z1:t−1)

= Cη,t + MtPt−1|t−1M′
t.

(5.36)

The filtering distribution is given by

Yt|Z1:t ∼ Gau(Yt|t,Pt|t), (5.37)

where
Yt|t = Pt|t(H′

tC−1
ε,tZt + P−1

t|t Yt|t−1) (5.38)

and
Pt|t = (H′

tC−1
ε,tHt + P−1

t|t−1)−1. (5.39)

The mean and variance of 5.37 can be written as

Yt|t = Yt|t−1 + Kt(Zt − HtYt|t−1) (5.40)

and
Pt|t = (I − KtHt)Pt|t−1, (5.41)

where Kt is called the Kalman gain and is given by

Kt ≡ Pt|t−1H′
t(HtPt|t−1H′

t + Cε,t)−1. (5.42)
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See Cressie & Wikle (2011), p. 446, for details.

If one assumes that the matrices Ht, Mt, Cε,t and Cη,t are known, for t = 0, 1, . . . , T
with initial conditions Y0|0 ≡ µ0, P0|0 ≡ Σ0, the Kalman filter algorithm can be used
to obtain sequential estimates of states.

Algorithm: Kalman Filter
Set initial conditions: Y0|0 = µ0 and P0|0 = Cη,0

for t = 1 to T do
1. Forecast distribution step:

(a) Obtain Yt|t−1 = MtYt−1|t−1

(b) Obtain Pt|t−1 = Cη,t + MtPt−1|t−1M′
t

2. Filtering distribution step:
(a) Obtain the Kalman gain, Kt ≡ Pt|t−1H′

t(HtPt|t−1H′
t + Cε,t)−1

(b) Obtain Yt|t = Yt|t−1 + Kt(Zt − HtYt|t−1)
(c) Obtain Pt|t = (I − KtHt)Pt|t−1

end for

5.8.2 Kalman Smoother

One could be interested in the distribution of Yt at time t < T , given all data up to
T , this is the smoothing distribution, [Yt|Z1:T ]. It is useful for retrospective analysis,
for this purpose one can use the Kalman smoother that can be derived from various
perspectives. See Cressie & Wikle (2011), p. 449 for details.

This smoothing distribution is denoted by

Yt|Z1:T ∼ Gau(Yt|T ,Pt|T ), (5.43)

and, if one saves the results from the Kalman filter, the Kalman smoother algorithm is
given by,
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Algorithm: Kalman Smoother
Obtain: Yt|y, Pt|t, Yt+1|t and Pt+1|t, for t = 0, . . . , T from the Kalman filter
algorithm
for t = T − 1 to 0 do

1. Obtain Jt ≡ Pt|tM′
t+1P−1

t+1|t
2. Obtain Yt|T = Yt|t + Jt(Yt+1|T − Yt+1|t)
3. Obtain Pt|T = Pt|t + Jt(Pt+1|T − Pt+1|t)J′

t

end for

5.9 Estimation and prediction for Dynamic Spatio-Temporal
Models

In some engineering applications, all parameters matrices are known but this is almost
never the case for other contexts. In the case where the parameters associated with the
evolution distribution are unknown, one can estimate them. This can be made either
through empirical hierarchical modelling (EHM) such as in Wikle & Cressie (1999);
Kang & Cressie (2011). Bayesian hierarchical modelling (BHM) could be used, the
parameters are assumed to be random are given prior distributions and the estimation
issues could be done via the posterior distributions, Berliner et al. (2000). Based on
section 5.5, the proposed models are considering not just PM2.5 concentrations but also
PM10 and NO2 data. This extension is relatively easy to implement.

If one has no prior knowledge about how to parameterise M, then M can be estimated
in the context of a state-space modelling framework. If one decides to follow this
approach, it is important to consider a low-dimensional representation of the spatio-
temporal process. It can help us to avoid a over-parameterised model.

It is always relevant the number of EOFs (or PCA) one should consider. One of the
simplest ways to select it is just to consider the number of EOFs that account for some
desired proportion of overall variance. In particular, due to the number of spatial point
is small, m = 19 × 3, it is easier to test different eigenvalues of the EOF in terms of
their prediction.

Most EOF analyses in the spatio-temporal context consider spatial EOFs and PC time
series. However, one can consider the analogous decomposition in which the EOFs are
time-series bases and the projection of the data onto these bases is given by PC spatial
fields. One can work with the temporal covariance matrix (averaging over spatial
location) or consider the SVD of an m× T (temporally detrended) data matrix.

90



Moreover, there are many extensions to the basic EOF analysis presented here such as
complex EOFs and multivariate EOFs. These all have specific utilities depending on
the type of data and the goal of the analysis. For instance, complex EOFs are used
for trying to identify propagating features that account for an important amount of
variation in the data. And, multivariate EOFs can considered when multivariate spatial
data are observed at the same time points. These methods are described in more detail
in Cressie & Wikle (2011) section 5.4.

5.9.1 Estimation in Vector Autoregressive Spatio-Temporal Models
via the Method of Moments

In contrast with the traditional vector autoregressive (VAR) time-series applications,
the autoregressive process is assumed to correspond directly to the data-generating
process. In this context, there are no separate data models and process models. Recall
the model defined by the equation

Zt = MtZt−1 + ηt; ηt ∼ Gau(0,Cη), (5.44)

for t = 1, . . . , T where it is assumed that Z0 is known and Zt ≡ (Z1(s1)s, . . . , Z(sm))′.
Estimation of the matrices M and Cη can be obtained via maximum likelihood, least
squares, or the method of moments, see Lütkepohl (2005).

Let us assume {Zt} has mean zero and is second-order stationary in time. After post-
multiplying both sides of 5.44 by Z′

t−1 and taking the expectation, one gets,

E(ZtZ
′
t−1) = ME(Zt−1Z′

t−1), (5.45)

which can be written as
C(1)
Z = MC(0)

Z . (5.46)

Recall that C(τ)
Z is the lag-τ spatial covariance matrix for {Zt}. From 5.46, one has

M = C(1)
Z (C(0)

Z )−1. (5.47)

If one post-multiplies 5.44 by Zt take expectations and using 5.47, one has that

Cη = C(0)
Z − MC(1)′

Z = C(0)
Z − C(1)

Z (C(0)
Z )−1C(1)′

Z . (5.48)
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If empirical moments of 5.47 and 5.46 are equated with theoretical moments, one gets

M̂ = Ĉ(1)
Z (Ĉ(0)

Z )−1. (5.49)

Ĉη = Ĉ(0)
Z − Ĉ(1)

Z (Ĉ(0)
Z )−1Ĉ(1)′

Z . (5.50)

The equations 5.49 and 5.50 are known as the method-of-moments estimators. In 5.50,
the empirical lag-τ covariances matrices, C(τ)

Z are calculated as in 4.1. Observe that T
needs to be larger than the dimension of Zt to ensure that Ĉ(0)

Z is invertible. Reasonable
estimates for exploratory data analysis can be obtained from the method-of-moments
approach in the context of DSTMs.

Let us project the spatial-mean-centered data onto orthogonal basis functions,

Φ : αt = Φ′(Zt − µ̂). (5.51)

Now, one can assume that the projected data come from the model αt = Mαt−τ + ηt,
and the estimates M̂ and Ĉη can be obtained based on the projected data. Then,
one can produce forecasts such as α̂T+τ = M̂α̂T , with estimated forecast covariance
matrix, Ĉα = M̂Ĉ(0)

α M̂′ + Ĉη, where Ĉ(0)
α is the empirical estimate of E(αtα

′
t). A

forecast for ẐT+τ can be obtained multiplying the forecast α̂T+τ by the basis-function
matrix and add back the spatial mean:

ẐT+τ = µ̂+ Φα̂T+τ . (5.52)

The forecast covariance matrix can be approximated by ĈZ = ΦĈαΦ′, where the
truncation and measurement error when projecting onto the basis functions have been
ignored. The parameter estimates in this procedure can give a quick forecast. It can
be used as starting values in the state-space EM algorithm that will be described later.

5.9.2 Parameter Estimation via the Expectation–maximisation (EM)
Algorithm

One of the most effective ways to estimate unknown parameters in the state-space
time-series case is through the EM algorithm.

The basic EM algorithm has been used to find maximum likelihood estimates in the
presence of missing data. The complete data, W , can be denoted as the union of the
observations, Wobs and missing data Wmis, i.e., W = (Wobs + Wmis). If θ represents
unknown parameters, then the complete data density is [W |θ] and the complete likeli-
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hood can be defined as L(θ|W ) ≡ [W |θ], the loglikelihood is logL(θ|W ). Let us define
θ̂(i−1) as the parameter estimate at the beginning of the ith iteration of the algorithm;
it consists of two steps:

• E-Step: Calculate E(logL(θ|W )|Wobs, θ̂
(i−1)) ≡ q(θ| ˆθ(i−1)).

• M-Step: Find θ that maximises q(θ|θ̂(i−1)), and call this θ̂(i).

Given a starting value, θ̂(0), iterate between the E-step and the M-step to obtain a
sequence of of estimates, {θ̂(i) : i = 1, 2, . . .}. The algorithm is stopped when a given
convergence is reached.

In the state-space version of the EM algorithm, this idea can be extended to cal-
culate unknown parameters. Let us denote by Z1:T the observations and the un-
observable latent process, and Y0:T the missing data. Denote the parameters by
Θ = {µ0,C0,Cη,Cϵ,M}, where the observation matrices, {Ht}, are often known. The
initial distribution is given by Y0|0 = Gau(µ0,C0) and it is assumed that Cϵ = Cϵ,t

corresponds to the m × m error covariance matrix for all possible observation loca-
tions, where m = mt for all t. It can also be assumed no missing observations at each
time point, an alternative technique when missing values are observed is proposed in
Houseago-Stokes & Challenor (2004). The EM algorithm is based on the complete-data
likelihood given by

[Z1:T ,Y0:T |Θ] =
(

T∏
t=1

[Zt|Yt]
)(

T∏
t=1

[Yt|Yt−1]
)

[Y0]. (5.53)

The EM algorithm 5.10 for a linear DSTM shown below, makes use of the Kalman
smoother algorithm to evaluate both the E-step and the M-step.

To evaluate both the E-step and the M-step the use of the Kalman smoother al-
gorithm is required. In addition one needs to obtain the lagged-one smoother vari-
ance–covariance matrix,

Pt,t−1|T ≡ E((Yt − Yt|T )(Yt−1 − Yt−1|T )′|Z1:T ), for t = T, T − 1, . . . .

Convergence can be assessed by considering parameter changes to the log complete-data
likelihood, see equation 5.10.
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5.10 Implementation using the LAQN data

Some considerations have been taken in order to fit all the DSTM models. One of
the main concerns is about the missing values that are present in all the pollutant
observations. In particular, to input the missing values in PM2.5 the empirical spatial
mean is used, see equation 4.21. This is possible since there is at least one observation
per site for this pollutant, see figure 2-7. The same procedure was made for the rest
of the pollutants. The only situation where this is not possible is for the site HG1,
where there are not PM10 observations, see figure 2-6. In this case, the empirical
temporal mean for the rest of the sites is considered, see equation 4.23. With the
aim of generating the EOFs up to 14 March 2016, they can be calculated through a
singular value decomposition (SVD). Then the detrended and scaled data matrix, Z̃,
can be obtained.

In this section, a EHM model for a reduced dimension linear DSTM is performed. In
this case, the time considered comes from 01 August 2015 to 14 March 2016. The
purpose is making predictions for 15 March 2016 based on previous daily PM2.5, PM10

and NO2 observations. Let us represent the data as

Zt ≡ (Zt(s1), · · · , Zt(sm))′,

for m = 19 monitoring sites, and t = 1, · · · , 227 = T days. The underlying process can
be represented by

Yt ≡ (Yt(s1), · · · , Yt(sn))′,

where n = m = 19. One can assume that the dynamics can be captured by the reduce
dimensional process {αt}, where,

Yt = Φαt + γt,

and Φ is an n×pα matrix of the first pα EOFs of the empirical spatial covariance matrix
of the data. In particular, it is assumed that γt ∼ iid Gau(0, σ2

γI). The purpose is
forecasting the smoothed process,

YP
t+τ ≡ Φαt+τ ,

given Z1:t ≡ {Z1, · · · ,Zt}, where τ = 1. This lag corresponds to a forecast with 1-day
forecast lead time; one should note again that our main interest is forecasting. Since
{αt} is assumed to control the dynamics, it is reasonable to take into account only
the the smoothed {YP

t }. If one is interested in spatio-temporal prediction, then the
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truncation error, γt, should be considered, and the forecast is Yt ≡ YP
t +γt, see Wikle

& Cressie (1999); Cressie et al. (2010).

Algorithm: Linear DSTM EM Algorithm
Choose initial condition covariance matrix, C0

Choose starting values: Θ̂(0) = {µ̂(0), Ĉ(0)
η , Ĉ(0)

ϵ , M̂(0)}
repeat i = 1, 2, . . .

1. E-step:
• Use Θ̂(i−1) in the Kalman smoother (5.8.2) to obtain

{Y(i−1)
t|T ,P(i−1)

t|T }
• Obtain the lag-one covariance smoother using Kalman smoother output

estimates
• Calculate P(i−1)

T,T−1|T = (I − K(i−1)
T HT )M(i−1)P(i−1)

T−1|T−1
• for t = T, T − 1, . . . , 2 do

P(i−1)
t−1,t−2|T = P(i−1)

t−1|t−1J(i−1)′

t−2 +
J(i−1)′

t−1 (P(i−1)
t,t−1|T − M(i−1)P(i−1)

t−1|t−1J(i−1)′

t−2
• end for
• Calculate SS00 = ∑

t=1 T (P(i−1)
t−1|T + Y(i−1)

t−1|TY(i−1)′

t−1|T )
• Calculate SS11 = ∑

t=1 T (P(i−1)
t|T + Y(i−1)

t|T Y(i−1)′

t|T )
• Calculate SS10 = ∑

t=1 T (P(i−1)
t,t−1|T + Y(i−1)

t|T Y(i−1)′

t−1|T )
2. M-step:

• Update: µ̂(i)
0 = Y(i−1)

0|T
• Update: M̂(i) = S10S−1

00
• Update: Ĉ(i)

η = (1/T )(SS11 − S10S−1
00 SS′

10)
• Update:

Ĉ(i)
ϵ = 1

T

T∑
t=1

((Zt − HtY(i−1)
t|T )(Zt − HtY(i−1)

t|T )′ + HtP(i−1)
t|T H′

t)

until convergence based on differences in:
−2 log(L(Θ(i)|Z1:T ,Y(i)

0:T )) = log(|Ĉ(i)
0 |) + (Y(i)

0|T − µ̂(i)
0 )′Ĉ−1(i)

0 (Y(i)
0|T − µ̂(i)

0 )

+T log(|Ĉ(i)
η |) +

T∑
t=1

(Y(i)
t|T − M̂(i)Y(i)

t|T )′Ĉ−1(i)
η (Y(i)

t|T − M̂(i)Y(i)
t|T )

+T (|Ĉ(i)
ϵ |) +

T∑
t=1

(Zt − HtY(i)
t|T )′Ĉ−1(i)

ϵ (Zt − HtY(i)
t|T ) .

Now, consider the data model,

Zt = YP
t + νt, νt ∼ iid Gau(0,Cν), (5.54)
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where YP
t , which is actually αt, i.e., Yt is not featured. In this implementation it is

assumed that Cν = σ2
νI. The process model is given by the pα-dimensional process,

αt+τ = Mαt + ηt, ηt ∼ Gau(0,Cη), t = 1, 2, · · · (5.55)

where the α-process at time t + τ is conditioned on the α-process at time t to obtain
the forecast. If one is interested in following the BHM approach, the parameter model
must be specified, see Berliner et al. (2000).

Empirical orthogonal functions (EOFs) are a good option for a basis functions to use in
this case, since they capture most of the variability. As before, the data from 01 August
2015 to 14 March 2016 will be considered. The EOFs are obtained as described in 5.7,
then all unknown parameters are estimated. The first approach is the classical time-
series framework based on a vector autoregression and using the method of moments,
see section 5.9.1. Then, a state-space framework using the EM algorithm is considered,
see section 5.10.

The EOFs can be constructed using only data from 01 August 2015 up to 14 March 2016,
they were obtained through a singular value decomposition (SVD). In this example a
lead forecast is considered with pα = 9, corresponding to the EOFs in the reduced-
dimension linear DSTM given by 5.55. Sensitivity analyses show that keeping pα =
10,11 and 12 EOFs did not change substantially the forecast results.

After verifying that the time series have mean zero, the covariances can be calculated.
Firstly, the lag-0 empirical covariance matrix and the lag-τ empirical cross-covariance
matrices are computed, for τ = 1. Then, using the methods of moments described in
5.49 and 5.50, the estimates for M and Cη can now be calculated from the empirical
covariance matrices, see equation 4.24. One-day-ahead forecasts are considered; one
projects ahead the EOF coefficients of the time series at the last time point (which
corresponds to 14 March 2016) one day into the future. The forecast can be obtained
multiplying the forecast α̂T+τ by the basis-function matrix and add back the spatial
mean.

Spatio-Temporal Validation Statistics

One of the most common scalar validation statistic for continuous-valued spatio-temporal
processes is the mean squared prediction error (MSPE). It can be defined for the spatio-
temporal validation sample {Zv(si; tj) : j = 1, . . . , T ; i = 1, . . . ,m}, and corresponding
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predictions {Ẑv(si, tj)} by

MSPE = 1
Tm

T∑
j=1

m∑
i=1

{Zv(si; tj) − Ẑv(si, tj)}2. (5.56)

To simplify the notation, it is assumed that the same number of spatial observations
for each time period. Of course, different numbers of spatial locations for each time
can be accommodated. For now, it is assumed that {Ẑ(si, tj)} are predictions based on
all of the data, Z. In some circumstances, one could be interested in looking at MSPE
for a particular time point, averaged across space, or for a particular spatial location,
averaged across time.

The MSPE summary can be thought as an empirical measure of expected squared error
loss which, when minimised, results in the S-T kriging predictor. Moreover, the MSPE
can be decomposed into a term corresponding to the bias of the predictor plus a term
corresponding to the variance of the predictor. It can also be considered the root mean
squared prediction error (RMSPE), which is the square root of the MSPE, or simply
the RMSE (as used below). One advantage is that units of the RMSPE are the same
as those of the observations.

One could be interested in a more robust error in term of outliers. It is common to
consider the mean absolute prediction error (MAPE) defined by

MAPE = 1
Tm

T∑
j=1

m∑
i=1

|Zv(si; tj) − Ẑv(si, tj)|. (5.57)

5.10.1 Evaluation strategy

In order to assess the accuracy of different methods in forecasting levels of PM2.5,
we perform a series of studies and evaluate how well they perform at predicting 3-
days ahead (with evaluation of 1, 2 and 3 day-ahead forecasts). Due to the nature
of the DSTM approach, which does not model the spatial (and between pollutant)
dependencies and thus does not lend itself to spatial prediction, in this chapter we
focus the evaluation on temporal prediction only.

Three different periods were used to assess the accuracy of forecasts, two in close
proximity to other, and the other in a different season. This was to reduce the potential
issues that may have arisen if conclusions were drawn based upon a single time period
that might have represented a specific set of conditions, e.g. temperature. For each of
the three periods, forecasts were produced for three days into the future, using only
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data preceding those days, i.e. out-of-sample evaluation. In each case, different lengths
of data was used to produce the forecast, ranging from 74 to 227 days, to try and assess
the amount of data that might be required to produce accurate forecasts.

The three periods of study are:

1. Forecast: 15, 16, 17 March 2016; Modelling data: 1 August 2015 to 14 March
2016 (227 days); 1 December 2015 to 14 March 2016 (105 days); 1 January 2016
to 14 March 2016 (74 days).

2. Forecast: 26, 27, 28 March 2016; Modelling data: 12 October 2015 to 14 March
2016 (227 days); 12 December 2015 to 14 March 2016 (105 days); 12 January
2016 to 14 March 2016 (74 days).

3. Forecast: 14, 15, 16 October 2015; Modelling data: 1 March 2015 to 13 October
2015 (227 days); 1 July 2015 to 14 March 2016 (105 days); 1 August 2016 to 14
March 2016 (74 days).

In each case, models were fit using the method of moments and an E-M algorithm, as
described in (5.9.1) and (5.9.2) respectively and assessed using the RMSPE / RMSE.

5.10.2 Results

DSTM approach assumes data models that have additive Gaussian error and process
models that have linear transition structure with additive Gaussian error. In the sim-
plest case, time is discrete and a finite set of spatial locations is assumed. In principle,
these types of models are multivariate state-space time series models. Then, sequen-
tial prediction and estimation such as filters, smoothers, EM estimations and Bayesian
algorithms can be used. A big challenge is the high dimension of the problem. This
situation could be due to the amount of data, number of predictions locations or the
numbers of parameters to be estimated. Thus, an appropriate parameterisation of the
evolution model is required. In case there is no prior knowledge about how to param-
eterise M, then M can be estimated in a standard state-space modelling framework.

Here, the values obtained for C0, µ(0), M(0) and C(0)
η from the method of moments are

used as the initial values for the EM algorithm, following the suggestion of Balakrishnan
et al. (2017). In this implementation of the EM algorithm, the tolerance (the smallest
change in the log-likelihood, multiplied by 2 across two consecutive iterations of the EM
algorithm) was set to 3 and this was reached within 20 iterations. The measurement-
error variance was set to σ2

ϵ = 0.1.

98



Figure 5-1 shows the estimates of {αt} using both the methods of moments approach
and the EM algorithm, the latter using the estimates from the method of moments
as initial values. This shows the effects of running the EM algorithm compared to its
initial values, i.e. the addition of iteratively using the data (through the log-likelihood)
to estimate the parameter values.

The estimates of the evolution matrix for the method of moments and EM algorithm
can be seen in figure 5-2 and the observed patterns within the evolution matrices
look similar. One the advantages about the DSTM approach is that forecasting using
this EOF-reduced model is straightforward. One can take the coefficients at the final
time point, {αt}, propagate those forward, and re-project onto the original space. For
example, µ̂+M2αt gives a two-day forecast, these results are not included here. Matrix
powers represent multiple matrix multiplications in this case.
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Figure 5-1: Reduced dimension linear DSTM results for PM2.5 concentrations from 01
August 2015 to 14 March 2016. Estimates of αi,t, i = 1, . . . , 9, using the method of
moments (light blue line) and the EM algorithm (light red line).
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Figure 5-2: Reduced dimension linear DSTM results for PM2.5 concentrations from
01 August 2015 to 14 March 2016. The estimate of the one-steps-ahead evolution
operator using the method of moments (left) and the estimate of a one-step-ahead
evolution operator using the EM algorithm (right).
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A study is proposed in order to evaluate the accuracy of the DSTM models in terms
of prediction for three different scenarios. The forecast for 15, 16, and 17 March will
be produced under the DSTM framework using different days of data as input. The
analysis consists in analysing the results for three different periods of time. The first
interval corresponds to the period from 01 August 2015 to 14 March 2016 (227 days).
This period will be used to fit a method of moments model as it was explained in
section 5.9.1 and an EM-algorithm model such as it is described in the algorithm 5.9.2.
Due the simplicity of the method of moments estimators, they are easy to implement
and it is an alternative for a preliminary approximation. The EM algorithm carries
out maximum likelihood estimation in a state-space model is implemented.

In a similar way, these two approaches will be considered for the period from 01 De-
cember 2015 to 14 March 2015 (105 days). Finally, the third period goes from 01
January 2016 to 14 March 2016 (74 days). In addition, due to the flexibility of the
DSTM framework, it can be extended to analyse not just PM2.5 observations. As it
was explained in section 5.5.1, the model can be adapted to consider PM10 and NO2

data simultaneously. It is a multivariate approach in which PM2.5 predictions take
into account the correlations with other pollutants. One of the purposes of this study
is to see if there is an improvement of the forecast when more data is added. The
comparison is made with actual values of PM2.5 that were previously removed when
fitting the model. The root of the mean squared error, described in equation 5.56 is
used to measure the error.

The forecast for 15, 16 and 17 March 2016 using the method of moments and EM-
algorithm can be seen in the table 5.1. These results are associated to the model that
considers all the pollutants, PM2.5, PM10 and NO2. From now, some conventions will
be followed for the column names in all the tables. The site column denotes the code
from LAQN (see table 2.1) and the real column represents the actual value at each
site. Every column with the name MM will represent the results for the method of
moments, meanwhile EM will denote the results for the EM-algorithm. The multicol-
umn 7 months refers to the period from 01 August 2015 to 14 March 2016. On the
other hand, the period from 01 December 2015 to 14 March 2015 is represented by
the 3 months multicolumn. And, the 2 months multicolumn corresponds to the period
from 01 January 2016 to 14 March 2016. Finally, the last row for each table shows the
RMSE for each predicted time. The results for the model that just considers PM2.5

data as input are shown in the table 5.2. The same conventions about column names
will follow for the rest of the tables.

There are some general observations for the tables 5.1 and 5.2. In terms of RMSE, there
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is not a large difference when using 7, 3 and 2 months of data. In the same way, a small
difference is observed between MM and EM for both tables. The best prediction for 15
March 2016 is the EM-algorithm for 3 months (just PM2.5 data), the error is similar to
the MM method for the same period of time. The best prediction for 16 March 2016
is observed when fitting the EM-algorithm for 3 months (all pollutants). On the other
hand, the best result for the 17 March 2016 is the EM-algorithm for 7 months (just
PM2.5 data). There is a significant variation in accuracy for the prediction for different
sites. For instance, the biggest difference in error for 15 March 2016 is found in the
site HG1. As one would expect in this type of model, the RMSE rises when more days
ahead are predicted.

In order to compare the previous results with another time interval, two analogous
studies are proposed. In the first case the result forecast is done for 26, 27 and 28 March
2016. The three periods of time starts on 12 October 2015 (227 days), 12 December
2015 (105 days) and 12 January 2015 (74 days). In particular, all the models are fitted
using up to 25 March 2016 data. The results considering the three pollutants and just
PM2.5 data are found in the tables 5.3 and 5.4 respectively.

The difference between using 7, 3 and 2 months of data is slightly larger than the first
time interval in terms of RMSE. In general, a small difference is observed between MM
and EM for both tables. The best prediction for 26 March 2016 is the INLA model for
2 months, the error is similar to the DSTM model for 7 months. The best prediction
for 27 March 2016 is observed when fitting the INLA model for 2 months. Finally,
the best result for the 28 March 2016 is the INLA model for 2 months. There is also
an important variation in accuracy for the prediction for different sites. In general,
RMSEs are larger for this study than those ones from the first analyses.

In the second case the result forecast is done for 14, 15 and 16 October 2015. The three
periods of time starts on 01 March 2015 (227 days), 01 July 2015 (105 days) and 01
August 2015 (74 days). In particular, all the models are fitted using up to 13 October
2015 data. The results considering the three pollutants and just PM2.5 data are found
in the tables 5.5 and 5.6 respectively. In terms of RMSE, the difference between using
7, 3 and 2 months of data is slightly larger than the previous results. In general, a
small difference is observed between MM and EM for both tables. The best prediction
for 14 October 2015 is the MM for 7 months (just PM2.5 data), the error is similar
to the EM method for the same period of time. The best prediction for 15 October
2015 is observed when fitting the MM for 7 months (just PM2.5 data). Finally, the
best result for the 16 October 2015 is the MM for 2 months (just PM2.5 data). In
contrast to the previous tables, the RMSEs are larger for one day ahead than for two
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days ahead forecast. There is also an important variation in accuracy for the prediction
for different sites. In general, RMSEs are larger for this study than those ones from
the previous analyses.

5.11 Discussion

In this chapter, the ability of the DSTM to produce accurate forecasts of PM2.5 is
assessed. Forecasts are produced for three different time periods considering the method
of moments and an EM algorithm. The focus here is on the ability to predict accurately
over time, rather than space, due to the nature of the DSTM approach (see Section
5.10.1).

The forecast for the method of moments and the EM algorithm are, in general, similar.
This is not surprising, since the estimates {αt} and the estimates of the evolution
matrices are similar. The DSTM approach allows one to analyse PM2.5 data and more
pollutants (PM10, NO2) simultaneously, but based on the findings of the evaluation
studies, there is no general pattern of improvement when including additional pollutants
(in the ability to forecast PM2.5.) Also, there is not much improvement when additional
data (over time) is used. It should be noted that even the minimum length of time is
74 days, which is quite substantial.

Although the DSTM approach allows a computationally efficient approach to mod-
elling large spatio-temporal datasets, including multiple pollutants, one of the major
disadvantages of DSTM is that this approach does not allow generation of spatial
prediction. This is an important limitation if one is interested in producing spatial
prediction and maps of pollution. DSTMs capture correlations non-spatially via the
transition matrix, while other methods, such as those considered in the following chap-
ters (Spatio-temporal Kriging in Chapter 6 and a Bayesian Spatio-temporal model in
Chapter 7), incorporate it within covariance matrices. As we move onto those Chap-
ters, we will explore the advantages of such methods in terms of spatial prediction and
develop a series of evaluation studies to assess this.

Another disadvantage of DSTM EM algorithm models is that they do not take the
uncertainty of the parameter estimates directly into account. In principle, the BHM
formulation can include Gaussian structures trough MCMC. Inference for DSTM is
evolving quickly; for a MCMC-related implementation see Cressie & Wikle (2011).
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7 Months 3 Months 2 Months
Site Real MM EM MM EM MM EM
BL0 19.1875 16.9955 19.1226 18.5460 19.9941 15.8328 17.2844
BX1 15.7917 15.7551 17.1619 16.2077 16.8875 14.0037 14.3084
CD1 21.3875 19.5159 21.1778 21.3691 22.4825 19.1377 20.3011
CD9 26.4237 23.6159 25.2070 23.3119 24.1407 20.7242 21.7778
CT3 22.7000 20.4973 21.7511 20.2717 20.9220 19.5258 20.5908
GN0 19.8932 18.7391 20.4904 21.6921 22.9310 20.4003 22.1814
GN2 20.6132 20.4472 22.6599 20.8189 22.0068 18.1684 19.7476
GN3 20.8812 22.1929 23.8452 22.7302 23.7345 20.1329 21.0416
GR4 16.2870 16.0993 17.6597 16.6452 17.5135 14.7066 15.7098

15/03/16 GR9 20.7735 21.8481 24.4626 22.0426 23.5738 19.3270 20.8842
HG1 9.2000 11.9135 12.0039 9.6551 9.4238 9.0489 9.1123
HR1 11.4000 9.9603 10.1866 12.3415 12.5880 11.4907 12.0112
HV1 15.2052 14.5228 15.2813 17.2218 17.8268 15.3011 16.1128
KC1 19.0875 16.8333 18.5658 18.2281 19.3327 15.5754 16.7305
KC2 22.6098 21.3092 22.8348 21.4582 22.2415 18.6901 19.3909
LH0 18.2871 16.5415 18.4848 17.2814 18.3877 15.7367 17.3623
LW2 22.4770 23.0902 24.2884 24.4631 25.0059 21.8462 22.4256
ST5 20.2300 20.6047 22.1305 19.6192 20.0682 17.2551 17.7591
TH4 11.4372 11.4220 11.4382 11.4372 11.4372 11.4372 11.4372
RMSE 1.5484 1.6178 1.3984 1.7021 2.4810 1.8278

BL0 15.7714 13.4194 16.2578 13.5611 16.8833 12.6030 14.7321
BX1 16.1250 13.2610 14.8491 12.3188 14.1600 10.5883 11.5437
CD1 16.8542 17.3586 19.3303 16.8710 19.4903 16.0620 17.4487
CD9 23.6964 21.6680 23.3777 19.5872 21.9752 18.7440 20.1530
CT3 18.7500 18.0262 19.9705 16.6768 18.4097 16.7780 17.9580
GN0 18.7205 16.3717 18.4500 17.1726 20.6256 17.0689 19.3751
GN2 19.2868 17.0284 19.5807 15.8785 18.8793 14.9690 16.8581
GN3 18.8502 19.7371 21.7622 18.2856 20.8156 17.2042 18.2657
GR4 15.7458 14.3105 15.8164 12.7855 14.6297 11.7449 12.8454

16/03/2016 GR9 19.4564 17.9213 21.0512 16.5350 20.1514 15.0047 17.6743
HG1 9.2000 13.5560 12.6014 10.4484 9.5341 10.2170 9.5626
HR1 16.0500 9.9901 10.0219 12.0527 12.6845 11.8574 12.2652
HV1 15.3946 13.1937 14.2007 13.9638 15.7917 13.4759 14.3783
KC1 15.4792 14.4699 16.5458 13.8883 16.4921 12.9051 14.2718
KC2 19.2250 18.9255 20.9065 17.7539 19.8105 16.5438 17.3476
LH0 15.3568 13.1718 15.9752 13.2031 15.7311 12.7280 14.6694
LW2 19.4649 21.1965 22.8953 20.9257 22.7108 19.9266 20.2717
ST5 17.9700 18.9106 20.5227 16.5117 17.9081 15.1870 15.5989
TH4 11.4372 11.8245 11.5274 11.4372 11.4372 11.4372 11.4372
RMSE 2.3497 2.2094 2.3549 1.5920 3.0832 2.0658

BL0 32.8500 9.2357 13.7242 9.5661 14.5320 10.8607 13.3662
BX1 26.4250 9.6014 12.9596 8.9521 12.5878 8.6092 10.1608
CD1 30.9917 13.2813 17.3864 12.2421 17.4717 13.4888 15.9740
CD9 34.9552 18.6285 21.7243 16.5182 20.4129 17.8380 19.4215
CT3 28.3100 15.2818 18.3403 13.1921 16.8907 14.1148 16.4149
GN0 28.3283 12.1558 16.2962 12.7503 18.7281 13.6877 17.2085
GN2 31.9742 12.3051 16.8896 11.1999 16.7026 12.3314 15.1781
GN3 30.1591 15.3973 19.6688 14.0363 18.9241 14.7763 16.8756
GR4 25.6125 10.6610 14.0569 8.8015 12.8912 9.2374 11.3533

17/03/2016 GR9 30.7078 13.1676 18.0737 12.0989 17.6093 12.6659 15.7367
HG1 9.2000 12.9041 12.8769 9.9806 9.7528 10.3096 9.9066
HR1 28.4083 8.6638 9.7051 10.6969 12.4304 12.0138 12.4321
HV1 24.9809 10.1367 13.0611 10.7410 14.4051 11.7348 13.3983
KC1 27.7333 10.4892 14.5125 9.6857 14.5353 10.5270 12.8699
KC2 19.2250 15.8411 19.1541 14.4015 18.2194 15.2272 16.5209
LH0 29.1291 9.2442 13.5955 9.2030 13.7113 10.0834 12.8794
LW2 30.7497 17.0815 21.2422 16.9785 21.1049 17.4142 19.1666
ST5 27.4300 15.3161 18.8469 12.9946 16.4715 12.8188 14.4221
TH4 11.4372 11.9251 11.6362 11.4372 11.4372 11.4372 11.4372
RMSE 15.6442 13.1362 16.2087 12.8087 15.4644 13.4706

Table 5.1: Evaluation of applying the DSTM model to data from 01/08/15 to 14/03/16
considering multi-pollutant data. Results are shown using 7, 3 and 2 months data when
fitting the model, using the methods of moments (MM) and expectation-maximisation
(EM) approaches to inference (see text for details). Observations are given together
with predictions from the models for 19 sites in London, together with overall root
mean squared error (RMSE). Evaluations are presented for 1, 2 and 3 day forecasts
covering 15, 16 and 17 of March, 2016. All comparisons were made in the original scale
(µg/m3).
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7 Months 3 Months 2 Months
Site Real MM EM MM EM MM EM
BL0 19.1875 16.9055 18.1135 17.0367 17.0459 17.7269 17.7342
BX1 15.7917 17.8562 18.5204 17.2246 16.4736 17.4044 16.0115
CD1 21.3875 19.9104 20.8240 20.9667 20.7737 21.6964 20.8164
CD9 26.4237 24.5893 26.5421 24.5531 24.6731 24.4015 24.1680
CT3 22.7000 20.3207 21.1271 20.8942 20.7284 21.0109 20.5151
GN0 19.8932 18.3581 18.8980 20.6001 20.0295 20.2397 18.3337
GN2 20.6132 20.8752 22.1253 20.3456 19.8165 20.3725 18.8947
GN3 20.8812 21.4934 22.0121 22.0507 21.7488 22.5120 21.8269
GR4 16.2870 15.7569 16.5941 16.5130 16.1965 16.1758 15.5926

15/03/16 GR9 20.7735 21.5926 23.7338 21.4846 21.6694 21.3076 20.7234
HG1 9.2000 10.5051 9.9723 10.1493 9.6506 9.4235 9.2067
HR1 11.4000 10.6966 10.3661 10.7542 10.2392 11.3368 10.2043
HV1 15.2052 16.3250 16.2776 17.7039 17.1563 18.3028 17.4372
KC1 19.0875 16.7721 17.7376 17.8065 17.7018 18.0294 17.7151
KC2 22.6098 21.6725 23.3273 21.5744 21.3949 21.8005 21.4080
LH0 18.2871 16.3493 17.3058 16.1661 15.8511 16.0701 15.4319
LW2 22.4770 24.0987 24.3674 24.0152 23.8502 25.3068 25.0499
ST5 20.2300 20.4123 21.5647 20.0966 19.8099 20.2485 19.7566
TH4 11.4372 11.4139 11.4981 11.4372 11.4372 11.4372 11.4372
RMSE 1.4607 1.3821 1.3233 1.2844 1.4374 1.5191

BL0 15.7714 12.6705 15.8697 12.7501 14.3915 13.6943 14.9274
BX1 16.1250 13.8634 16.3606 12.3787 13.8724 13.0768 13.4314
CD1 16.8542 16.2824 18.8083 16.9359 18.2312 17.9038 18.2032
CD9 23.6964 20.8786 24.4993 20.9362 22.4990 20.7859 21.6388
CT3 18.7500 17.6594 19.4297 18.1748 18.7567 17.6546 18.2137
GN0 18.7205 15.0730 17.1031 16.5215 17.6748 16.9742 16.1966
GN2 19.2868 17.0524 19.6208 16.0984 17.0420 16.1592 16.0515
GN3 18.8502 18.0737 20.2552 18.2685 19.5227 18.9667 19.3985
GR4 15.7458 12.9243 14.8898 12.9858 13.9975 12.9688 13.3977

16/03/16 GR9 19.4564 16.9109 20.8761 16.3829 18.3477 16.6397 17.7039
HG1 9.2000 10.7819 10.2556 10.6956 9.8397 9.7831 9.2439
HR1 16.0500 10.3879 10.1867 10.8266 9.9587 11.2521 9.9420
HV1 15.3946 13.1222 14.8340 14.2667 15.1640 14.8662 15.1005
KC1 15.4792 13.2441 15.7524 13.6797 15.2105 14.3414 15.1383
KC2 19.2250 18.4954 21.4150 18.2531 19.4702 18.5785 19.1699
LH0 15.3568 12.3788 14.9528 12.5709 13.5303 12.7381 13.1636
LW2 19.4649 20.9640 22.6030 20.8721 21.9504 21.9437 22.6806
ST5 17.9700 17.3422 19.6985 16.6979 17.8142 17.0208 17.5722
TH4 11.4372 11.4644 11.5852 11.4372 11.4372 11.4372 11.4372
RMSE 2.4526 1.8657 2.4046 1.8976 2.2020 2.2107

BL0 32.8500 9.6771 14.3515 9.2848 12.8429 10.3333 13.0602
BX1 26.4250 10.5398 14.7691 9.1095 12.5313 9.5445 11.7431
CD1 30.9917 12.9976 17.4548 12.8165 16.7054 13.8565 16.4578
CD9 34.9552 17.7847 23.2599 17.4574 20.8401 17.1877 19.8929
CT3 28.3100 14.4450 18.2179 14.0931 17.5019 14.2035 16.6532
GN0 28.3283 12.0690 15.8630 12.4917 15.8980 13.2043 14.7868
GN2 31.9742 12.8113 18.0087 11.5534 15.2287 11.9953 14.2042
GN3 30.1591 14.9010 19.0076 14.3830 18.2110 15.1843 17.7555
GR4 25.6125 10.1531 13.7937 9.3811 12.7133 9.6380 11.9596

17/03/16 GR9 30.7078 13.2650 19.0660 12.1456 16.1925 12.3818 15.6785
HG1 9.2000 11.0325 10.5195 10.6787 9.9529 10.0625 9.3077
HR1 28.4083 9.7344 10.0842 10.1211 9.7282 10.9524 9.7748
HV1 24.9809 10.3387 13.6946 10.8636 14.0085 11.6559 13.5466
KC1 27.7333 10.2814 14.4549 9.9087 13.7251 10.6591 13.4434
KC2 19.2250 15.4817 20.2362 15.0222 18.2468 15.2898 17.6334
LH0 29.1291 9.2047 13.3570 9.0014 12.1183 9.5690 11.6685
LW2 30.7497 17.3533 21.3227 17.1125 21.0899 18.2313 21.0439
ST5 27.4300 14.2953 18.4927 13.2057 16.7591 13.5563 16.0919
TH4 11.4372 11.6486 11.6846 11.4372 11.4372 11.4372 11.4372
RMSE 15.6304 11.9422 16.0316 13.0422 15.5008 13.4923

Table 5.2: Evaluation of applying the DSTM model to data from 01/08/15 to 14/03/16
considering PM2.5 data. Results are shown using 7, 3 and 2 months data when fitting
the model, using the methods of moments (MM) and expectation-maximisation (EM)
approaches to inference (see text for details). Observations are given together with
predictions from the models for 19 sites in London, together with overall root mean
squared error (RMSE). Evaluations are presented for 1, 2 and 3 day forecasts covering
15, 16 and 17 of March, 2016. All comparisons were made in the original scale (µg/m3).
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7 Months 3 Months 2 Months
Site Real MM EM MM EM MM EM
BL0 6.6083 7.0618 7.7453 7.6697 7.957 6.9437 7.1474
BX1 4.6583 6.1615 6.5411 6.7157 7.0661 6.2859 6.3095
CD1 8.2833 10.4126 10.7708 10.6099 10.8914 10.2949 10.3841
CD9 9.3778 13.2639 13.2626 12.882 13.1902 12.5415 12.7355
CT3 7.05 11.3483 11.6492 11.1014 11.2813 10.7331 10.5527
GN0 11.5432 8.8028 9.0811 8.8398 9.2751 9.2477 9.4042
GN2 6.4976 7.6507 7.9111 8.1127 8.4788 7.7592 7.96
GN3 10.6922 11.5106 11.7129 11.8743 12.1292 11.6878 11.5921
GR4 6.5909 6.8132 6.9002 7.3875 7.5722 7.1382 7.0006

26/03/2016 GR9 8.0627 8.4255 8.8126 9.0618 9.4174 8.5814 9.0523
HG1 9.2 9.62 8.6652 9.474 9.4376 9.3463 8.6602
HR1 6.6458 8.5307 8.787 9.3552 9.7032 8.9098 9.476
HV1 7.724 8.049 8.3388 8.4257 8.6822 8.0025 7.8701
KC1 6.025 7.4052 7.6981 7.8099 8.0319 7.7365 7.7114
KC2 19.225 12.1151 12.4201 12.0733 12.3186 11.6065 11.6831
LH0 6.6806 6.1576 6.6728 6.9922 7.2406 6.6182 6.7055
LW2 14.2416 16.0409 16.5843 16.0435 16.1868 15.6538 15.7059
ST5 9.36 10.9993 11.006 11.2921 11.4683 11.0965 11.0502
TH4 11.4372 11.6306 11.3746 11.4372 11.4372 11.4372 11.4372
RMSE 2.4365 2.5088 2.5312 2.6296 2.4063 2.4354

BL0 3.5455 7.5647 8.2606 8.6978 8.5342 7.7783 7.8239
BX1 1.5696 6.6605 6.9621 7.527 7.548 6.6576 6.8654
CD1 4.6833 11.0747 11.4084 11.7736 11.5052 11.2806 11.1163
CD9 6.0587 14.3332 13.9674 14.32 14.1101 14.0501 13.8789
CT3 5.23 12.3096 12.2537 12.241 11.8944 11.6471 11.3745
GN0 7.0242 9.2862 9.7384 9.8666 10.0116 10.2298 10.1689
GN2 3.5175 8.309 8.5921 9.2692 9.2098 8.8171 8.804
GN3 6.5583 12.0651 12.3236 12.9877 12.7599 12.6897 12.4908
GR4 2.8957 7.3268 7.3611 8.3209 8.0496 7.8091 7.5901

27/03/2016 GR9 4.3177 9.1424 9.3822 10.1342 10.0411 9.3302 9.6047
HG1 9.2 9.5805 8.9968 9.7953 9.6678 9.7165 9.1531
HR1 4.0167 8.33 9.0707 9.6197 10.0129 9.2358 9.7211
HV1 3.305 8.5193 8.8397 9.5151 9.3647 8.8753 8.7624
KC1 3.3167 7.9453 8.2675 8.9236 8.6483 8.7308 8.4516
KC2 19.225 12.916 13.0178 13.1582 12.9485 12.7631 12.5774
LH0 3.6658 6.7436 7.2435 7.9893 7.8261 7.2913 7.2593
LW2 7.4832 16.5354 17.2509 17.3651 16.8961 16.8387 16.5718
ST5 6.11 11.7668 11.5615 12.4405 12.1144 11.9091 11.7494
TH4 11.4372 11.62 11.3288 11.4372 11.4372 11.4372 11.4372
RMSE 5.2986 5.5134 5.9403 5.7956 5.5322 5.4766

BL0 3.2136 8.102 8.5343 9.4888 8.8238 8.9582 8.3819
BX1 2.2177 7.2529 7.324 8.3583 7.855 7.6679 7.3034
CD1 4.487 11.7214 11.7609 12.6345 11.8255 12.4008 11.4772
CD9 6.6365 15.1018 14.5116 15.4819 14.6855 15.8895 14.5898
CT3 3.71 13.0851 12.6452 13.1796 12.2646 12.8113 11.7152
GN0 5.5313 9.8807 10.1387 10.9437 10.4084 11.4367 10.6144
GN2 2.7521 9.1358 9.0755 10.3082 9.6032 10.2006 9.328
GN3 5.9556 12.8383 12.7516 14.0594 13.12 13.9987 12.8813
GR4 3.0714 7.879 7.7225 9.1363 8.3382 8.6851 7.8274

28/03/2016 GR9 3.8921 9.8183 9.8173 11.1032 10.4041 10.5082 10.2588
HG1 9.2 9.5906 9.3026 9.8115 9.7685 9.9406 8.9528
HR1 3.2217 8.3659 9.1938 9.8043 10.0339 9.6864 10.0025
HV1 3.9784 9.1538 9.1806 10.3992 9.7045 10.1415 9.1623
KC1 3.0136 8.4846 8.6221 9.7934 8.9791 9.8386 8.7784
KC2 19.225 13.5715 13.4012 14.1347 13.3702 14.1963 13.1124
LH0 2.1352 7.1889 7.6025 8.7897 8.115 8.2069 7.6353
LW2 9.7832 17.3759 17.4795 18.4033 17.1471 17.9791 16.86
ST5 6.8557 12.4931 11.9677 13.4318 12.4111 12.9196 12.0353
TH4 11.4372 11.6732 11.3318 11.4372 11.4372 11.4372 11.4372
RMSE 5.8792 5.8789 6.7702 6.1452 6.5579 5.8922

Table 5.3: Evaluation of applying the DSTM model to data from 12/08/15 to 25/03/16
considering multi-pollutant data. Results are shown using 7, 3 and 2 months data when
fitting the model, using the methods of moments (MM) and expectation-maximisation
(EM) approaches to inference (see text for details). Observations are given together
with predictions from the models for 19 sites in London, together with overall root
mean squared error (RMSE). Evaluations are presented for 1, 2 and 3 day forecasts
covering 26, 27 and 28 of March, 2016. All comparisons were made in the original scale
(µg/m3).
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7 Months 3 Months 2 Months
Site Real MM EM MM EM MM EM
BL0 6.6083 9.3269 9.7586 8.4385 8.9586 12.3212 11.9904
BX1 4.6583 7.3424 7.4708 6.5420 6.6143 11.0902 9.9655
CD1 8.2833 11.2528 11.8133 11.1006 11.3853 15.9447 15.1462
CD9 9.3778 14.5505 14.8912 15.4323 15.4974 17.9779 17.5204
CT3 7.0500 11.5345 11.8759 11.2454 10.9867 14.7218 14.3958
GN0 11.5432 12.2966 11.6907 10.7871 11.0121 15.7167 14.9639
GN2 6.4976 11.8605 10.6318 9.0427 9.1881 14.2850 13.6899
GN3 10.6922 13.4746 13.0753 12.5011 12.5168 16.6105 15.8849
GR4 6.5909 7.7391 7.5979 7.5249 7.4382 10.7427 10.0642

26/03/16 GR9 8.0627 10.3312 10.7488 9.4499 9.9334 13.8188 13.1089
HG1 9.2000 10.9519 9.0141 9.9377 9.1258 9.1024 9.3169
HR1 6.6458 9.6824 10.2298 9.1100 9.6988 11.7348 12.4575
HV1 7.7240 9.2075 9.0963 9.0559 9.0491 12.7602 12.2031
KC1 6.0250 9.1381 9.1958 8.5846 8.7196 11.3606 10.8952
KC2 19.2250 15.7004 14.8438 14.0402 13.9028 18.4565 17.5405
LH0 6.6806 8.6046 8.1460 7.3999 7.5674 10.8555 10.5295
LW2 14.2416 18.0182 17.9306 15.7636 15.8879 20.5515 20.1472
ST5 9.3600 11.5497 11.3848 11.1540 11.0857 14.7664 14.1130
TH4 11.4372 10.6804 10.9676 11.4372 11.4372 11.4372 11.4372
RMSE 3.0240 3.0702 2.6166 2.7157 5.5997 5.1560

BL0 3.5455 11.3546 10.7237 9.0522 9.4204 19.6554 10.2646
BX1 1.5696 9.5626 8.4076 7.4777 7.1021 21.3670 8.2097
CD1 4.6833 13.8735 13.0006 12.2049 12.1062 22.7638 12.1948
CD9 6.0587 16.6067 15.7025 15.8154 15.9691 23.7347 17.1594
CT3 5.2300 13.3637 12.6760 12.4732 11.8144 21.1007 12.8228
GN0 7.0242 14.3197 12.7971 11.4118 11.4223 22.0836 11.3728
GN2 3.5175 14.1325 11.7878 9.9805 9.9039 22.9209 10.6896
GN3 6.5583 15.8945 14.2782 13.7530 13.2567 23.5402 13.6736
GR4 2.8957 9.9519 8.6032 8.5566 8.0311 16.9181 8.6298

27/03/16 GR9 4.3177 12.6906 11.7395 10.2629 10.4772 21.8532 11.2697
HG1 9.2000 11.9040 9.6720 9.8506 9.2900 9.4367 10.3582
HR1 4.0167 12.1284 11.2890 9.7394 10.3674 17.8878 10.6520
HV1 3.3050 11.5083 10.1771 10.1291 9.7469 21.5300 10.5678
KC1 3.3167 11.3539 10.2824 9.5700 9.2928 18.2049 9.7883
KC2 19.2250 16.4307 15.3737 14.2196 14.1987 19.8606 14.8079
LH0 3.6658 10.7819 9.3377 8.2496 8.1347 18.3076 8.8350
LW2 7.4832 20.1714 19.1660 17.5412 16.8964 27.2587 16.7251
ST5 6.1100 13.7388 12.4045 12.5590 11.8465 21.7012 12.1583
TH4 11.4372 10.8600 10.9257 11.4372 11.4372 11.4372 11.4372
RMSE 8.0873 7.0230 6.3133 6.1362 15.4472 6.6370

BL0 3.2136 11.9295 11.2846 9.1633 9.4120 21.4420 14.7872
BX1 2.2177 10.5346 8.8895 7.8015 7.3937 25.0180 13.3184
CD1 4.4870 14.9152 13.6662 12.6476 12.2939 24.9935 17.8394
CD9 6.6365 17.0616 16.3289 15.6955 16.0084 24.8157 20.6405
CT3 3.7100 13.8518 13.1351 12.8024 12.2079 22.5194 16.4550
GN0 5.5313 14.9256 13.2219 11.8027 11.5160 23.3720 17.3405
GN2 2.7521 14.3254 12.2681 10.3942 10.1373 24.7011 16.9114
GN3 5.9556 16.6473 14.8091 14.1114 13.4995 24.7803 18.3672
GR4 3.0714 10.9724 9.0967 8.9757 8.3128 19.1402 12.3191

28/03/16 GR9 3.8921 13.8461 12.3496 10.6825 10.6964 24.4401 16.2717
HG1 9.2000 12.0928 9.7738 9.8078 9.3878 9.4332 9.4941
HR1 3.2217 12.9732 11.8403 10.3924 10.4797 19.2129 14.4450
HV1 3.9784 11.9452 10.6967 10.3202 9.9374 21.8637 15.0221
KC1 3.0136 12.2279 10.8214 9.8976 9.4511 20.4769 13.4334
KC2 19.2250 15.9541 15.6545 14.0129 14.2070 19.4237 18.9582
LH0 2.1352 11.4653 9.8311 8.6149 8.3306 20.7512 13.0573
LW2 9.7832 20.5795 19.6483 17.9966 17.1805 27.8674 22.0793
ST5 6.8557 14.6188 12.9194 13.0030 12.1766 23.0367 16.3364
TH4 11.4372 11.0498 10.9790 11.4372 11.4372 11.4372 11.4372
RMSE 8.8556 7.6074 6.7158 6.4216 17.1799 10.8671

Table 5.4: Evaluation of applying the DSTM model to data from 12/08/15 to 25/03/16
considering PM2.5 data. Results are shown using 7, 3 and 2 months data when fitting
the model, using the methods of moments (MM) and expectation-maximisation (EM)
approaches to inference (see text for details). Observations are given together with
predictions from the models for 19 sites in London, together with overall root mean
squared error (RMSE). Evaluations are presented for 1, 2 and 3 day forecasts covering
26, 27 and 28 of March, 2016. All comparisons were made in the original scale (µg/m3).
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7 Months 3 Months 2 Months
Site Real MM EM MM EM MM EM
BL0 6.3750 9.8093 9.8467 9.4774 9.4970 10.5813 10.7827
BX1 5.2333 10.0070 10.1131 10.1047 9.9440 11.0081 11.1283
CD1 10.8458 14.5879 14.6992 15.3375 15.3770 15.3136 15.6446
CD9 10.6696 17.4710 17.5440 21.0252 21.1104 22.3027 22.4075
CT3 14.5543 14.5543 14.5543 14.5543 14.5543 14.5543 14.5543
GN0 11.0350 13.0261 12.9894 13.1889 13.2280 13.9707 14.2529
GN2 6.8770 13.1919 13.3747 13.0604 12.7540 14.5223 14.2850
GN3 10.2575 15.5134 15.6451 16.6747 16.6735 17.1379 17.3924
GR4 5.7458 10.3325 10.7142 12.2851 11.9998 12.3145 12.3718

14/10/2015 GR9 6.8466 14.1066 14.2041 15.5851 15.4235 16.1579 16.3666
HG1 12.1833 15.3207 15.3557 15.6182 15.5280 15.8507 16.0660
HR1 3.9083 9.2177 9.2161 8.4127 8.2599 9.0035 9.2738
HV1 5.3969 9.1737 9.2850 9.5684 9.5196 10.5241 10.6611
KC1 5.5000 10.7263 10.8241 11.5256 11.5326 12.0574 12.3407
KC2 16.3481 14.9944 14.8669 15.6873 15.7329 15.5961 15.6311
LH0 4.9083 9.2240 9.2029 9.4828 9.8286 9.7004 9.9389
LW2 12.0641 16.6002 17.0335 17.4637 17.5776 19.0537 19.4729
ST5 11.7100 17.3403 17.2562 18.5583 18.6559 18.4578 18.6564
TH4 11.4372 14.2911 14.1944 12.8099 12.5399 13.2005 13.0827
RMSE 4.5915 4.6862 5.3756 5.3441 5.9838 6.1375

BL0 9.7250 9.1394 9.5084 9.2373 9.0720 10.3669 10.3735
BX1 8.7542 9.2452 9.6964 9.4575 9.4023 11.0635 10.9232
CD1 15.7458 13.1982 13.8878 14.4752 14.6295 15.1654 15.2673
CD9 16.7136 17.1385 17.6003 20.8312 20.8286 22.5164 22.4121
CT3 14.5543 14.5543 14.5543 14.5543 14.5543 14.5543 14.5543
GN0 14.2139 11.9462 12.3860 12.7244 12.5511 13.3676 13.5510
GN2 11.3665 13.0389 13.2809 13.0960 12.6332 14.2493 13.8839
GN3 13.6809 14.5887 15.1096 16.2269 16.1551 17.2100 17.2348
GR4 9.6750 9.7142 10.3442 11.6428 11.5418 12.5773 12.4138

15/10/2015 GR9 10.9183 12.5926 13.3553 14.4441 14.4793 15.7931 15.7575
HG1 15.6625 14.2958 14.8705 14.8942 15.0120 15.8298 15.8158
HR1 9.2792 8.7723 9.0586 7.8911 7.8735 9.0405 8.9754
HV1 8.4433 9.0776 9.3153 9.9732 9.5705 11.2786 11.0771
KC1 9.7583 9.6086 10.1795 10.7187 10.8735 11.7791 11.9142
KC2 16.3766 14.8074 14.8209 15.5281 15.6666 15.5174 15.5794
LH0 9.4458 8.4811 8.8371 9.0007 9.3475 9.2169 9.4995
LW2 19.0288 16.1614 16.5295 17.9645 17.4071 18.4815 18.6262
ST5 13.4300 16.5048 16.8378 18.0343 18.2470 18.2743 18.3947
TH4 11.4372 14.3416 14.3138 13.3751 12.6875 13.5397 13.2460
RMSE 1.6364 1.6407 2.0530 2.0327 2.6617 2.6014

BL0 20.6917 8.7551 9.0939 8.4376 8.6889 8.9826 9.5777
BX1 18.7625 8.8077 9.2328 8.5775 8.9259 9.8218 10.2111
CD1 24.9708 12.6254 13.1037 13.2955 14.0773 13.9928 14.4236
CD9 24.1276 16.8422 17.4575 19.7563 20.4992 20.9938 21.9770
CT3 14.5543 14.5543 14.5543 14.5543 14.5543 14.5543 14.5543
GN0 21.1872 11.4863 11.7710 11.6293 12.0611 12.1606 12.4982
GN2 22.0827 12.9648 13.1694 12.6335 12.4843 13.2021 13.2350
GN3 24.6283 14.0634 14.4959 15.1209 15.6502 16.0770 16.4061
GR4 19.5625 9.2150 9.9691 10.4229 11.0418 11.5530 11.8055

16/10/2015 GR9 20.7506 12.0283 12.5979 13.3237 13.8013 14.2595 14.6997
HG1 25.6625 13.7161 14.2800 13.6095 14.5076 14.4002 15.0668
HR1 18.1167 8.4186 8.7680 7.0971 7.5542 7.7154 8.4989
HV1 18.6330 8.8334 9.1110 9.2829 9.3556 10.5497 10.7365
KC1 19.4458 9.0852 9.5528 9.7070 10.3608 10.5054 11.0690
KC2 24.0530 14.6171 14.6205 15.5388 15.6539 15.4924 15.5508
LH0 17.0958 8.1215 8.3979 8.2185 9.0546 8.0409 8.9462
LW2 26.6666 15.7789 16.0236 17.9847 17.1681 17.5616 17.5948
ST5 24.2300 16.0325 16.2769 16.9967 17.8289 17.2384 17.7025
TH4 11.4372 14.1349 14.1374 13.2759 12.5762 13.7454 13.0809
RMSE 9.5196 9.1590 9.0333 8.6508 8.4599 8.0599

Table 5.5: Evaluation of applying the DSTM model to data from 01/03/15 to 13/10/15
considering multi-pollutant data. Results are shown using 7, 3 and 2 months data when
fitting the model, using the methods of moments (MM) and expectation-maximisation
(EM) approaches to inference (see text for details). Observations are given together
with predictions from the models for 19 sites in London, together with overall root
mean squared error (RMSE). Evaluations are presented for 1, 2 and 3 day forecasts
covering 14, 15 and 16 of October, 2015. All comparisons were made in the original
scale (µg/m3).
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7 Months 3 Months 2 Months
Site Real MM EM MM EM MM EM
BL0 6.3750 10.0900 10.3487 9.3043 9.2002 9.0709 9.1616
BX1 5.2333 9.3845 9.4815 9.0730 8.6167 9.2244 9.3992
CD1 10.8458 13.2643 13.4875 13.6205 13.6570 13.0414 13.2650
CD9 10.6696 17.4862 17.6874 21.6403 21.1013 19.1652 18.6794
CT3 14.5543 14.5543 14.5543 14.5543 14.5543 14.5543 14.5543
GN0 11.0350 13.7107 13.9098 14.1192 13.9760 11.8825 12.4382
GN2 6.8770 13.6129 14.4297 13.7216 13.5957 13.9323 14.5182
GN3 10.2575 14.8727 15.1599 15.5043 15.4311 15.2173 15.4904
GR4 5.7458 10.4702 10.7741 11.2160 10.9060 10.7927 10.6867

14/10/15 GR9 6.8466 12.8707 13.1881 13.6542 13.3370 12.8903 12.9830
HG1 12.1833 14.6309 14.7961 14.4228 14.4032 14.1681 14.1099
HR1 3.9083 9.2528 9.1417 8.7384 8.6770 8.9031 8.7932
HV1 5.3969 9.1951 9.2949 9.3093 9.1361 9.5148 9.3954
KC1 5.5000 9.9322 10.1037 10.1137 10.0536 10.1439 10.3431
KC2 16.3481 14.4665 14.6175 15.3162 15.4172 15.8117 15.8901
LH0 4.9083 9.6856 10.2296 9.2819 9.5311 9.2123 9.4479
LW2 12.0641 16.8520 17.6882 16.6663 17.0084 16.6207 18.4489
ST5 11.7100 15.9916 16.2194 16.9794 17.1184 16.2362 16.3148
TH4 11.4372 13.8150 13.2160 12.6097 12.1327 11.1190 11.0768
RMSE 4.3389 4.5995 4.8503 4.7254 4.3821 4.5588

BL0 9.7250 9.8828 10.3344 9.0593 9.0895 8.9940 9.0773
BX1 8.7542 9.2751 9.4937 8.9163 8.5190 9.4956 9.4657
CD1 15.7458 12.7770 13.2613 13.2281 13.2871 13.2872 13.3877
CD9 16.7136 17.2393 17.7659 21.5417 21.2621 20.9221 19.1601
CT3 14.5543 14.5543 14.5543 14.5543 14.5543 14.5543 14.5543
GN0 14.2139 12.7259 13.5429 12.8697 13.5005 11.5225 12.1952
GN2 11.3665 14.0425 14.5395 13.9677 13.7006 15.9023 15.6137
GN3 13.6809 14.5613 15.1028 15.2467 15.2384 15.2634 15.5829
GR4 9.6750 10.2124 10.6989 11.0566 10.8369 10.4984 10.7371

15/10/15 GR9 10.9183 12.3374 12.8990 13.2332 13.0772 13.0479 13.2622
HG1 15.6625 14.2764 14.6968 14.1790 14.2047 14.1931 14.2764
HR1 9.2792 9.1274 9.1775 8.3354 8.3799 8.7630 8.7112
HV1 8.4433 9.3414 9.5956 9.6685 9.4104 9.6841 9.6909
KC1 9.7583 9.5235 9.9553 9.8397 9.8137 10.1902 10.2503
KC2 16.3766 14.3615 14.6438 15.3088 15.3622 15.7573 15.8621
LH0 9.4458 9.3489 10.1154 8.9451 9.2966 9.9588 9.6046
LW2 19.0288 16.9061 17.6318 16.3989 16.4518 18.7155 18.8265
ST5 13.4300 15.6930 16.1136 16.7331 16.8493 16.5659 16.6703
TH4 11.4372 13.6688 13.3809 12.6353 12.2300 11.0820 11.1600
RMSE 1.5100 1.5287 1.9690 1.8563 1.9899 1.7737

BL0 20.6917 10.0017 10.2103 8.7779 8.8554 9.8026 9.0851
BX1 18.7625 9.4069 9.3967 8.7374 8.2166 11.7599 9.5626
CD1 24.9708 12.8431 12.9501 12.9905 12.8535 14.7610 13.5548
CD9 24.1276 17.3643 17.7126 21.3564 21.1043 21.1395 19.3063
CT3 14.5543 14.5543 14.5543 14.5543 14.5543 14.5543 14.5543
GN0 21.1872 12.3318 13.1483 12.6026 12.9568 13.5397 12.2420
GN2 22.0827 14.2576 14.6161 13.9305 13.7156 17.8179 15.8129
GN3 24.6283 14.6203 14.8917 15.0994 14.9015 17.2386 15.7027
GR4 19.5625 10.2188 10.5062 10.9539 10.5337 12.3127 10.8652

16/10/15 GR9 20.7506 12.3804 12.5591 12.6543 12.6709 15.5560 13.6881
HG1 25.6625 14.3413 14.4904 13.9632 13.8884 15.5599 14.4595
HR1 18.1167 9.2132 9.1543 7.9897 8.0581 9.4928 8.7862
HV1 18.6330 9.4756 9.6636 9.5868 9.4343 11.0077 9.8304
KC1 19.4458 9.5702 9.7125 9.6607 9.4728 11.1354 10.2567
KC2 24.0530 14.4321 14.5877 15.3265 15.3492 15.8055 15.8474
LH0 17.0958 9.4548 9.9053 8.8308 9.0911 11.0469 9.6057
LW2 26.6666 17.1217 17.3803 16.4847 16.0460 20.3997 18.6939
ST5 24.2300 15.7538 15.8978 16.7506 16.5383 18.1778 16.9543
TH4 11.4372 13.6354 13.3837 12.6169 12.1179 11.6128 11.2770
RMSE 8.8834 8.6712 8.8459 8.9519 7.1664 8.3094

Table 5.6: Evaluation of applying the DSTM model to data from 01/03/15 to 13/10/15
considering PM2.5 data. Results are shown using 7, 3 and 2 months data when fitting
the model, using the methods of moments (MM) and expectation-maximisation (EM)
approaches to inference (see text for details). Observations are given together with
predictions from the models for 19 sites in London, together with overall root mean
squared error (RMSE). Evaluations are presented for 1, 2 and 3 day forecasts covering
14, 15 and 16 of October, 2015. All comparisons were made in the original scale
(µg/m3).
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Chapter 6

Spatial-Temporal Prediction

During the last years, there has been a increasing tendency to use statistical rather than
just interpolation methods in air pollution modelling such as Kolehmainen et al. (2001).
From a modern perspective, geostatistics is defined as a sub-branch of spatial statistics
in which the data consists of a finite sample of measured values relating to an underlying
spatially continuous phenomenon, Diggle & Ribeiro (2007). Geostatistics has its origins
in the South African mining industry, but there was also an independent development
for spatial prediction in the 1950s, (Mathéron, 1963). The spatial prediction method
known as kriging is named in honour of D. G. Krige, who promoted the use of statistical
methods in mineral exploration. Originally, geostatistical methods were developed to
predict the likely yield of a mining operation over a spatial region, given the results of
samples of minerals extracted from a finite set of locations.

Kriging has been at the centre stage of spatial statistics and recently, there has been
strong interest in applying kriging to air pollution studies. There are several works
describing theoretical geostatistics and some kriging applications on spatial interpola-
tion using air pollution data, some references are Cressie (1993); Stein (1999); Janssena
et al. (2008). There is an extension to spatio-temporal models that have also been used
in in air pollution studies, see Carroll et al. (1997); Wikle et al. (1998); Kyriakidis &
Journel (1999); Huerta et al. (2004) for further details. A Bayesian version of Kriging
has also been suggested and has been applied to air pollution, for example see Le &
Zidek (1992); Handcock & Stein (1993); Ecker & Gelfand (1997).

Kriging can be classified into three types: ordinary, simple and universal kriging, which
differ in their assumptions about the structure of the mean: ordinary kriging assumes
a constant, unknown mean; simple kriging assumes a constant, known mean; and
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universal kriging assumes a trending mean. Additionally, data are often available for
other variables at the sampled locations. If the secondary variables are correlated with
the primary variable being modelled (and are known at the unsampled locations) they
may be used to help predict conditions at unsampled locations by co-kriging (Oliver &
Webster, 1990).

The references about spatio-temporal modelling are diverse. For example, a traditional
covariance based model can be seen in Guttorp et al. (1994). In Tiao et al. (1975) an
empirical model is proposed to explain the CO concentration and its trend. In recent
years, hierarchical Bayesian approaches for spatial prediction of air pollution have been
developed. The dynamic linear model framework offers an alternative to prediction,
Wikle & Cressie (1999); Huerta et al. (2004); Shaddick & Wakefield (2002); Cressie &
Wikle (2011).

One could be focused on prediction at some location in space within the time span of
the observations and parameter inference for spatio-temporal covariates. If it is the
case, then the true process can be written in terms of spatio-temporal fixed effects due
to covariates plus a spatio-temporally dependent random process.

6.1 Spatio-temporal Kriging

Let
{Y (s; t) : s ∈ Ds, t ∈ Dt} (6.1)

denote the spatio-temporal process that is a statistical model for a phenomenon. This
hidden random process is defined for a spatial location s ∈ Ds (a subset of d-dimensional
Euclidean space), and time t in temporal domain Dt (along the one-dimensional real
line).

Optimal predictions are required for a latent spatio-temporal process; this can be made
through a linear spatial prediction (kriging). It can be formulated based on spatial
statistical dependencies, such as a spatial covariance function or a spatial variogram.

Now, let us suppose the data in terms of the latent spatio-temporal process of interest
plus a measurement error,

Z(sij ; tj) = Y (sij ; tj) + ϵ(sij ; tj), i = 1, . . . ,mj ; j = 1, . . . , T, (6.2)

where the error {ϵ(sij ; tj)} is independent of Y (·; ·) and represent the measurement
error that is assumed to be iid with mean zero and variance σ2

ϵ .
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In spatio-temporal setting, there are two different ways of writing the data vector Z. It
could be seen as a multivariate spatial process, where Z(i) ≡ (Z(si; tij) : j = 1, . . . , Ti)′;
i = 1, . . . ,m, is the Ti-dimensional vector of temporal data. Alternatively, one could
represent all data at time point t and call it Zt. The concatenation of such {Zt : t =
1, . . . , T} amounts to a reordering of the data vector Z, that could also be written as
(Z′

1, · · · ,Z′
T ). In the data model 6.2, it is assumed that the data are noisy observations

of the latent process Y at a finite collection of locations in the space-time domain. Any
of the two orderings of data in Z will be used, it will be determined by the parsimony
of parameterisation.

In general, one has not necessarily observed data at all time points or locations. Some-
times it is assumed that data were observed at the same set of m locations for each of
the T times, in which case Z is of length mT .

One would like to predict the hidden value Y (s0; t0), based on data defined by 6.2.
Now suppose that the latent process follows the model

Y (s; t) = µ(s; t) + η(s; t) (6.3)

for all (s, t) in our space-time domain of interest, such as (Ds × Dt). In equation 6.3
µ(s; t) denotes the process mean and η(s; t) denotes a mean-zero random process with
spatial and temporal statistical dependence.

6.1.1 Prediction

Apart from characterise dependence in space and time, spatio-temporal covariances
can be used to formulate an optimal linear spatial prediction. These predictors can be
quantified through a spatial covariance or a spatial variogram.

For any unbiased linear predictor, Y ∗(s0; t0), the mean squared prediction error,

E(Y ∗(s0; t0), Y (s0; t0))2, for s0 ∈ Ds, t0 ∈ Dt, (6.4)

can be expressed in terms of the covariance function. The goal of kriging is to find
the optimal linear predictor from incomplete and noisy data. It is optimal in the sense
that minimises the mean squared prediction error between Y (s0, t0) and our prediction,
Ŷ (s0, t0). A prediction is sought at some spatio-temporal location (s0, t0). If t0 < tT ,
so that all is data available, then it is a smoothing situation. If data is known up to
time t0 then it is a filtering situation. And, if t0 > tT then it is a forecasting situation.
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In spatio-temporal context, recall from 4.20 that the variogram is defined as

2γZ(si, sk; tj , tl) ≡ var(Z(si; tj) − Z(sk; tl)), si, sk ∈ Rd, tj , tl ∈ R. (6.5)

and from 4.1, recall the spatio-temporal function,

C(si, sk; tj , tl) ≡ cov(Y (si, tj), Y (sk, tl)). (6.6)

There are different approaches to obtain the form of the optimal linear predictor, the
spatio-temporal kriging. In one of these approaches, it is assumed that the underlying
process is a Gaussian process and the measurement error has a Gaussian distribution.

A Gaussian process is denoted by {Y (r) : r ∈ D}, where r is a spatial, temporal, or
spatio-temporal location in D, a subset of d-dimensional space. If the process has all
its finite-dimensional distributions Gaussian, determined by a mean function µ(r) and
a covariance function C(r, r′) = cov(Y (r), Y (r′)), the Gaussian process is denoted by
Y (r) ∼ GP (µ(r), c(·, ·)) for any location {r, r′} ∈ D. In spatio-temporal statistics it is
common to use Gau(·, ·) instead of GP (·, ·) and this convention will be followed.

The simple kriging predictor Ŷ (s0, t0), takes the form of a linear combination,

Ŷ (s0, t0) ≡
mj∑
i=1

T∑
j=1
ℓijZ(sij ; tj) + c

≡ ℓ′Z + c,

(6.7)

where Z ≡ (Z′
1, . . . ,Z′

T )′, ℓ and c are optimised. For the moment it is assumed that
the mean function,

µ(s; t) = E(Y (s; t)), s ∈ Ds, t ∈ Dt, (6.8)

is known.

If it is assumed that the mean function is constant over space and time, then one can
obtain the ordinary-kriging predictor. If the mean function is a linear combination of
covariates, then one can derive the universal-kriging predictor.

In the context of Spatio-Temporal kriging, time is treated as another dimension, and the
covariance functions should describe covariability between any two space-time locations.
One should notice that time has a direction and different properties of causality than
space. Thus, any proposed covariance functions should consider that duration in time
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is different from distances in space.

The universal kriging can be illustrated, there are analogous ordinary-kriging and sim-
ple kriging equations that can be derived. Let us define the hidden process as

Y ≡ (Y (s11; t1), · · · , Y (smTT ; tT ))′

and the measurement error process as ε ≡ (ϵ(s11; t1), · · · , ϵ(smTT ; tT ))′. The data model
can be expressed in terms of vectors,

Z = Y + ε. (6.9)

In a similar way, the vector form of the process model for Y is written

Y = µ+ η, (6.10)

where µ ≡ (µ(s11; t1), · · · , µ(smTT ; tT ))′ = Xβ, and η ≡ (η(s11; t1), · · · , η(smTT ; tT ))′.

Note that cov(Y) ≡ CY = Cη, cov(ε) ≡ Cϵ and cov(Z) ≡ CZ = CY + Cϵ. Now,
defining c′

0 ≡ cov(Y (s0; t0),Z), c0,0 = var(Y (s0; t0)) and X the (∑T
j=1mj) × p matrix

given by X ≡ [x(sij ; tj)′ : i = 1, . . . ,mj ; j = 1, . . . , T ], consider the joint Gaussian
distribution, [

Y (s0; t0)
Z

]
∼ Gau

([
x(s0; t0)′

X

]
β,

[
c0,0 c′

0
c0 CZ

])
. (6.11)

Recall the simple kriging and for now assume that β is known, the conditional distri-
bution can be obtained,

Y (s0; t0)|Z ∼ Gau(x(s0; t0)′β + c′
0C−1

Z (Z − Xβ), c0,0 − c′
0C−1

Z c0). (6.12)

Under the Gaussian assumption 6.11, the spatio-temporal universal kriging predictor
is the posterior mean of 6.12, i.e.,

Ŷ(s0; t0) = x(s0; t0)′β + c′
0C−1

Z (Z − Xβ). (6.13)

The variance is the spatio-temporal simple kriging variance,

σ2
Y,sk(s0; t0) = c0,0 − c′

0C−1
Z c0. (6.14)

Note that σY,sk(s0; t0) is called the spatio-temporal simple kriging prediction standard
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error and it has the same units as Ŷ (s0; t0).

If one considers the spatio-temporal kriging from the Gaussian-process perspective,
then a valid finite-dimensional Gaussian distribution for any finite subset of locations
can be specified. For this purpose, the covariance between the process at any two
locations in the domain of interest, c0, should be specified.

Note that the weights w′ ≡ c′
0C−1

Z are a function of the covariances and the measurement-
error variance. The conditional mean in 6.13 takes the residuals between the observa-
tions and their marginal means, (Z − Xβ) with their respective weights w.

In most of the cases, one would not know β, in particular the optimal linear unbiased
predictor, or spatio-temporal universal kriging (UK) predictor of Y(s0; t0) is

Ŷ(s0; t0) = x(s0; t0)′β̂gls + c′
0C−1

Z (Z − Xβ̂gls), (6.15)

where the generalised least squares (gls) estimator of β is given by

β̂gls ≡ (X′C−1
Z X)−1X′C−1

Z Z. (6.16)

The associated spatio-temporal universal kriging variance is given by

σ2
Y,uk = c0,0 − c′

0C−1
Z c0 + κ, (6.17)

where
κ ≡ (x(s0; t0) − X′C−1

Z c0)′(X′C−1
Z X)(x(s0; t0) − X′C−1

Z c0) (6.18)

is the additional uncertainty brought to the prediction due to the estimation of β. The
expression σY,uk is called the spatio-temporal universal kriging prediction standard
error.

In general, one rarely knows the variances and covariances that are involved, CY , Cϵ,
c0 and c0,0. One possible solution is to parameterise them, and then estimate these
parameters through maximum likelihood, restricted maximum likelihood or through a
fully Bayesian approach.

In the next section two models will be applied based on two different covariance func-
tions. The first of these covariance functions is given by an isotropic and stationary
separable model of the form given by 4.10,

C(sep)(h; τ) = C(s)(h) · C(t)(τ), h ∈ Rd, τ ∈ R. (6.19)
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Both covariance functions, C(s)(·) and C(t)(·), take the form

C(·) = b1 exp(−ϕh) + b2I(h = 0), (6.20)

where ϕ, b1 and b2 are parameters that are different for C(s)(·) and C(t)(·). All param-
eters need to be estimated and I(·) is the indicator function that is used to represent
the nugget effect.

The second fitted model is a non-separable spatio-temporal covariance function. The
temporal lag is scaled to account for the different nature of space and time. The model
is given by

C(st)(||va||) ≡ b1 exp(−ϕ||va||) + b2I(||va|| = 0), (6.21)

where va ≡ (h′aτ)′, and recall that ||va|| = (h′h+a2τ2)1/2. In this case a is the scaling
factor used for generating the space-time anisotropy. In figure 6-3, fitted separable and
non-separable semivariogram for log(PM2.5) levels during the period of interest are
shown.

The first semivariogram considered here corresponds to the spatio-temporal separable
covariance function in 4.10 and 6.20. The separable covariance function 4.10 corre-
sponds to a semivariogram of the form

γsep(h; τ) = sill ·
(
γ̄(s)(||h||) + γ̄(t)(|τ |) − γ̄(s)(||h||)γ̄(t)(|τ |)

)
, (6.22)

where the standardised semivariograms γ̄(s) and γ̄(t) have separate nugget effects and
sills equal to 1. For more detalis see Gräler et al. (2016); Montero et al. (2015).

6.1.2 Likelihood Estimation

Given the data model 6.9, recall that CZ = CY + Cϵ. Let θ = {θY ,θϵ} denote the
parameters for the covariance functions of the hidden process Y and the measurement-
error process ϵ respectively. With an abuse of notation, the likelihood can then be
written as

L(β,θ; Z) ∝ |Cz(θ)|−1/2 exp
{

−1
2(Z − Xβ)′(CZ(θ))−1(Z − Xβ)

}
. (6.23)

The aim is to maximise this likelihood function with respect to {β,θ} to obtain the
maximum likelihood estimates (MLEs), {β̂mle, θ̂mle}.

Numerical methods are needed for maximisation of 6.23, because for most parametric
covariance models, an analytical solution is not possible. Observe that covariance
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parameters appear in the matrix inverse and determinant in likelihood.

To reduce the number of parameters in maximisation, the profile likelihood can be
considered. For this purpose, the parameter β is replaced in 6.23 with the generalised
least squares estimator,

βgls = (X′C−1
Z (θ)X)−1X′C−1

Z (θ)Z. (6.24)

Then, the profile likelihood is a function of the unknown parameters θ that can be
optimised through a numerical method to obtain θ̂mle. Now, the MLE of β can be
obtained,

β̂mle = (X′C−1
Z (θ̂mle)X)−1X′C−1

Z (θ̂mle)Z, (6.25)

Finally, the parameter estimates {β̂mle, θ̂mle} are then substituted into the kriging
equations 6.15 and 6.17. The results are the empirical best linear unbiased predictor
(EBLUP) and the associated empirical prediction variance respectively.

An alternative to profiling is the restricted maximum likelihood (REML). Let us consider
a contrast matrix K such that E(KZ) = 0. A candidate can be an (m − p − 1) × m

matrix orthogonal to the column space of the m×p design matrix X, i.e., K corresponds
to the (m− p− 1) linearly independent rows of (I − X(X′X)−1X).

Since KX = 0, then E(KZ) = KXβ = 0, and var(KZ) = KCZ(θ)K′). Then,
the estimate θ̂reml can be obtained using numerical maximisation from the restricted
likelihood,

Lreml(θ; Z) ∝ |KCZ(θ)K′)|−1/2 exp
{

−1
2(KZ)′(KCZ(θ)K′)−1(KZ)

}
. (6.26)

Note that parameter estimation and statistical inference with REML do not depend
on the specific choice of K, so long as it leads to E(KZ) = 0. The GLS formula for β,
can be used to obtain

β̂rmle = (X′C−1
Z (θ̂rmle)X)−1X′C−1

Z (θ̂rmle)Z. (6.27)

Finally, the parameter estimates {β̂rmle, θ̂rmle} are substituted into the kriging equa-
tions 6.15 and 6.17.
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6.2 Implementation using the LAQN data

In universal kriging, the main purpose is to find the optimal linear predictor in the
sense that it minimises the mean squared prediction error between Y (s0; t0) and our
prediction, Ŷ (s0; t0). Depending on the situation, one can choose to let µ(s; t) be:

• known,

• constant but unknown,

• modelled in terms of covariates, µ(s; t) = x(s; t)′β, where β is unknown.

These choices result in spatio-temporal models: simple, ordinary and universal kriging
respectively previously discussed in section 6.1.2 .

6.2.1 Evaluation strategy

In order to assess the accuracy of the different Kriging approaches in producing spatial
predictions of levels of PM2.5, we perform a series of studies and evaluate how well
they perform, based upon the RMSE. The basis of the evaluations is similar to that
presented in 5.10.1 and here we use data on PM2.5 levels from 01 August 2015 to 14
March 2016 and predict for 15, 16 and 17 March 2016. Three spatial locations are
omitted from the data sets used to fit the model (sites BL0, GN3 and ST5) and then
(out-of-sample) predictions three-days-ahead in both space and time are calculated for
the three locations. Results are given for Kriging for PM2.5, PM10 and NO2 (Section
6.2.2) and for Fixed Rank Kriging (FRK) for PM2.5 (Section 6.4). This is designed
to provide a computationally efficient approach to dealing with large spatio-temporal
covariance matrices.

6.2.2 Results

Two analogous analyses are also given for PM10 and NO2. Their empirical spatio-
temporal semivariogram of daily data set from 01 August 2015 to 15 March 2016
can be seen in figure 6-1 and figure 6-2 respectively. The empirical spatio-temporal
semivariogram of daily PM25 data was previously presented in figure 4-6. The empirical
semivariogram can be seen as a measure of dissimilarity in space/time. The lower the
semivariogram value, the higher the correlation between two pairs of data points. In
figures 6-1 and 6-2, one can note that a temporal correlation up to 5 days apart is
observed and a strong spatial correlation up to 0.6 Km is present. Furthermore, it is
clear that the correlations are higher in the PM10 data than NO2. In addition, a clear
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nugget effect is observed in both cases. Finally, one can conclude that there is some
evidence of spatial-temporal interaction.
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Figure 6-1: Empirical spatio-temporal semivariogram of daily PM10 data set from
01 August 2015 to 15 March 2016. The plot is produced with cutoff=1Km, bin
width=0.1Km and time lags from 0 to 5 days.

The form of equation 6.20 assumes an exponential relationship between correlation and
distance, with correlation decreasing with greater distances. This is a commonly used
form, although other functions are often used, as shown in figure 4-1. One can compare
the fits of different correlation-distance relationships, i.e. different semivariograms,
by checking the mean squared error (MSE) of the fits. In this case, there was little
difference between the MSEs found with the different models shown in figure 4-1 and
so due to its simplicity and common use and as it proved a reasonable fit in comparison
to other functions, the exponential model was used in the following analyses.

The non-separable spatio-temporal covariance function 6.21 can be used for space-
time anisotropy, but it is relatively inflexible. It only contains four parameters, one
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Figure 6-2: Empirical spatio-temporal semivariogram of daily NO2 data set from 01 Au-
gust 2015 to 15 March 2016. The plot is produced with cutoff=1Km, bin width=0.1Km
and time lags from 0 to 5 days.

parameter (a) to account for the different scaling needed for space and time. One more
parameter (ϕ) for the length scale, and two parameters to specify the variance (b1, b2).
In contrast, the model 4.11 contains six parameters that provide a better reconstruction
of the empirical covariance function. Although the separable model fits better in this
case (in terms of the MSE), it is still a rather unrealistic model for most processes of
interest.

It is important to notice that pollutants such as PM2.5 are complex combinations of
particles. Therefore, assumptions for most of the models that attempt to study these
type of pollutants can be restrictive. For instance, assuming space-time anisotropy
into a model to analyse PM2.5 is unrealistic. However, some of these assumptions can
be useful and convenient in producing an accurate forecast. One should try to find
a balance between making reasonable assumptions, getting useful results and being
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pragmatic.

Sites out: BL0, GN3, ST5
Model Site RE: 15/03/2016 RE: 16/03/2016 RE: 17/03/2016

BL0 2.86% 7.21% 24.74%
Separable GN3 15.37% 10.49% 15.65%

ST5 7.65% 9.34% 8.32%
RMSE 2.0812 1.6352 5.5828

BL0 8.20% 6.13% 27.25%
Metric GN3 13.83% 9.20% 18.97%

ST5 16.65% 10.81% 16.58%
RSME 2.7179 1.6039 6.6713

Table 6.1: Evaluation of applying the kriging model to data from 01/08/15 to 17/03/16
considering PM2.5 data. Results are shown using 16 sites from London data when fitting
the model, using the separable and metric approach (see text for details). The relative
error (RE) per site and date (in percentage) and the overall root mean squared error
(RMSE) are shown. Evaluations are presented for 15, 16 and 17 of March 2016. The
comparison was made in the original scale (µg/m3).

Sites out: BL0, GN3, ST5
Model Site RE: 15/03/2016 RE: 16/03/2016 RE: 17/03/2016

BL0 4.02% 0.17% 9.40%
Separable GN3 9.97% 10.07% 8.75%

ST5 12.98% 1.06% 3.34%
RMSE 1.4751 2.2029 3.1561

BL0 3.90% 6.89% 2.51%
Metric GN3 5.36% 14.83% 5.01%

ST5 18.18% 2.67% 6.71%
RSME 1.2349 2.1742 4.5518

Table 6.2: Evaluation of applying the kriging model to data from 01/08/15 to 17/03/16
considering PM10 data. Results are shown using 16 sites from London data when fitting
the model, using the separable and metric approach (see text for details). The relative
error (RE) per site and date (in percentage) and the overall root mean squared error
(RMSE) are shown. Evaluations are presented for 15, 16 and 17 of March 2016. The
comparison was made in the original scale (µg/m3).

122



Sites out: BL0, GN3, ST5
Model Site RE: 15/03/2016 RE: 16/03/2016 RE: 17/03/2016

BL0 0.45% 8.04% 47.00%
Separable GN3 7.37% 22.76% 119.73%

ST5 31.07% 0.68% 70.24%
RMSE 8.9131 12.0440 20.2861

BL0 3.90% 6.89% 2.51%
Metric GN3 5.36% 14.83% 5.01%

ST5 18.18% 2.67% 6.71%
RSME 1.2349 2.1742 4.5518

Table 6.3: Evaluation of applying the kriging model to data from 01/08/15 to 17/03/16
considering NO2 data. Results are shown using 16 sites from London data when fitting
the model, using the separable and metric approach (see text for details). The relative
error (RE) per site and date (in percentage) and the overall root mean squared error
(RMSE) are shown. Evaluations are presented for 15, 16 and 17 of March 2016. The
comparison was made in the original scale (µg/m3).
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Figure 6-3: Fitted separable (left) and non-separable (right) semivariogram for
log(PM2.5) levels from 01 August 2015 to 14 March 2016.
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Figure 6-4: Spatio-temporal universal kriging predictions of log(PM2.5) within a square
latitude-longitude box enclosing the domain of interest 15 March 2016.
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Figure 6-5: Spatio-temporal universal kriging prediction standard errors of log(PM2.5)
within a square latitude-longitude box enclosing the domain of interest 15 March 2016.
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Both the spatio-temporal simple and universal kriging equations shown in section 6.1.2
can be extended to accommodate prediction at many locations in space and time. The
predictions for log(PM2.5) 15 of March 2016 are shown in Figure 6-4. The model has
been fitted from 1 August 2015 to 15 March 2016 on a space-time grid, considering
a separable spatio-temporal covariance function. This plot can be compared with the
results obtained from the IWD model, figure 2-9.

The corresponding prediction standard errors for the spatio-temporal universal kriging
prediction are shown in figure 6-5. The errors associated with those for 15 March are
considerably large, specially in areas close to the edges. Spatio-temporal kriging as
shown in this example is relatively easy to implement for small data sets. However
it starts to become prohibitive as data sets grow in size, unless some approximation
is used. For example, the package gstat allows one to use an option to determine the
maximum number of observations to use when doing prediction. The predictor is no
longer optimal, but it is close enough to the optimal predictor for practical purposes.

A study was made in order to evaluate the spatial predictions for PM2.5 obtained from
the separable and metric models that were defined above. The idea is fitting the model
considering data from 01 August 2015 to 17 March 2016. Instead of using 19 sites from
LAQN, three sites are leaved out from the fitting (BL0, GN3, ST5). The same settings
were considering for this exercise, the only difference is the number of analysed sites
and two more days were included (16 and 17 March). As one can observe in table
6.1, the best model in terms of RMSE for prediction is the separable model. This
comparison was made in the original scale. Different initial values were supplied to the
optimisation routine used for fitting, but no differences were observed.

Finally, two analogous studies were done for PM10 and NO2, see the results in table
6.2 and table 6.3 respectively. For PM10 data, the best model in terms of RMSE for
prediction is the metric model. However the results are similar to the separable ap-
proach. On the other hand, the metric model for NO2 data shows a better performance
in terms of this analysis.

6.3 Random effects

In the context of spatial or spatio-temporal modelling, one of the most difficult prob-
lems is to specify realistic valid spatio-temporal covariance functions and to work with
large spatio-temporal covariance matrices. If one assumes the model defined in 6.9, it
is possible to parameterise CZ in the context of large numbers of prediction or obser-
vation locations. One way to tackle these situations is take advantage of conditional
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specifications that the hierarchical modelling framework allows.

There are different approaches for classical linear mixed models. From a marginal
perspective, the random effects can be integrated and then, the resulting marginal
distribution can be modelled. Consider the conditional representation of a general
linear mixed-effects model for response vector Z and fixed and random effects vectors,
β and α, respectively,

Z|α ∼ Gau(Xβ + Φα,Cϵ)

α ∼ Gau(0,Cα),
(6.28)

where X and Φ are assumed to be known matrices, and Cϵ and Cα are known covari-
ance matrices. Recall θ = {θϵ,θα} are the covariance parameters in CZ and Cα. For
now, θ can be omitted but it is implicitly considered.

The marginal distribution of Z is then given by integrating out the random effects,

[Z|θ] =
∫

[Z|α,θ][α|θ]dα. (6.29)

This distribution can be obtained by making use of iterated conditional expectation
and variance formulas. The model associated with 6.29 can be written as

Z = Xβ + Φα+ ε, ε ∼ Gau(0,Cϵ), (6.30)

and

E(Z) = Eα{E(Z|α)} = Eα{Xβ + Φα} = Xβ (6.31)

var(Z) = varα{E(Z|α)} + Eα{var(Z|α)} = ΦCαΦ′ + Cϵ. (6.32)

Since 6.30 shows that Z is a linear combination of normally distributed random vari-
ables, it is normally distributed and the marginal distribution is given by

Z ∼ Gau(Xβ,ΦCαΦ′ + Cϵ.) (6.33)

One can observe that the conditional covariance matrix in 6.28, Cϵ, is simpler com-
pared to error covariance structure in the marginal distribution in 6.33, ΦCαΦ′ + Cϵ.
Conditioning on random effects and inducing dependence through integration is im-
portant to hierarchical statistical modelling. The idea is to model means instead of to
model covariances. The modelling effort should be put into the conditional mean, the
integration induces a more complicated marginal dependence rather than specifying it
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directly.

6.3.1 Basis-Function Representations

Covariance specification and the inconvenience of high dimensionality are the most
difficult problems in spatio-temporal statistics to deal with. it is also needed to pay
attention the choice of Φ in 6.33, one option to tackle these problems is through basis-
function expansions.

If it is supposed that one has a complex curve or surface in space. It is possible to
decompose this curve or surface as a linear combination of some ”elemental” basis func-
tions. In this context, one can consider spatio-temporal basis functions to reconstruct
the observed data.

Basis functions can be nonlinear functions of (s, t) and the associated coefficients can
be inferred in a statistical additive model framework. There are different types of
coefficients. If they are fixed but unknown, then one has a regression model and the
basis functions can be thought as covariates. If the coefficients are random, then one
has a random-effects model or, if covariates are also considered, it is a mixed-effects
model. This framework allow us to build more complex models to be analysed through
marginalisation.

6.3.2 Random Effects with Spatio-Temporal Basis Functions

Let us assume the same data model 6.9 and the process model defined in 6.3. It can
be rewritten in terms of fixed effects β, and random effects {αi : 1, . . . , nα},

Y (s; t) = x(s; t)′β + η(s; t) = x(s; t)′β +
nα∑
i=1

ϕi(s; t)αi + ν(s; t), (6.34)

where {ϕi(s; t) : 1, . . . , nα} are spatio-temporal basis functions corresponding to loca-
tion (s; t). Finally, the random effects are denoted by {αi}, and ν(s; t) could represent
small-scale spatio-temporal random effects not captured by the basis functions.

Let α ∼ Gau(0,Cα), where α ≡ (α1, . . . , αnα)′. Consider the process Y at ny spatio-
temporal locations, denoted by the vector Y. The process can be written as

Y = Xβ + Φα+ ν, (6.35)

where the ith column of the ny × nα matrix Φ corresponds to the ith basis func-
tion, ϕ(·, ·), at all of the ny spatio-temporal locations, in the same order given by in
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Y. The spatio-temporal ordering for the vector ν is the same as the one in Y, and
ν ∼ Gau(0,Cν). Under this assumptions, the marginal distribution of Y is given by
Y ∼ Gau(Xβ,ΦCαΦ′ + Cν), thus CY = ΦCαΦ′ + Cν . The vector of covariance
parameters θ should include parameters in Cν . The spatio-temporal basis functions,
Φ, contains the spatio-temporal dependence. In general, this relation can be non-
separable. Observe that the random effects α are not indexed by space and time, so
it should be easier to specify a model for them. In this case, a model can be specified
through a covariance matrix, which is easier than specifying a covariance function.

In a low-rank representation (when nα ≪ ny) under the model 6.35, one should
note that Cz = ΦCΦ′ + V, where V ≡ Cν + Cϵ. Then, considering the Sher-
man–Morrison–Woodbury matrix identity,

C−1
z = V−1 − V−1Φ(Φ′V−1Φ + C−1

α )−1Φ′V−1. (6.36)

If V−1 is sparse or diagonal and nα ≪ ny, then this inverse is a function of a simple
high-dimensional matrix V−1 and a low-dimensional matrix inverse C−1

α . In the full
rank (nα = ny) and over-complete (nα > ny) cases there are computational benefits
through induced sparsity in Cα. Some basis-function implementations can assume
that ν and that Φ is orthogonal, then ΦΦ′ = I. In these cases, one can reduce the
computational burden significantly. In the product Φα, its coefficients α, are random
and the columns of Φ are spatio-temporally indexed.

6.3.3 Random Effects with Spatial Basis Functions

The spatio-temporal process can be written as functions of space basis functions only
and their random coefficients are indexed by time. The process is

Y (s; tj) = x(s; tj)′β +
nα∑
i=1

ϕi(s)αi(tj) + ν(s; tj), j = 1, . . . , T. (6.37)

where the spatial basis functions are denoted by {ϕ(s) : i = 1, . . . , nα; s ∈ Ds}, αi(tj)
are temporal random processes, and the rest of the model components were defined in
6.34.

In general, one can consider a wide variety of spatial basis functions for this model.
These can be of reduced rank, of full rank, or over-complete. One alternative is to con-
sider complete global basis functions such as Fourier. Another option are the reduced-
rank empirically defined basis functions, such as the empirical orthogonal functions
(EOFs). There are also a variety of non-orthogonal bases for example, Gaussian func-
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tions, wavelets, bisquare functions or Wendland functions. It is relevant to ensure that
the type and number of basis functions are flexible and large enough to model the
true dependence in Y , and the data Z. This requires some experimentation and model
diagnostics.

The model 6.37 defined for n locations at times {tj : j = 1, 2, . . . , T} can be written as

Ytj = Xtjβ + Φαtj + νtj . (6.38)

In this case, Ytj = (Y (s1; tj), . . . , Y (sn; tj))′ is the n-dimensional process vector,

νtj ∼ Gau(0,Cν),

αtj ≡ (α1(tj), . . . , αnα(tj))′,

Φ ≡ (ϕ(s1), . . . ,ϕ(sn))′,

and ϕ(si) ≡ (ϕ1(si), . . . , ϕnα(si))′, for i = 1, . . . , n.

If αt1 ,αt2 , . . . are independent in time, where αtj ∼ iid Gau(0,Cα), then the marginal
distribution of Ytj is Gau(Xtjβ,ΦCαΦ′ + Cν), and Y1,Y2, . . . are independent. The
nT × nT joint spatio-temporal covariance matrix is given by

CY = IT ⊗ (ΦCαΦ′ + Cν), (6.39)

where IT is the T -dimensional identity matrix. If independence is assumed in time, it
implies a simple separable spatio-temporal dependence structure. To model more com-
plex spatio-temporal dependence structure using exclusively spatial basis functions, one
should specify the model for the random coefficients such that {αtj : j = 1, . . . , T} are
dependent in time. Under the dynamical approach a conditional temporal dependence
can be assumed.

6.3.4 Random Effects with Temporal Basis Functions

Finally, the spatio-temporal random process can be expressed in terms of temporal
basis functions and spatially indexed random effects. The process can be written as

Y (s; t) = x(s; t)′β +
nα∑
i=1

ϕi(t)αi(s) + ν(s; t), (6.40)

where the temporal basis functions are denoted by {ϕi(t) : i = 1, . . . nα; t ∈ Dt} and
{αi(s) : s ∈ Ds; i = 1, . . . , nα} are their spatially indexed random coefficients. These
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coefficients can be modelled using using multivariate geostatistics. The temporal ba-
sis function representation is less common than the spatial basis function represen-
tation. It could be since most spatio-temporal processes have an interpretation of
spatial processes evolving in time. However, temporal basis functions are being used
to model non-stationary-in-time processes such as high-frequency time behaviour that
vary across space.

There is a spatio-temporal method that implements a low-rank approach to spatial and
spatio-temporal modelling known as fixed rank kriging (FRK). There are important
differences between FRK and other geostatistical implementations. This approach will
be followed in the next section applied to LAQN data.

The FKR method can be implemented in R through the package FKR, a detailed ex-
planation about the implementation can be seen in Zammit-Mangion & Cressie (2018).
The generic basis function that FRK uses by default is the bisquare function, it is given
by

b(s,v) ≡

{1 − (||v − s||)2}2, ||v − s|| ≤ r,

0, otherwise
(6.41)

where r is the aperture parameter. The generic basis function in this spatial covariance
model is the local bisquare function, see Cressie & Johannesson (2008). The application
for the LAQN data will be performed in the next section.

6.4 Implementation using the LAQN data

When fitting the model 6.34, one of the decisions concerns the choice of basis functions.
For spatial processes, this decision is usually not that critical, as there are different types
of bases that can accommodate the same spatial variability. However, in the context of
spatio-temporal processes, the choice of basis functions can be substantive, especially
for the dynamical formulations. In general, one can use

• fixed or parameterised basis functions,

• local or global basis functions,

• reduced-rank, complete, or over-complete bases, and

• basis functions with expansion coefficients possibly indexed by space, time, or
space-time.

It can be challenging to come up with good spatio-temporal basis functions. In the same
way it has been difficult to come up with realistic spatio-temporal covariance functions.
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One option is to consider the tensor product basis functions, they are formally defined in
the Appendix A.0.1. The spatio-temporal basis function can be defined as the product
of a spatial basis function and a temporal basis function. It is also common to see spatio-
temporal-dependence models for Y , where the statistical dependence comes exclusively
from spatial basis functions whose coefficients are temporal stochastic processes.

In this section Fixed Rank Kriging (FRK) is applied to the PM2.5 data set using space-
time tensor product basis functions at two resolutions. In particular, bisquare basis
functions are used, these functions were defined by 6.41.

In FRK the basis functions, {ϕi(s; t) : i = 1, · · · , nα}, are constructed by taking the
tensor product of spatial basis functions with temporal basis functions. In particular,
let us consider a set of rs=50 spatial functions {ϕp(s) : p = 1, . . . , rs} and a set of
rt = 60 temporal basis functions {ψq(t) : q = 1, . . . , rt}. Then one construct the set
of spatio-temporal basis functions as {ϕst,u(s, t) : u = 1, · · · , rsrt} = {ϕp(s)ψq(t) : p =
1 · · · rs; q = 1, . . . , rt}.

FRK considers the spatio-temporal random-effects model shown in 6.34. It can be
applied to the log(PM2.5) data set using nα = 3000 space-time tensor product basis
functions at two resolutions for {ϕi(s; t) : i = 1, · · · , nα}. As in the previous example,
the data set to be analysed contains data from 01 August 2015 to 15 March 2016.

The grid cells are known as basic areal units (BAUs), and their primary utility is to
account for problems of change of support. Gridded BAUs arranged within a non-
convex hull enclosing the data for Greater London area can be seen in figure 6-6. The
BAUs are space-time regular lattices, which are classified as a spatio-temporal fixed
data frame. In the following example function an R function is used to construct the
BAUs in a space-time cube, centred around the data. In particular, each BAU is of size
0.2 deg. latitude × 0.2 deg. longitude × 1 day. At this stage, the BAUs only contain
geographical information and the number of BAUs depends on the spatial domain
boundary. These construction represent some practical advantages such as:

1. Integration of multiple observations with different supports with relative ease.

2. Dimensionality reduction, a relatively small number of basis functions ensures
computationally efficient prediction.

3. It is possible to distinguish between measurement error and fine-scale variation
at the resolution of the BAU.

It noted that the BAU’s are generated automatically using a function contained in the
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package FRK. Within the package, it is not possible to generate the same grid that
has been used for the rest of the models included in this thesis. This disadvantage
is mentioned by the authors as part of future work, see Zammit-Mangion & Cressie
(2018).

Figure 6-6: BAUs constructed for modelling and predicting log(PM2.5) levels. The 19
sites in Greater London are highlighted in red.
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Figure 6-7: Locations of spatial basis functions, circles denote spatial support. The
basis functions are automatically generated for PM2.5 data set from 01 August 2015
to 15 March 2016 with 2 resolutions. For bisquare functions on the plane, each circle
is centred at the basis-function centre, and has a radius equal to the aperture of the
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Figure 6-8: Temporal basis functions used to construct the spatio-temporal basis func-
tions. It is a regular sequence of rt = 60 bisquare basis functions between day 1 and
day 228 (01 August 2015 - 15 March 2016), the support of each bisquare function is 4
days.
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Figure 6-9: FRK predictions of log(PM2.5) within a square box enclosing the domain
of interest for 15 March 2016. Bisquare spatio-temporal basis functions are considered.
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Figure 6-10: FRK prediction standard errors of log(PM2.5) within a square box enclos-
ing the domain of interest for 15 March 2016. Bisquare spatio-temporal basis functions
are considered.

Basis functions can be either regularly placed, or irregularly placed, and they are often
multiresolutional. Two resolutions are chosen with rs = 50 spatial basis functions in
total, and place them irregularly in the domain. Temporal basis functions also need to
be defined. A regular sequence of rt = 60 bisquare basis functions between day 1 and
day 227 (01 August 2015 - 15 March 2016) of the month are constructed. In this case,
the support of each bisquare function is 4 days. Spatial and temporal basis functions
used to construct the spatio-temporal basis functions are shown in Figures 6-7 and 6-8
respectively.

As in the previous universal kriging example, the latitude and longitude are considered
as a covariates. The data set analysed is the same, from 01 August 2015 to 15 March
2016. FRK also considers a fine-scale-variation component ν such that Cν is diagonal.
The matrix Cα is constructed in such a way that the coefficients α at each resolution
are independent. The covariances between these coefficients within a resolution decay
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exponentially with the distance between the centres of the basis functions. Parameters
are estimated using an EM algorithm for computing maximum likelihood estimates.
See details in Cressie & Johannesson (2008); Zammit-Mangion & Cressie (2018) and
in section 5.9.2.

Figures 6-9 and 6-10 show the predictions and prediction standard errors obtained
using FRK, respectively. The predictions are similar to those obtained using Spatio-
Temporal kriging in figure 6-4. The prediction standard errors show similar patterns
to those observed earlier in figure 6-5, but there are considerable differences based on
visual examination. In the context of reduced rank methods, the prediction-standard-
error maps can have prediction standard errors related more to the shapes of the basis
functions and less to the prediction location’s proximity to an observation. The errors
associated with those for 15 March are larger nearby to the monitoring sites.

An analogous exercise to the one shown in table 6.1 was made in order to evaluate the
spatial predictions obtained from the FRK model that was described above. The idea
is fitting the model considering data from 01 August 2015 to 17 March 2016. Instead
of using 19 sites from LAQN, three sites are leaved out from the fitting (BL0, GN3,
ST5). The same settings used for the 19 sites were considered for this exercise, the only
difference is the number of analysed locations. As one can observe in table 6.4, the
RMSEs and relative errors are large. This comparison was made in the original scale.
It is noticeable that the spatial predictions when fitting this model are over-smoothed.
This is not surprising since in this case the prediction is generated into the BAUs.
Then, the prediction is the value of the closest grid cell to the monitor locations (BL0,
GN3 and ST5). One of the biggest limitations of FRK is that BAUs cannot be easily
modified to include specific locations to predict, see Cressie & Johannesson (2008).

6.4.1 Discussion

In this chapter, we have moved from the DSTM approach that was useful in produc-
ing temporal predictions/forecasts, but had limitations in making spatial predictions,
due to the lack of a defined spatial structure in the model. Here, we describe and
implement different methods for Kriging over space and time, that allow both spatial
and temporal predictions. The evaluation studies can therefore now include spatial
prediction. Spatio-temporal kriging, as shown here, is relatively easy to implement for
small data sets. However, it starts to become prohibitive as data sets grow in size,
unless some approximation is used. One approach to computational challenges is to
use basis function representations and low rank approximations of complex surfaces.
In this chapter, Fixed Rank Kriging (FRK) was implemented and compared with the
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results from the more traditional approach to Kriging.

In general, a pattern of large errors at the predicted locations was observed for FRK.
This is due to predictions being made for the closest grid cell (used in the definition of
the BAUs), rather than the exact location of the (omitted from the modelling dataset)
locations to be predicted. This is a limitation of the particular implementation used
in the package, for which it is not currently possible to easily modify the construction
of the BAUs. FRK is designed to work with local basis functions with analytic form.
However, this framework could also admit basis functions that have no known functional
form. Some examples are empirical orthogonal functions (EOFs) and classes of wavelets
defined in an iterative way. Although designed for large data, FRK begins to slow down
when a high number of data points are used. In particular, increasing the number of
spatio-temporal basis functions could be problematic in terms of computation. In this
example, all BAUs are assumed to be of equal area. This is not problematic for this case,
since regular grids on the real line and the plane are assumed. However, if there is not
an equal area grid, an appropriate weighting should be used when considering arbitrary
polygons. The automatic construction of the BAUs could imply some difficulties if one
wants to compare them with other models (as in this thesis).

In the next chapter, we move on to using Bayesian hierarchical models that incorporate
spatio-dependence and allow predictions over both space and time. In addition to the
ability to cover space and time, a major advantage to this approach is that it provides
a coherent approach to incorporating uncertainty.

Sites out: BL0, GN3, ST5
Model Site RE: 15/03/2016 RE: 16/03/2016 RE: 17/03/2016

BL0 17.54% 43.00% 99.47%
FRK GN3 1.78% 12.75% 99.94%

ST5 1.04% 11.40% 99.96%
RMSE 11.7696 4.3189 8.9494

Table 6.4: Evaluation (leave-one-out cross validation) of applying the FRK model to
data from 01/08/15 to 17/03/16 considering PM2.5 data. Results are shown using 16
sites from London data when fitting the model (see text for details). The relative error
(RE) per site and date (in percentage) and the overall root mean squared error (RMSE)
are shown. Evaluations are presented for 15, 16 and 17 of March 2016. The comparison
was made in the original scale (µg/m3).
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Chapter 7

Bayesian Spatio-Temporal
Hierarchical Modelling

Based on the results from chapter 5 it is possible to notice that through this approach
it is possible to obtain an accurate forecast for PM2.5 levels. It is computationally
efficient and by its flexibility, a multivariate model can also be considered to include
the simultaneous analysis of more pollutants. However, it should be noticed that the
proposed DSTM model does not allow filling in missing data or include uncertainty in
prediction. If one is interested in all these purposes, a Bayesian implementation should
be considered as an alternative.

Many studies have been developed to the proposal of spatial prediction techniques to
obtain concentration maps useful for evaluating human exposure where no measurement
stations are located. Some analyses develop methods for temporal forecasting (Sahu
et al., 2006) or consider several pollutants at the same time (Shaddick & Wakefield,
2002). Traditional Bayesian methods such as MCMC are computationally limited to
inferring spatial and spatio-temporal problems with a large dimension. In recent years,
specific finite-dimensional Gaussian random field models have been proposed. A review
of recent methods can be found in Cressie & Johannesson (2008); Lindgren et al. (2011);
Katzfuss (2017).

This chapter outlines a spatio-temporal model for daily air pollution measurements
that can be used for short-term forecasting of PM2.5. Integrated Nested Laplace Ap-
proximation (INLA) will is used in this chapter to fit a latent separable spatio-temporal
model. INLA is a Bayesian method that produce approximate marginal (posterior) dis-
tributions over all states and parameters. The package R-INLA allows for a variety
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of modelling approaches (Blangiardo & Cameletti, 2015; Krainski et al., 2018).

The method is illustrated considering air pollution data from Greater London August
2015-March 2016. Different hierarchical spatio-temporal models for particulate matter
have been proposed to analyse PM concentration. One of these models consists of
a Gaussian Field (GF), affected by a measurement error, and a state process. This
state process can be characterised by a first order autoregressive dynamic model and
spatially correlated innovations, see Cameletti et al. (2013); Blangiardo & Cameletti
(2015). In these studies a Stochastic Partial Differential Equation (SPDE) approach
is used for a hierarchical spatio-temporal models for particular matter concentration
in the North-Italian region Piemonte. The same methodology will be followed in this
thesis.

In general, a GF (Rue & Held, 2005) is completely specified by its mean and spatio-
temporal covariance function. Even if a GF is easily defined through its first and second
moments, the implementation can be limited due to its high dimensionality. If our
objective is dealing with large data sets in space and time, there is a big computational
cost required for model fitting and spatial interpolation and prediction.

The idea behind this approach is represent GF as a Gaussian Markov Random Field
(GMRF) (Rue & Held, 2005; Chung, 2020). A GMRF is a spatial process that models
the spatial dependence of data observed on areal units, such as regular grid or lat-
tice structure. For further details, see Rue & Held (2005); Cameletti et al. (2013).
The objective of this approach is to find a GMRF. It can be made trough a local
neighbourhood and sparse precision matrix, that best describes the Matérn field. This
representation has some computational properties that can be used to make inference
in the GMRF. So that, the high dimensionality problem that arises when working with
the dense covariance matrix of a GF can be avoided.

7.1 A spatio-temporal model for air pollution

As described in chapter 1, some examples of the use of INLA can be found in the
context of air pollution analysis. Cameletti et al. (2011) employed the SPDE approach
for a hierarchical spatio-temporal models for particular matter concentration in the
North-Italian region Piemonte in winter season. The model involves a Gaussian field,
affected by a measurement error, and a state process characterised by a AR(1) dynamics
and spatially correlated innovations. The parameter posterior estimates are obtained
together with prediction and uncertainty map. Moreover, the posterior distributions
over the triangulated domain are also generated. They conclude that it is an acceptable
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computational cost of the SPDE approach implemented by INLA algorithm compared
with other approaches.

Let us consider
{Y (s, t) : s ∈ Ds, t ∈ Dt} (7.1)

as the spatio-temporal process (or random field) that is a statistical model for a phe-
nomenon. It can be assumed Ds ⊆ R2 and Dt ⊆ R; for convenience, the notation can
differ slightly from previous sections. These realisations are used to make inference
about the process and to predict it at desired locations.

Let Y (si, t) denote the realisation of the spatio-temporal process Y (·, ·) previously
defined. It represents the PM2.5 concentration at station i = 1, . . . ,m located at
location si and day t = 1, . . . , T . It can be written as

Y (si, tj) = x(si, tj)β + ξ(si, tj) + ϵ(si, tj), (7.2)

where x(si, tj) = (x1(si, tj), . . . , xp(si, tj)) denotes the vector of p covariates at location
si at time tj , and β = (β1, . . . , βp)′ is the coefficient vector. This model could include
covariates related to air pollution such as temperature, precipitation or distance to
roads, and this will improve predictive performance. The realisation of the state process
is denoted by ξ(si, tj). In this case, {ϵ(si, tj)} is independent of Y (·; ·) and represent
the measurement error that is assumed to be iid with mean zero and variance σ2

ϵ .

If one is analysing air pollution data, the true unobserved level of pollution is assumed
to be a spatio-temporal process that changes in time with first order autoregressive
dynamics. It is given by

ξ(si, tj) = aξ(si, tj−1) + ω(si, tj) (7.3)

for j = 2, . . . , T , where |a| < 1 and ξ(si, t1) is obtained from the stationary distribution
N(0, σ2

ω/(1 − a2)). In this case, ω(si, tj) has a zero-mean Gaussian distribution and
is assumed to be temporally independent. It is characterised by the spatio-temporal
covariance function,

cov(ω(si, tj), ω(sk, tl)) =
{

0 if j ̸= l,

C(d) if j = l
(7.4)

defined for i ̸= k. The function C(d) is the Matérn spatial covariance function defined
in 4.14. It depends on the location si and sk only through the Euclidean spatial distance
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d = ||si − sk|| ∈ R. Thus, the process is second-order stationary and isotropic. The
spatio-temporal covariance function in equation 7.4 is separable, i.e. it can be rewritten
as the product of a purely spatial and a purely temporal covariance function.

Let us denote all the observations measured at time t by

Yt ≡ (Y (s1, t), . . . , Y (sm, t))′. (7.5)

It follows that 7.2 and 7.3 can be rewritten as

Yt = xtβ + ξt + ϵt, ϵt ∼ N(0, σ2
ϵ Im) (7.6)

ξt = aξt−1 + ωt, ωt ∼ N(0,Σ = σ2
ωΣ̃), (7.7)

where Im is the identity matrix of dimension m, xt = (x(s1, t), . . . , x(sm, t)) and ξt =
(ξ(s1, t), . . . , ξ(sm, t)). In particular, ξ1 corresponds to the stationary distribution of
the AR(1) process, N(0,Σ/(1 − a2)). The correlation matrix has dimension m and is
denoted by Σ̃ with elements C(||si − sj ||), where C(·) is the Matérn function given by
4.14 and is parameterised by κ and ν.

Let θ = (β, σ2
ϵ , a, σ

2
ω, κ) denote the parameter to be estimated. The joint posterior

distribution is given by

π(θ, ξ|Y) ∝ π(Y|ξ,θ)π(ξ|θ)π(θ) (7.8)

where Y = {Yt} and ξ = {ξt} with t = 1, . . . , T .

In a Bayesian statistics, it is common practice making inference from 7.8 by MCMC
sampling, see Cameletti et al. (2013) for implementation details. One alternative to
MCMC is representing a GF with Matérn covariance function as a GRMF. For theo-
retical details and proofs of this alternative see Lindgren et al. (2011).

7.2 Gaussian Markov Random Fields GMRFs

A GMRF is a spatial process that models the spatial dependence of data observed on
areal units, regular grid or lattice structure, see Rue & Held (2005). Let us denote
Y = (Y1, . . . , Yn) with Y ∼ N(µ,Q−1) as an n-dimensional GMRF with mean µ

and symmetric and positive definite precision matrix Q (the inverse of the covariance
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matrix). The density is given by

π(Y) = (2π)−n/2|Q|1/2 exp
(

−1
2(Y − µ)′Q(Y − µ)

)
. (7.9)

A GMRF Y can be specified through the conditional distributions for each component
given all the others. And due to the Markovian property, the full conditional distribu-
tion of Yi (i = 1, . . . , n) depends only on a few of the components of Y. This set of
components is denoted by δi, which is composed by a set of neighbours of unit i and

π(Yi|Y−i) = π(Yi|Yδi
), (7.10)

where Y−i denotes all elements in Y except for Yi. Here, if one follows the notation of
Rue and Held (2005), one can say that that given the neighbourhood δi, the terms Yi
and Y−{i,δi} are independent. This conditional independence relation can be written as

Yi⊥Y−{i,δi}|Yδi
(7.11)

for i = 1, . . . , n. It is important that this conditional independence property is strictly
determined by the precision matrix Q. This matrix will be sparse due to a conditional
independence property and one can take advantage in terms of computation. Let us
consider a general couple i and j with i ̸= j, it holds that

Yi⊥Yj |Y−{i,j} ⇐⇒ Qij = 0. (7.12)

It means that the nonzero pattern of Q is given by the neighbourhood structure of the
process. That is, Qij ̸= 0 if j ∈ {i, δi}.

7.3 The stochastic partial differential equations (SPDEs)
approach

Let
Y (s) ≡

{
Y (s) : s ∈ Ds ⊆ R2

}
(7.13)

a second-order stationary and isotropic Gaussian field (GF), which spatial correlation
function is defined by a Matérn function. In particular, the correlation function is
defined by

C(h) = 1
Γ(ν)2ν−1 (κh)νKν(κh) (7.14)
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where Kν denotes the modified Bessel function of the second kind and order ν > 0.
The parameter ν is usually kept fixed and ν > 0 is a smoothness parameter.

Let us suppose we have a realisation of the process Y(si) at m spatial locations
s1, . . . , sm. The idea behind of the SPDE approach is to find a GMRF, with local
neighbourhood and sparse precision matrix Q. The objective in this context of this
model is trying to find this matrix that best represents the Mátern field. Under these
assumptions it is possible to make inference using the GMRF taking advantage of its
computational properties. Thus, it is possible to avoid the high dimensionality problem
that arises when working with the dense covariance matrix of a GF.

The SPDE approach considers a finite element representation to define the Matérn field
as a linear combination of basis functions defined on a triangulation of the domain Ds.
The triangulation consists in subdividing Ds into a set of non-intersecting triangles
meeting in at most a common edge. At the beginning, the triangle initial vertices are
placed at the locations s1, . . . , sm. Then, new vertices can be added to get a triangu-
lation useful for spatial prediction purposes. To illustrate the concept of triangulation,
an example is provided referring to the London AQN data previously discussed. The
figure 7-1 displays the locations of the 19 PM2.5 monitoring stations (in blue) with their
respective triangulation of the region using 105 vertices. Once a triangulation of the
domain has been defined, the spatial field can be approximated by

Y(s) =
n∑
l=1

Ψl(s)ωl, (7.15)

where n is the total number of vertices (or nodes), {Ψl(s)} are the basis function and
{ωl} are Gaussian distributed weights. To ensure the Markov structure that is required
for a GMRF, the set of basis functions should be piecewise linear,

Ψl(s) =

1 at vertex l ,

0 at all other vertices.
(7.16)
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Figure 7-1: Triangulation for the locations of monitoring sites within the Greater Lon-
don area for use with the SPDE approach to modelling spatio-temporal data with
INLA. The mesh comprises 105 vertices and the monitoring locations are highlighted
in blue.
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Through the piecewise linear basis functions, one can represent a continuous spatial
random field in its corresponding finite element representation. The value of the spatial
field at each triangle vertex is given by the weight ωl. And the values in the interior of
the triangle are determined by linear interpolation.

The idea behind the SPDE approach is establishing the link between the GF, Y(s),
and the GMRF. This can be done with the Gaussian weights, ωl in 7.15 and assuming
the Markovian structure, see Lindgren et al. (2011).

Let us consider a Matérn GF, Y(s), defined by 7.14, then the representation given by
7.15 is a finite element method solution of a SPDE. The solution is given by

(κ2 − ∆)α/2(τωs) = Ws s ∈ Rd, α = ν + d/2, κ > 0, ν > 0, (7.17)

where (κ2 − ∆α/2) is a pseudodifferential operator, ∆ is the Laplacian, κ is the scale
parameter, τ controls the variance, ν the smoothness and Ws is spatial white noise
with unit variance. Any GRF model defined with a Matérn covariance structure can
be approximated by a GMRF, ν+d/2 is integer valued. This method can be extended to
GRFs on manifolds, non-stationary and anisotropic covariance structures. For further
details see Lindgren et al. (2011); Krainski et al. (2018).

Now, the interest is on the resulting precision matrix of the observations Qα,κ. Where
the triangulation and the basis functions are considered. Let us suppose the m × m

matrices C, G and Kκ. Their respective entries are

Cij = ⟨ψi, ψj⟩,

Gij = ⟨∆ψi,∆ψj⟩,

(Kκ)i,j = κ2Ci,j +Gi,j .

Where ⟨·, ·⟩ denotes the inner product and ∆ the gradient. The precision matrix Qα,κ

as a function of κ2 and α can be expressed as

Q1,κ = Kκ = κ2C + G, (7.18)

Q2,κ = KκC−1Kκ = κ4C + 2κ2G + GC−1G, (7.19)

Qα,κ = KκC−1Qα−2,κC−1Kκ, for α = 3, 4, . . . (7.20)

Due to the matrix C is dense, it can be replaced by a diagonal matrix C̃ with

C̃ = ⟨ψi, 1⟩.
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In particular, since C̃ is diagonal, Kκ is sparse as G.

7.4 Integrated Nested Laplace Approximations

For each time point t = 1, . . . , T , the Matérn field, wt, shown in 7.7 is represented
through the GMRF representation. Explicitly it is defined by

ω̃t ∼ N(0,Q−1
s ), (7.21)

where the precision matrix, Qs is obtained from the SPDE representation previously
discussed, see 7.18. A detailed explanation of full computation of this matrix is given
in Lindgren et al. (2011). The matrix Qs is time independent and its dimension n is
given by the number of vertices of the domain triangulation. The equation 7.7 can be
written as

ξt = aξt−1 + ω̃t, ω̃t ∼ N(0,Q−1
s ). (7.22)

for t = 1, . . . , T and ξ1 ∼ N(0,Q2
s/(1 − a2)). Then, the joint distribution of the

Tn-dimensional GMRF ξ = (ξ′
t, . . . , ξ

′
T ) is

ξ ∼ N(0,Q−1), (7.23)

with Q = QT ⊗ Qs. Where QT is the T -dimensional precision matrix of the temporal
autoregressive process of order 1 specified by 7.22. The matrix is given by

QT =



1/σ2
ω −a/σ2

ω

−a/σ2
ω (1 + a2)/σ2

ω

. . .
(1 + a2)/σ2

ω −a/σ2
ω

−a/σ2
ω 1/σ2

ω


(7.24)

The equation 7.6 can be rewritten as

Yt = xtβ + Bξt + ϵt, ϵ ∼ N(0, σ2
ϵ Id), (7.25)

where B is a matrix with dimension m × n. This matrix specifies the value of the
GRMF, ξt, for each vector Yt. The matrix B is sparse and with only one unit element
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for each row and such that

Y (si, t) = x(si, t)β +
n∑
j=1

Bijξt + ϵ(si, t), (7.26)

where Bij = 1 if the triangle vertex j is placed at location si and 0 elsewhere.

The equations 7.25 and 7.22 define a hierarchical model that is a subclass of structured
additive regression models, known as latent Gaussian models. These type of models
can be estimated using the integrated nested Laplace approximations (INLA) algorithm
proposed in Rue et al. (2009). INLA is a computational approach for Bayesian inference
and is an alternative to MCMC. It consists in getting the approximated posterior
marginals for the latent variables as well as for the hyperparameters.

Let Ψ = {β, ξ} be the underlying latent field with a priori independent components. A
vague Gaussian prior with known precision is assigned to β and the GMRF distribution
defined in 7.23 to ξ. Then the density π(Ψ|(σ2

ω, a, κ)) is Gaussian with zero mean and
precision matrix Q. Notice that the observations Y = {Yt} are normally distributed
and conditionally independent given Ψ and σ2

ϵ . If the hyperparameter is denoted by
θ = (σ2

ω, a, κ, σ
2
ϵ ), the joint posterior distribution is given by

π(Ψ,θ|Y) = π(θ)π(Ψ|θ)
T∏
t=1

π(Yt|Ψ,θ), (7.27)

where π(Yt|Ψ,θ) ∼ N(xtβ + Bξt, σ2
ϵ Id) is the conditional distribution of the PM2.5

observations at time t defined by 7.25.

One can be interested in producing a set of predictions of air pollution over an area and
in time. With an abuse of notation, let Ŷst denote a prediction in a particular location,
s, and time, t. The marginal posterior distribution for a prediction can be written as

π(Ŷst|Y) =
∫ ∫

π(Ŷst|Ψ,θ,Y)π(Ψ|θ,Y)π(θ|Y)dΨdθ. (7.28)

One could also be interested in finding the marginal posterior densities for each θi and
ψj given the observed data Y,

π(ψi|Y) =
∫
π(ψi|θ,Y)π(θ|Y)dθ

π(θj |Y) =
∫
π(θ|Y)dθ−j

(7.29)

for i = 1, . . . , T + p and j = 1, . . . , 4.
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In this case, θ−i denotes the set of parameters, θ, with the i-th entry removed. In most
of the cases, these distributions are not be analytically tractable. Although the INLA
algorithm originally was designed for non-Gaussian responses, it can substitute MCMC
simulations. The approximations to the distributions in 7.29 are denoted by π̂(ψi|Y)
and π̂(θj |Y) respectively. For this particular case, one has that π̂(ψi|Y) is exact and
Gaussian. For computing π̂(θj |Y), a numerical integration approximation is required.

The approximation for π̃(θ|Y), is given by

π̃(θ|Y) ∝ π(Y,Ψ,θ)
π̃(Ψ|θ,Y)

∣∣∣∣
Ψ=Ψ̂(θ)

,

where π̃(Ψ|θ,Y) is a Gaussian approximation of π(Ψ|θ,Y) evaluated at the mode
Ψ̂(θ) of the distribution Ψ|θ. The approximation, π̃(θ|Y), is equivalent to a Laplace
approximation, and it is exact if π̃(Ψ|θ,Y) is Gaussian. The approximation used for
the posterior, π(ψj |θ,Y) is given by

π̃(ψj |θ,Y) ∝ π(Y,Ψ,θ)
π̃(ψ−j |ψj ,θ,Y)

∣∣∣∣∣
Ψ−j=Ψ̂−j(ψj ,θ)

,

where π̃(Ψ−j |ψj ,θ,Y) is a Gaussian approximation of the distribution π(Ψ−j |ψj ,θ,
Y). The distribution π̃(ψj |θ,Y) is obtained by taking Taylor expansions of π(Y,ψ,θ)
and π̃(Ψ−j |ψj ,θ,Y), up to third order, aiming to correct a Gaussian approximation
for location errors due to potential skewness (Rue et al., 2009).

To estimate the marginal posterior distributions given by in 7.29, a set of integration
points and weights are built using the distribution π̃(θ|Y). Initially, one have to find
numerically by Newton-type algorithms the mode of π̃(θ|Y). Around the mode, the dis-
tribution log(π̃(θ|Y)) is evaluated over a grid of K points {θ(k)}, each with associated
integration weights {∆(k)}. If the points define a regular lattice, then the integration
weights will be equal. The marginal posteriors, π(θk|Y), are obtained using numerical
integration of an interpolant of log(π̃(θ|Y)). The marginal posteriors, π(ψj |Y), are
obtained using numerical integration

π(ψj |Y) =
∑
k

π̃(ψj |θ(k),Y)π̃(θ(k)|Y)∆(k), (7.30)

where π̃(ψj |θ(k),Y) and π̃(θ(k)|Y) are the posterior distributions π̃(θ|Y) and π̃(ψj |θ,Y)
evaluated at the set of integration points {θ(k)} while ∆(k) are integration weights, see
(Martins et al., 2013).
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Figure 7-2: Grid for Greater London area, the blue dots denote the 19 monitoring
stations considered for a SPDE–INLA model.

7.5 Implementation using the LAQN data

The model presented in section 7.1 is now implemnented using the London AQN data.
It is coded in the R package INLA, and based on the integrated nested Laplace approx-
imation (INLA) method. It has proven to be a valid alternative to the commonly used
Markov Chain Monte Carlo (MCMC) simulations.

7.5.1 Evaluation strategy

In order to assess the accuracy of the BHSTM approach to producing predictions of
levels of PM2.5 over time and space, we again perform a series of studies and evaluate
how well they perform, based upon the RMSE. Temporally, the basis of the evaluations
is similar to that presented in 5.10.1 and 6.2.1. In the first instance, we use data on
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PM2.5 levels from 01 August 2015 to 14 March 2016 and predict for 15, 16 and 17
March 2016. This is repeated for the other time periods described in 5.10.1. The
sensitivity of the results to the parameters in the model (section 7.1) is assessed by
running the model with a selection of different values for α, the smoothness parameter
and the sensitivity to the choice of priors for κ, the scale parameter. Furthermore,
τ , the variance parameter (equations 7.17 and 7.14) is also assessed. In assessing the
ability to forecast temporally at unmeasured locations, again three spatial locations
were omitted from the data sets used to fit the model (sites BL0, GN3 and ST5) and
then (out-of-sample) predictions three-days-ahead in both space and time are calculated
for the three locations.

7.6 Results

Three different analyses have been performed for this section assuming the same model
with different settings and assumptions. In the analyses, the model is fitted using
data from different dates up to 14 March 2016. To run the studies for the model
with INLA, log(PM2.5) data from sites in London Greater London were considered.
This model includes an intercept and a spatio-temporal random effect that changes
in time with first order autoregressive dynamics and spatially correlated innovations.
However it does not include covariates or information from other pollutants. The same
triangulation of the region using 105 vertices was used to run the first two exercises, see
figure 7-1. It should be noticed that increasing the number of vertices implies higher
computational cost with no benefits in terms of performance. The first step to fit an
SPDE model is theconstruction of the mesh. This step must be done carefully. When
setting the mesh, the points and a set of constraints need to be passed. The shape
of the boundary can be controlled, including its convexity, concavity and resolution.
For LAQN data, different mesh configurations were run with similar results in terms
of prediction. In this instance, the results were not found to be sensitive to the choice
of mesh. These three studies are explained below.

The first study is similar to the ones described in chapter 5 and the results are compa-
rable. To run this study, log(PM2.5) data from 19 site coordinates in London Greater
London were considered. The idea is forecasting three days ahead at the 19 locations.
This study is proposed in order to evaluate the accuracy of the INLA model in terms
of prediction. The forecast for 15, 16, and 17 March will be produced under the INLA
approach using different days of data as input. The study consists in analysing the
results for three different periods of time. The first interval of time corresponds to the
period from 01 August 2015 to 14 March 2016 (227 days). The sensitivity of the results
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to the parameters in the implementation of the spatio-temporal model (section 7.1) is
assessed by running the model with a selection of different values for α, the smoothness
parameter and the sensitivity to the choice of priors for κ, the scale parameter, and τ ,
the variance parameter (equations 7.17 and 7.14) is also assessed.

As before, some conventions will be followed for the column names in the tables with
results, see table 7.1. The site column denotes the code from LAQN (see table 2.1) and
the real column represents the actual value at each site. Every column with the the
value for α = 2, 1.5 will represent the results for these INLA settings, see 7.17. The
multicolumn 7 months refers to the period from 01 August 2015 to 14 March 2016. On
the other hand, the period from 01 December 2015 to 14 March 2015 is represented by
the 3 months multicolumn. And, the 2 months multicolumn corresponds to the period
from 01 January 2016 to 14 March 2016. Finally, the last row for each table shows the
RMSE for each predicted time. The result for this study can be seen in the table 7.1.

Some general observations can be made from the table 7.1. In terms of RMSE, there
is not a large difference when using 7 and 3 months of data. The smallest errors are
observed for 2 months of observation. In the same way, a small difference is observed
between the forecast for α = 2 and α = 1.5. But, in general smaller errors are observed
for α = 1.5. The best prediction for 15 March 2016 is when α = 1.5 for 2 months,
the error is similar when α = 2 for the same period of time. The best prediction for
16 March 2016 is observed when fitting the model with α = 1.5 for 2 months. On the
other hand, the best result for 17 March 2016 is when α = 1.5 for 2 months. There is
an important variation in accuracy for the prediction for different sites. For instance,
the biggest difference in error percentage (not shown in the tables) for 15 March 2016
is found in the site HG1. As one would expect in this type of model, the RMSE rises
when more days ahead are predicted.

In order to compare the previous results with two more time intervals. In particular,
the result forecast is done for 26, 27 and 28 March 2016. The three periods of time
starts on 12 August 2015 (227 days), 12 December 2015 (105 days) and 01 January
2015 (74 days). In particular, all the models are fitted using up to 25 March 2016 data.
The results considering the values α = 2, 1.5 are found in the table 7.2. In terms of
RMSE, the difference between using 7, 3 and 2 months of data is relatively small. In
general, a small difference is observed when α = 2 or α = 1.5. In this case, the best
prediction for the three days ahead is reached when fitting α = 1.5 for 2 months.

An analogous study is also proposed. In this case the result forecast is done for 14,
15 and 16 October 2015. The three periods of time starts on 01 March 2015 (227
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days), 01 July 2015 (105 days) and 01 August 2015 (74 days). In particular, all the
models are fitted using up to 13 October 2015 data. The results considering the values
α = 2, 1.5 are found in the table 7.3. In terms of RMSE, the difference between using 7,
3 and 2 months of data is slightly smaller than the previous results. In general, a small
difference is observed when α = 2 or α = 1.5. The best prediction for 14 October 2015
is when α = 1.5 for 2 months. The best prediction for 15 October 2015 is observed
when fitting α = 1.5 for 7 months. Finally, the best result for the 16 October 2015 is
when α = 1.5 for 3 months. In contrast to the previous table, the RMSEs are larger for
one day ahead than for two days ahead forecast. There is also an important variation
in accuracy for the prediction for different sites. In general, RMSEs are larger for this
study than those ones from the previous analyses.

In the second study the interest is in the prediction of PM2.5 concentration on a regular
grid for 15, 16 and 17 March 2016. This prediction was made over a 30 × 15 regular
grid for London Greater area, it is shown in figure 7-2. A posterior distribution is
generated in contrast with the previous approaches that generate a point estimation
(DSTM). Depending on the final purpose of the model, having a posterior distribution
and a probability interval can be more convenient. The forecast using 7 months of data
for 15 March 2016 with α = 1.5 can be seen in figure 7-4.

There are several ways of presenting uncertainty, figure 7-5 shows the mean, lower and
upper limits of posterior predicted distributions. It can be said that higher uncertainty
is associated with a combination of sparsity of monitoring data and higher concentra-
tions. Although the performance is acceptable in terms of time it can be limited for
longer periods of analysis. The INLA approach is the most computationally intensive
compared with the other models in this work. It is natural since the rest of the alterna-
tives just generate point estimations for the predictions. One important advantage is
that problems of convergence and mixing of the sampling are not observed at all when
working with the INLA algorithm.

Finally, the third study consist in producing forecast 3 days ahead when fitting the
model for 16 sites. The three locations that were leaved out are: BL0, GN3, ST5. This
exercise considers 7 months of data to produce the result and the settings for the INLA
mesh are the same than the one used for the previous examples. The results can be
seen in table 7.4. In this table the column names are α, prior κ, prior τ and the RMSE
for 1,2 and 3 days ahead. In term of RMSE, there are not noticeable differences in the
results when different settings are considered. It is also important to say that the error
increases with the number of days ahead forecasted.
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7.6.1 Discussion

In this chapter, we moved from the kriging based approach to spatio-temporal mod-
elling, as described in Chapter 6, and implemented a spatio-temporal model within
a Bayesian hierarchical framework. The major addition and advantage in using this
approach is the way that estimates of uncertainty can be produced for the predictions
of the model, on top of the ability to perform spatial predictions compared to the
DSTM approach (Chapter 5). At each prediction location, a full posterior distribution
is estimated, which allows a variety of uncertainty measures to be obtained, including
credible intervals, exceedance probabilities and others. The ability to perform spatial
predictions allows maps of air pollution to be created (by predicting on a grid covering
the study area) and, together with the ability to produce associated maps of uncertainty
(e.g. Figures 7-4 and 7-5), this provides a powerful approach.

With any Bayesian analysis, is it important to assess the sensitivity of the choice of
priors; in this case there did not seem to be any striking differences observed when
running the model with different choices for the (hyper-)parameters. In this implemen-
tation, there is also a question of whether the choice of mesh will have an effect. As
part of the background analyses to the results presented in this chapter, different mesh
configurations were used for the LAQN data, with similar results observed in terms of
the predictions and uncertainty.
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7 Months 3 Months 2 Months
Site Real α = 2 α = 1.5 α = 2 α = 1.5 alpha =2 α = 1.5
BL0 19.1875 18.9597 19.7916 18.8985 18.8983 20.0823 20.5791
BX1 15.7917 20.9243 20.8148 20.8863 20.8863 20.8012 20.7679
CD1 21.3875 25.4617 25.4209 25.3545 25.3549 25.3166 24.6910
CD9 26.4237 31.4972 30.8806 31.2702 31.2721 30.4068 29.1191
CT3 22.7000 22.1721 22.9343 22.0230 22.0239 23.0949 23.6522
GN0 19.8932 23.5543 23.6876 23.4768 23.4772 23.6556 23.5176
GN2 20.6132 21.0107 22.5160 20.8108 20.8121 22.7782 24.7888
GN3 20.8812 27.0100 26.6293 26.9824 26.9826 26.4919 25.9013
GR4 16.2870 21.1897 21.3491 21.1275 21.1276 21.3835 21.3031

15/03/16 GR9 20.7735 26.5738 26.7515 26.4540 26.4546 26.6726 26.2816
HG1 9.2000 7.2582 7.3054 7.2642 7.2642 7.5475 7.7932
HR1 11.4000 9.3647 9.3763 9.3630 9.3630 9.6376 9.8632
HV1 15.2052 20.2507 20.1204 20.2293 20.2293 20.0330 19.8660
KC1 19.0875 21.9000 21.9914 21.8283 21.8284 21.8369 21.7805
KC2 22.6098 28.4092 27.1070 28.5068 28.5059 26.4800 25.2647
LH0 18.2871 23.0094 23.0926 22.8809 22.8812 22.9180 22.7846
LW2 22.4770 28.2115 27.6335 28.2343 28.2341 27.3646 26.7395
ST5 20.2300 23.4555 23.2064 23.5325 23.5318 22.6438 22.8453
TH4 11.4372 11.0168 10.1863 11.1612 11.1602 10.1707 9.6719
RMSE 4.0943 3.9391 4.0535 4.0536 3.7899 3.5966

BL0 15.7714 18.9472 19.7656 18.8738 18.8737 20.0378 20.4831
BX1 16.1250 20.9079 20.7849 20.8554 20.8556 20.7518 20.6696
CD1 16.8542 25.4354 25.3718 25.3081 25.3087 25.2318 24.5331
CD9 23.6964 31.4560 30.8062 31.2014 31.2035 30.2776 28.8871
CT3 18.7500 22.1530 22.8958 21.9882 21.9893 23.0278 23.5103
GN0 18.7205 23.5323 23.6460 23.4372 23.4376 23.5843 23.3781
GN2 19.2868 20.9941 22.4791 20.7800 20.7814 22.7132 24.6282
GN3 18.8502 26.9801 26.5748 26.9301 26.9305 26.3972 25.7236
GR4 15.7458 21.1727 21.3171 21.0957 21.0960 21.3298 21.1971

16/03/16 GR9 19.4564 26.5448 26.6964 26.4035 26.4043 26.5763 26.0976
HG1 9.2000 7.2624 7.3139 7.2673 7.2673 7.5677 7.8305
HR1 16.0500 9.3670 9.3813 9.3627 9.3627 9.6517 9.8877
HV1 15.3946 20.2357 20.0932 20.2006 20.2007 19.9892 19.7807
KC1 15.4792 21.8816 21.9568 21.7942 21.7945 21.7798 21.6674
KC2 19.2250 28.3759 27.0504 28.4488 28.4482 26.3858 25.0978
LH0 15.3568 22.9885 23.0535 22.8432 22.8437 22.8526 22.6564
LW2 19.4649 28.1786 27.5744 28.1773 28.1773 27.2624 26.5479
ST5 17.9700 23.4338 23.1669 23.4927 23.4922 22.5806 22.7161
TH4 11.4372 11.0173 10.1897 11.1574 11.1564 10.1831 9.6981
RMSE 6.1174 5.9930 6.0523 6.0526 5.8090 5.5421

BL0 32.8500 18.9347 19.7396 18.8492 18.8491 19.9936 20.3886
BX1 26.4250 20.8915 20.7552 20.8246 20.8249 20.7029 20.5729
CD1 30.9917 25.4091 25.3230 25.2619 25.2626 25.1478 24.3779
CD9 34.9552 31.4150 30.7322 31.1328 31.1352 30.1496 28.6594
CT3 28.3100 22.1340 22.8575 21.9536 21.9548 22.9613 23.3709
GN0 28.3283 23.5103 23.6046 23.3976 23.3982 23.5135 23.2409
GN2 31.9742 20.9775 22.4425 20.7493 20.7508 22.6489 24.4704
GN3 30.1591 26.9501 26.5206 26.8781 26.8785 26.3034 25.5490
GR4 25.6125 21.1558 21.2852 21.0641 21.0645 21.2765 21.0927

17/03/16 GR9 30.7078 26.5159 26.6416 26.3533 26.3543 26.4808 25.9168
HG1 9.2000 7.2666 7.3223 7.2704 7.2704 7.5880 7.8676
HR1 28.4083 9.3694 9.3864 9.3624 9.3624 9.6657 9.9121
HV1 24.9809 20.2208 20.0661 20.1720 20.1722 19.9458 19.6966
KC1 27.7333 21.8632 21.9223 21.7603 21.7607 21.7232 21.5562
KC2 19.2250 28.3427 26.9941 28.3911 28.3906 26.2924 24.9336
LH0 29.1291 22.9678 23.0146 22.8058 22.8063 22.7877 22.5304
LW2 30.7497 28.1458 27.5157 28.1205 28.1208 27.1612 26.3596
ST5 27.4300 23.4121 23.1275 23.4532 23.4527 22.5178 22.5890
TH4 11.4372 11.0178 10.1932 11.1536 11.1527 10.1955 9.7241
RMSE 7.4886 7.2437 7.5674 7.5670 7.2170 7.1667

Table 7.1: Evaluation of applying the INLA model to data from 01/08/15 to 14/03/16
considering PM2.5 data. Results are shown using 7, 3 and 2 months data when fitting
the model, using α = 2 and α = 1.5 (see text for details). Observations are given
together with predictions from the models for 19 sites in London, together with overall
root mean squared error (RMSE). Evaluations are presented for 1, 2 and 3 day forecasts
covering 15, 16 and 17 of March, 2016. All comparisons were made in the original scale
(µg/m3).
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7 Months 3 Months 2 Months
Site Real α = 2 α = 1.5 α = 2 α = 1.5 α = 2 α = 1.5
BL0 6.6083 8.4641 8.7325 8.6381 8.8960 9.0855 9.1347
BX1 4.6583 7.0369 6.8852 6.9521 6.7875 6.6055 6.4742
CD1 8.2833 10.2746 10.1528 10.2441 10.1068 10.0960 9.8428
CD9 9.3778 13.4624 12.9312 13.1968 12.6537 12.4934 11.8533
CT3 7.05 9.5642 9.3779 9.5440 9.3390 9.3840 9.1022
GN0 11.5432 10.1150 10.1228 10.1095 10.1097 10.1424 10.1093
GN2 6.4976 10.1529 10.2802 10.1995 10.2822 10.3511 10.2277
GN3 10.6922 10.5591 10.4601 10.5004 10.4135 10.3946 10.4102
GR4 6.5909 7.5719 7.5108 7.5476 7.4867 7.4238 7.3502

26/03/2016 GR9 8.0627 9.7381 9.5129 9.6617 9.4252 9.3282 9.0855
HG1 9.2 6.2065 6.4544 6.3220 6.6187 6.9928 7.3771
HR1 6.6458 8.0799 8.0067 8.0172 7.9260 7.8124 7.7380
HV1 7.724 7.9469 7.8875 7.8899 7.8296 7.7545 7.7354
KC1 6.025 8.0050 7.9107 7.9755 7.8638 7.8066 7.6318
KC2 19.225 11.7236 11.8890 11.7282 11.9274 11.9908 12.5278
LH0 6.6806 6.9639 6.9249 6.8656 6.8314 6.6875 6.6935
LW2 14.2416 14.0695 14.5321 14.1558 14.6589 14.8498 15.3275
ST5 9.36 10.0329 10.0432 10.0197 10.0160 10.0320 9.9807
TH4 11.4372 7.3338 7.5254 7.4110 7.6628 7.8929 8.3349
RMSE 2.7522 2.6462 2.7163 2.5955 2.5411 2.3313

BL0 3.5455 8.4638 8.7321 8.6360 8.8929 9.0719 9.1190
BX1 1.5696 7.0380 6.8887 6.9545 6.7954 6.6147 6.5038
CD1 4.6833 10.2720 10.1489 10.2371 10.0964 10.0718 9.8129
CD9 6.0587 13.4551 12.9192 13.1791 12.6252 12.4400 11.7779
CT3 5.23 9.5625 9.3760 9.5392 9.3335 9.3676 9.0874
GN0 7.0242 10.1126 10.1190 10.1029 10.0992 10.1175 10.0736
GN2 3.5175 10.1505 10.2760 10.1926 10.2706 10.3239 10.1894
GN3 6.5583 10.5562 10.4554 10.4925 10.4010 10.3669 10.3678
GR4 2.8957 7.5725 7.5131 7.5485 7.4913 7.4263 7.3667

27/03/2016 GR9 4.3177 9.7362 9.5107 9.6567 9.4191 9.3125 9.0711
HG1 9.2 6.2083 6.4586 6.3256 6.6271 6.9986 7.3927
HR1 4.0167 8.0800 8.0079 8.0169 7.9285 7.8116 7.7482
HV1 3.305 7.9471 7.8890 7.8899 7.8325 7.7541 7.7456
KC1 3.3167 8.0051 7.9121 7.9753 7.8666 7.8058 7.6438
KC2 19.225 11.7190 11.8803 11.7159 11.9042 11.9434 12.4345
LH0 3.6658 6.9651 6.9282 6.8682 6.8391 6.6960 6.7200
LW2 7.4832 14.0611 14.5148 14.1340 14.6136 14.7628 15.1580
ST5 6.11 10.0306 10.0396 10.0134 10.0061 10.0084 9.9477
TH4 11.4372 7.3347 7.5276 7.4122 7.6664 7.8910 8.3341
RMSE 5.0848 5.0178 5.0471 4.9692 4.9253 4.7824

BL0 3.2136 8.4634 8.7317 8.6338 8.8898 9.0584 9.1035
BX1 2.2177 7.0392 6.8921 6.9569 6.8033 6.6239 6.5330
CD1 4.487 10.2694 10.1451 10.2301 10.0860 10.0478 9.7837
CD9 6.6365 13.4477 12.9073 13.1615 12.5969 12.3874 11.7044
CT3 3.71 9.5609 9.3741 9.5345 9.3279 9.3513 9.0729
GN0 5.5313 10.1103 10.1152 10.0964 10.0888 10.0929 10.0386
GN2 2.7521 10.1480 10.2718 10.1857 10.2590 10.2970 10.1520
GN3 5.9556 10.5532 10.4508 10.4847 10.3886 10.3395 10.3264
GR4 3.0714 7.5731 7.5153 7.5494 7.4959 7.4287 7.3829

28/03/2016 GR9 3.8921 9.7343 9.5085 9.6516 9.4131 9.2969 9.0570
HG1 9.2 6.2102 6.4627 6.3292 6.6355 7.0043 7.4080
HR1 3.2217 8.0800 8.0092 8.0166 7.9309 7.8107 7.7583
HV1 3.9784 7.9473 7.8905 7.8899 7.8354 7.7537 7.7556
KC1 3.0136 8.0053 7.9136 7.9751 7.8693 7.8050 7.6556
KC2 19.225 11.7143 11.8715 11.7038 11.8811 11.8967 12.3436
LH0 2.1352 6.9663 6.9316 6.8707 6.8468 6.7044 6.7460
LW2 9.7832 14.0527 14.4975 14.1122 14.5688 14.6772 14.9936
ST5 6.8557 10.0283 10.0360 10.0071 9.9963 9.9851 9.9155
TH4 11.4372 7.3355 7.5297 7.4133 7.6700 7.8890 8.3333
RMSE 5.2020 5.1257 5.1614 5.0722 5.0187 4.8646

Table 7.2: Evaluation of applying the INLA model to data from 12/08/15 to 25/03/16
considering PM2.5 data. Results are shown using 7, 3 and 2 months data when fitting
the model, using α = 2 and α = 1.5 (see text for details). Observations are given
together with predictions from the models for 19 sites in London, together with overall
root mean squared error (RMSE). Evaluations are presented for 1, 2 and 3 day forecasts
covering 26, 27 and 28 of March, 2016. All comparisons were made in the original scale
(µg/m3).
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7 Months 3 Months 2 Months
Site Real α = 2 α = 1.5 α = 2 α = 1.5 α = 2 α = 1.5
BL0 6.3750 9.4194 9.8693 9.0929 9.5827 9.3423 9.8470
BX1 5.2333 10.2037 10.3492 10.2488 10.3877 10.2564 10.4083
CD1 10.8458 14.6430 14.5875 14.7074 14.6599 14.6801 14.6279
CD9 10.6696 20.2102 19.3781 20.8249 19.9507 20.4324 19.4927
CT3 14.5543 12.4857 12.3998 12.5598 12.4290 12.5084 12.4200
GN0 11.0350 13.4091 13.5885 13.3962 13.5875 13.4437 13.6486
GN2 6.8770 12.9683 12.9225 13.0416 12.9988 13.0000 12.9514
GN3 10.2575 16.5829 16.3973 16.8030 16.6371 16.6608 16.4495
GR4 5.7458 10.8869 10.7928 11.0075 10.9225 10.9102 10.8006

14/10/2015 GR9 6.8466 13.5555 13.3148 13.7627 13.5539 13.5987 13.3242
HG1 12.1833 16.2483 16.3578 16.0675 16.1949 16.2705 16.4187
HR1 3.9083 9.0726 9.0339 9.2019 9.1644 9.1261 9.0771
HV1 5.3969 9.4033 9.2937 9.6193 9.5083 9.4621 9.3256
KC1 5.5000 10.7799 10.7557 10.8483 10.8516 10.8097 10.7768
KC2 16.3481 13.4125 13.3488 13.5790 13.4580 13.4697 13.4011
LH0 4.9083 9.6627 9.6587 9.9301 9.9114 9.7719 9.7367
LW2 12.0641 16.7332 16.9947 16.6634 16.9220 16.7895 17.0865
ST5 11.7100 14.7800 14.7260 14.9602 14.9242 14.8662 14.7988
TH4 11.4372 9.5787 9.5786 9.6071 9.5696 9.5851 9.5878
RMSE 4.8716 4.7896 4.9947 4.9129 4.9263 4.8299

BL0 9.7250 9.4189 9.8676 9.0974 9.5911 9.3433 9.8480
BX1 8.7542 10.2009 10.3451 10.2523 10.3947 10.2560 10.4077
CD1 15.7458 14.6241 14.5580 14.7060 14.6572 14.6706 14.6112
CD9 16.7136 20.1660 19.3131 20.8142 19.9318 20.4080 19.4529
CT3 14.5543 12.4752 12.3844 12.5610 12.4319 12.5037 12.4123
GN0 14.2139 13.3951 13.5657 13.3964 13.5875 13.4370 13.6360
GN2 11.3665 12.9560 12.9039 13.0422 13.0003 12.9943 12.9416
GN3 13.6809 16.5557 16.3551 16.7988 16.6288 16.6465 16.4246
GR4 9.6750 10.8819 10.7865 11.0103 10.9286 10.9086 10.7987

15/10/2015 GR9 10.9183 13.5409 13.2937 13.7625 13.5541 13.5917 13.3130
HG1 15.6625 16.2226 16.3159 16.0643 16.1879 16.2572 16.3939
HR1 9.2792 9.0731 9.0362 9.2062 9.1735 9.1275 9.0805
HV1 8.4433 9.4029 9.2948 9.6234 9.5169 9.4630 9.3284
KC1 9.7583 10.7753 10.7495 10.8513 10.8577 10.8083 10.7750
KC2 16.3766 13.3985 13.3275 13.5790 13.4584 13.4630 13.3895
LH0 9.4458 9.6615 9.6581 9.9339 9.9193 9.7723 9.7382
LW2 19.0288 16.7053 16.9481 16.6593 16.9128 16.7748 17.0586
ST5 13.4300 14.7605 14.6957 14.9585 14.9208 14.8563 14.7814
TH4 11.4372 9.5778 9.5784 9.6111 9.5781 9.5858 9.5897
RMSE 1.7967 1.6728 1.9151 1.7855 1.8323 1.6857

BL0 20.6917 9.4184 9.8660 9.1018 9.5994 9.3443 9.8490
BX1 18.7625 10.1981 10.3411 10.2558 10.4018 10.2555 10.4070
CD1 24.9708 14.6053 14.5288 14.7046 14.6545 14.6612 14.5946
CD9 24.1276 20.1219 19.2486 20.8035 19.9130 20.3837 19.4134
CT3 14.5543 12.4647 12.3690 12.5622 12.4347 12.4991 12.4046
GN0 21.1872 13.3812 13.5430 13.3966 13.5876 13.4303 13.6234
GN2 22.0827 12.9437 12.8854 13.0429 13.0019 12.9886 12.9319
GN3 24.6283 16.5287 16.3133 16.7945 16.6206 16.6323 16.3999
GR4 19.5625 10.8769 10.7802 11.0132 10.9346 10.9071 10.7969

16/10/2015 GR9 20.7506 13.5265 13.2728 13.7623 13.5543 13.5848 13.3019
HG1 25.6625 16.1970 16.2744 16.0610 16.1808 16.2438 16.3692
HR1 18.1167 9.0736 9.0385 9.2106 9.1826 9.1289 9.0840
HV1 18.6330 9.4025 9.2959 9.6274 9.5254 9.4640 9.3311
KC1 19.4458 10.7707 10.7434 10.8543 10.8639 10.8069 10.7732
KC2 24.0530 13.3846 13.3063 13.5790 13.4589 13.4563 13.3780
LH0 17.0958 9.6603 9.6575 9.9377 9.9272 9.7727 9.7397
LW2 26.6666 16.6776 16.9019 16.6552 16.9036 16.7602 17.0307
ST5 24.2300 14.7411 14.6655 14.9568 14.9174 14.8465 14.7641
TH4 11.4372 9.5769 9.5781 9.6152 9.5865 9.5865 9.5916
RMSE 8.4610 8.4776 8.3657 8.3590 8.4057 8.4183

Table 7.3: Evaluation of applying the INLA model to data from 01/03/15 to 13/10/15
considering PM2.5 data. Results are shown using 7, 3 and 2 months data when fitting
the model, using α = 2 and α = 1.5 (see text for details). Observations are given
together with predictions from the models for 19 sites in London, together with overall
root mean squared error (RMSE). Evaluations are presented for 1, 2 and 3 day forecasts
covering 14, 15 and 16 of October, 2015. All comparisons were made in the original
scale (µg/m3).
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RMSE
α prior κ prior τ 1 day-ahead 2 days-ahead 3 days-ahead
2 default default 1.3322 1.4492 1.3520
1.5 default default 1.1761 1.2549 1.5390
0.9 0.01 0.1 1.0900 1.1341 1.8081
0.9 0.5 0.1 1.0900 1.1342 1.8078
0.9 0.01 0.5 1.0910 1.1362 1.7990
0.9 0.5 0.5 1.0899 1.1340 1.8087
0.5 0.01 0.1 1.0898 1.1338 1.8093
0.5 0.5 0.1 1.0915 1.1373 1.7944
0.5 0.01 0.5 1.0900 1.1342 1.8078
0.5 0.5 0.5 1.0899 1.1339 1.8088
0.1 0.01 0.1 1.0898 1.1337 1.8099
0.1 0.5 0.1 1.0896 1.1334 1.8113
0.1 0.01 0.5 1.0899 1.1340 1.8082
0.1 0.5 0.5 1.0899 1.1339 1.8090

Table 7.4: Evaluation of applying the INLA model to data from 01/08/15 to 14/03/16
considering PM2.5 data and leaving out three sites (BL0, GN3, ST5) when fitting. Re-
sults are shown using 7 months data when fitting the model, using α = 2, 1.5, 0.9, 0.5, 0.1
and different values for prior κ and τ (see text for details). Overall root mean squared
error (RMSE) is given from the models for 3 sites in London (BL0, GN3, ST5). Evalu-
ations are presented for 1, 2 and 3 day forecasts covering 15, 16 and 17 of March, 2016.
All comparisons were made in the original scale (µg/m3).
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Figure 7-3: Predicted values of PM2.5 concentrations in Greater London 15, 16 and 17
March 2016 (days: 228, 229, and 230 respectively). Values are mean, lower and upper
limits of posterior predicted distributions on the logarithmic scale from a SPDE–INLA
model. The period of time used when fitting the mode is from 01 August 2015 to 14
March 2016 and with α = 1.5.
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Figure 7-4: Map of predicted values of PM2.5 concentrations in Greater London (15
March 2016). Values are means of posterior predicted distributions on the log-scale
from a SPDE–INLA model. The period of time used when fitting the mode is from 01
August 2015 to 14 March 2016 and with α = 1.5.
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Figure 7-5: Map of predicted values of PM2.5 concentrations in Greater London 15,
16 and 17 March 2016 (days: 228, 229, and 230 respectively). Values are mean, lower
and upper limits of posterior predicted distributions on the logarithmic scale from a
SPDE–INLA model. The period of time used when fitting the model is from 01 August
2015 to 14 March 2016 and with α = 1.5.
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Chapter 8

Discussion

The aim of this thesis was to develop and compare different prediction models for daily
concentrations of PM2.5. Two different approaches were developed and used to produce
predictions of air pollution levels. These were Dynamic Space-Time Models (DSTM)
and Bayesian Hierarchical Spatio-Temporal Models (BHSTM). We also investigated the
use of spatio-temporal kriging and fixed rank kriging and their ability to produce maps
of air pollution based on measurements at a distinct number of locations. Throughout
the thesis, we present results of implementing the different approaches, comparing
their ability to model spatio-temporal patterns in the data and to produce short-term
forecasts of PM2.5. The predictions from each of the models were compared with actual
data in order to evaluate them.

8.1 Dynamic Spatio-temporal models

The Dynamic Spatio-Temporal Modelling approach presented in chapter 5 allowed
future concentrations of PM2.5 to be forecasted in a computationally efficient manner.
Under this model, it is possible to include more information from other pollutants
(PM10, NO2) that are closely related to PM2.5 in urban areas to inform the predictions
of PM2.5. The main objective, when a DSTM is fitted, is to make inference on the
unobserved states, which are the underlying processes from which measurements are
made. An adequate DSTM representation has to be chosen, then the estimation is
done by computing the conditional distributions of the quantities of interest. It is done
considering given the available information and using the Kalman filter or smoother.
Details of estimation for linear DSTMs with consideration of methods for dimension
reduction are also explained. Two methods for inference, such as methods of moments
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and EM algorithm, are implemented using the London air quality data.

In summary, the results show that the reduced dimension linear DSTM had a good
performance at forecasting PM2.5 concentrations. The results of implementing the
method of moments and EM algorithm results can be seen in tables 5.1 and 5.2 with
overall RMSE values of as small as ca. 1.5 µg−3 for one day forecasts and ca. 1.6 µg−3

for two-day forecasts, although for some of the implementations (e.g. using different
amounts of modelling data and different methods) is was closer to 2.2. Errors for three
day ahead forecasts were seen to be considerably larger. An advantage of this approach
is the relatively simple extension for the multivariate case that includes PM10 and NO2
concentrations. It is notable that both models have the lowest RMSE, see table 8.1 for
the prediction for 15 March 2016.

In the form presented here, is not possible to include uncertainty analysis in the DSTM
EM algorithm. If one is interested in uncertainty, nonparametric bootstrapping or
a fully Bayesian framework could be considered as an alternative. However, it can
be challenging to take bootstrap samples that adequately represent the dependence
structure in the spatio-temporal data. If one is interested in a solution that includes a
credible interval for the prediction, the BHM approach is an option, see Berliner et al.
(2000) for further discussion.

8.2 Bayesian Hierarchical Spatio-Temporal Modelling

In chapter 7, a Bayesian approach for a spatio-temporal hierarchical model was pro-
posed. It considers a temporal process, characterised by first order autoregressive dy-
namics and spatially correlated innovations based on a Gaussian Field. In particular,
PM2.5 concentrations were analysed from 01 August 2015 to 14 March 2016 without
15 March. Inference was performed using INLA, which was used to get the parameter
posterior estimates, together with prediction and uncertainty for 15 March 2016. The
prediction is similar in accuracy to the DSTM that was presented in chapter 5, see
table 8.1. In addition, the spatial prediction for 16 and 17 March produced by INLA
can be seen in figure 7-5 (Chapter 7). The broad spatial patterns of concentrations
seen in this figure are similar to those seen in 6-4 and 6-9 (from Chapter 6), although
it should be noted that the methods used for generating the predict values over space
shown in figure 7-4 and figures 6-4 and 6-9 are different. The first of these is the result
of a space-time forecast for 15 March 2016, while the other two are smoothed (spatial
only) maps for 15 March 2016.

One advantage of the INLA approach is that a posterior distribution is generated, not

165



just a point estimation. In some contexts, a probability interval could be more useful
than a single point estimation. Another benefit in using the BHSTM framework is that
it captures correlations via a traditional covariance matrix. Therefore, it can do spatial
prediction, which as discussed is a limitation under the given implementation of the
DSTM approach.

Common problems in simulated-based MCMC methods, such as convergence and mix-
ing are not present when working with the INLA algorithm. Moreover, the SPDE
approach can be extended to a wide class of spatio-temporal models, with relatively
simple modifications. It is always possible to consider models with more complex hier-
archical structures. For instance, a non-separable covariance function or non-stationary
cases characterised by parameters varying in time can be considered. Although there
are many advantages of INLA, it can also be limited by the computation burden. One
can conclude that the SPDE approach, combined with the INLA algorithm, is a con-
venient framework for performing Bayesian inference on complex spatio-temporal GFs.
Even when dealing with large data sets, BHSTM is a good option to analyse air pollu-
tion data. However, the size of the output object can get large when using an important
amount of temporal data. Then, its use can be restrictive in some circumstances.

8.3 Comparison of predictive ability

In this section, the approaches DSTM and BHSTM presented in chapters 5 and 7
respectively are compared. This comparison is made in terms of their ability to produce
short-term forecasts of PM2.5 for a common time period.

In the previous chapter, the results for forecasting studies were presented. Now, a
summary with all of those results are shown in table 8.1. The summary contains
the RMSEs from tables 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 7.1, 7.2 and 7.3. In particular,
three days were omitted from the original data sets to evaluate the forecast over time.
Some conventions in the columns names will be followed. The column Poll considers
the number of pollutants 3 (PM2.5, PM10, NO2) and 1 (PM2.5) used when fitting
the model. The names Months and Method are the number of months and different
method used for the exercise. Finally, the numbers 1, 2, 3, 4, 5, 6, 7, 8 and 9 correspond
to the dates 15/March/16, 16/March/16, 17/March/16, 26/March/16, 27/March/16,
28/March/16, 14/October/2015, 15/October/15 and 16/October/15 respectively. The
same convention for the dates will be used for the figure that will be presented later.
The forecasts for 15, 16 and 17 March 2016 were produced when fitting a model with
three different time intervals up to 14/03/2016. The forecasts for 26, 27 and 28 March
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2016 were produced when fitting a model with three different time intervals up to
25/03/2016. Meanwhile, the forecasts for 14, 15 and 16 October 2015 were generated
considering three periods of time up to 13/10/2015.

In the table 8.1, the smallest RMSE per predicted day ahead is highlighted in blue.
For 15 March 2016 the best prediction in terms of RMSE was reached with the EM
algorithm using 3 months of data as input. For 16 and 17 March, the best predictions
are related to the EM-algorithm (3 months) and INLA (α = 1.5 and 2 months) respec-
tively. Overall, the best predictions for 26, 27 and 28 March 2016 were observed for
the INLA approach considering 2 months and α = 1.5. In general, it was observed that
the errors are larger when more days ahead are predicted. Finally, the best predictions
for 14, 15 October 2015 were observed for the MM, considering 7 months, 7 months
and 2 months respectively.

The extent of the errors observed when using the different models can be seen in figure
8-1. In this figure, the results from table 8.1 are summarised. It is noted that there is
not a noticeable difference in terms of RMSE between the models INLA, with α = 2 and
α = 1.5 for most of the cases. One advantage of the DSTM approach is the ability to
incorporate information on more pollutants (PM10, NO2) when forecasting PM2.5 in a
computationally efficient manner. However, in the examples shown here incorporating
multi-pollutant data did not necessarily improve the forecast performance. In general,
for the multipollutant and PM2.5

8.4 Summary

In summary, the ability to jointly model in time and space, and across pollutants,
allows information to be borrowed in a variety of ways to better inform prediction.
However, there may be challenges in implementing increasingly complex models, with
the increasing amount of air quality related data that is becoming available.

The fundamental difference in the two approaches considered here is in how spatial
dependence is incorporated within the models. In the first approach (DSTM), de-
pendencies between data from different locations is incorporated within the transition
matrix that governs how the underlying spatio-temporal process (the underlying pol-
lution field) transitions from one time to the next. In the second approach (BHSTM),
spatial dependence is explicitly modelled which enables such prediction (at unmeasured
locations) but does require knowledge of the nature of the dependence which, if not
known entirely (which will usually be the case), will mean making assumptions that
simplify the process.
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RMSE
Poll Months Method 1 2 3 4 5 6 7 8 9

7 MM 1.5484 2.3497 15.6442 2.4365 5.2986 5.8792 4.5915 1.6364 9.5196
7 EM 1.6178 2.2094 13.1362 2.5088 5.5134 5.8789 4.6862 1.6407 9.1590
3 MM 1.3984 2.3549 16.2087 2.5312 5.9403 6.7702 5.3756 2.0530 9.0333

3 3 EM 1.7021 1.5920 12.8087 2.6296 5.7956 6.1452 5.3441 2.0327 8.6508
2 MM 2.4810 3.0832 15.4644 2.4063 5.5322 6.5579 5.9838 2.6617 8.4599
2 EM 1.8278 2.0658 13.4706 2.4354 5.4766 5.8922 6.1375 2.6014 8.0599

7 MM 1.4607 2.4526 15.6304 3.0240 8.0873 8.8556 4.3389 1.5100 8.8834
7 EM 1.3821 1.8657 11.9422 3.0702 7.0230 7.6074 4.5995 1.5287 8.6712
7 INLA α = 2 4.0943 6.1174 7.4886 2.7522 5.0848 5.2020 4.8716 1.7967 8.4610
7 INLA α = 1.5 3.9391 5.9930 7.2437 2.6462 5.0178 5.1257 4.7896 1.6728 8.4776
3 MM 1.3233 2.4046 16.0316 2.6166 6.3133 6.7158 4.8503 1.9690 8.8459

1 3 EM 1.2844 1.8976 13.0422 2.7157 6.1362 6.4216 4.7254 1.8563 8.9519
3 INLA α = 2 4.0535 6.0523 7.5674 2.7163 5.0471 5.1614 4.9947 1.9151 8.3657
3 INLA α = 1.5 4.0536 6.0526 7.5670 2.5955 4.9692 5.0722 4.9129 1.7855 8.3590
2 MM 1.4374 2.2020 15.5008 5.5997 15.4472 17.1799 4.3821 1.9899 7.1664
2 EM 1.5191 2.2107 13.4923 5.1560 6.6370 10.8671 4.5588 1.7737 8.3094
2 INLA α = 2 3.7899 5.8090 7.2170 2.5411 4.9253 5.0187 4.9263 1.8323 8.4057
2 INLA α = 1.5 3.5966 5.5421 7.1667 2.3313 4.7824 4.8646 4.8299 1.6857 8.4183

Table 8.1: Evaluation of applying the DSTM and INLA models to data from
three different periods of time (01/08/15-14/03/16, 12/08/15-25/03/16 and 01/03/15-
13/10/15) . Results are shown using 7, 3 and 2 months data when fitting the model,
using the methods of moments (MM), expectation-maximisation (EM) and INLA ap-
proaches to inference (see text for details). Evaluations are presented for 1, 2 and 3
day forecasts with the overall root mean squared error (RMSE). Here, the RMSEs were
previously presented in tables 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 7.1, 7.2 and 7.3. All compar-
isons were made in the original scale (µg/m3).

Pollutants such as PM2.5 are complex combinations of particles and so making such
assumptions can be restrictive and possibly unrealistic. However, as will all statistical
modelling it may be necessary to take a pragmatic approach that balances the need to
make such assumptions in order to achieve the goals of the analysis and produce useful
results given the quality and quantity of the data that is available.

As mentioned before, there are some advantages of the DSTM approach. It is a flex-
ible and general framework that allows one to analyse and forecast spatio-temporal
data. Due to its extensibility, it also possible to include multi-pollutant information in
the analysis. Moreover, this model is also computationally efficient in terms of time,
but cannot handle missing values. One concern is that this model does not take the
uncertainty of the parameter estimates into account. Another disadvantage in the im-
plementation considered here, is that there was no spatial structure in the covariance
matrix associated with the process model. Therefore, it is not possible to produce
spatial predictions (maps) except by applying another method to the predictions, such
as IDW or kriging techniques.

One disadvantage of the DSTM approach is that uncertainty estimates can be difficult
to obtain for the parameter estimates. The issue of missing values is also a problem
in the implementation of this type of models. Many of these issues are dealt with
using a Bayesian approach, in which a unifying framework for the integration of spatio-
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temporal modelling can be applied. This framework allows estimation of missing data
with uncertainty estimates obtained from the posterior (predictive) distributions. With
the model, future forecasts are set up as missing data and treated the same way, i.e. as
unknown parameters for which posterior distributions are obtained. However, INLA
objects can get large which can make computation using long time-series impractical.
A full comparison should therefore take into account prediction capability, complexity
and computational costs.

It is noted that statistical models do not usually incorporate an extensive base of scien-
tific knowledge. However, some researchers have developed methods for incorporating
outputs from numerical chemical transport models within statistical models for air pol-
lution, for example Zidek et al. (2012); Sahu (2016). This idea of ‘hybrid’ models is
an area for future research that seems particularly well suited to forecasting air qual-
ity over space and time, where deterministic air quality forecasting models could be
integrated with data measurements in a BSTHM.

When dealing with larger data sets, for example daily data over longer time periods,
more monitoring locations and/or the incorporation of information from numerical
models, it would be useful to explore the idea of integrating dimension reduction tech-
niques (as discussed in chapter 5) within a Bayesian modelling approach. The aim
would be to reduce the computational burden of performing Bayesian inference, which
although it is very efficient using INLA can result in very large INLA objects which can
hinder large-scale estimation and prediction. Other avenues for future research would
be to incorporate multivariate modelling to allow borrowing of information over space-
time-pollutants (as was performed using a DSTM in chapter 5) within the BSTHM.
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Figure 8-1: Evaluation of applying the DSTM and INLA models to data from
three different periods of time (01/08/15-14/03/16, 12/08/15-25/03/16 and 01/03/15-
13/10/15) . Results are shown using 2, 3 and 7 months data when fitting the model,
using the methods of moments (MM), expectation-maximisation (EM) and INLA ap-
proaches to inference (see text for details). Evaluations are presented for 1, 2 and 3
day forecasts with the overall root mean squared error (RMSE). The numbers 1, 2, 3,
4, 5, 6, 7, 8 and 9 on the x-axis correspond to the dates 15/March/16, 16/March/16,
17/March/16, 26/March/16, 27/March/16, 28/March/16, 14/October/2015, 15/Octo-
ber/15 and 16/October/15 respectively. The values of the RMSEs can be seen in table
8.1. All comparisons were made in the original scale of the data (µg/m3).
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Appendix A

Matrix-Algebra Definitions and
Properties

Kronecker Product

Definition A.0.1. Consider two matrices, an na × ma matrix, A, and an nb × mb

matrix, B. The Kronecker product of A and B is given by the nanb × mamb matrix
A ⊗ B defined as

A ⊗ B ≡


a11B · · · a1maB

...
...

...
ana1B · · · anamaB

 . (A.1)

The Kronecker product has some properties properties that facilitate matrix repre-
sentations. If A is na × na and B is nb × nb, the inverse and determinant of the
Kronecker product can be expressed in terms of the Kronecker product of the inverses
and determinants of the individual matrices, respectively:

(A ⊗ B)−1 = A−1 ⊗ B−1, (A.2)

|A ⊗ B| = |A|na |B|nb . (A.3)

Kronecker products are useful in the context of spatio-temporal processes. They can
provide a helpful way to represent spatio-temporal covariance matrices for separable
processes. Let us consider

{Y (sij ; tj) : i = 1, . . . ,m; j = 1, . . . , T},
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and define C(s)
y to be the m × m matrix of purely spatial covariances and C(t)

y to be
the T ×T matrix of purely temporal covariances. Then the mT ×mT spatio-temporal
covariance matrix can be written as, Cy = C(t)

y ⊗C(s)
y if the process is separable. This is

not realistic for many processes but it is advantageous because of the inverse property,
C−1
y = (C(t)

y )−1 ⊗ (C(s)
y )−1.

Kronecker products are also useful for spatio-temporal modelling for forming spatio-
temporal basis functions. Let us construct an m × nα,s matrix Φ by evaluating nα,s

temporal basis functions at m spatial locations, and a T ×nα,t matrix Ψ by evaluating
nα,t temporal basis functions at T temporal locations. Then the matrix constructed
from spatio-temporal basis functions formed through the tensor product of the spatial
and temporal basis functions and evaluated at all combinations of spatial and temporal
locations is given by the mT × nα,snα,t matrix B = Ψ ⊗ Φ. Basis functions can be
used to construct spatio-temporal covariance functions. Using a set of basis functions
constructed through the tensor product yields a class of spatio-temporal covariance
functions that are in general not separable.

Non-negative-definite and positive-definite matrices

Definition A.0.2. Consider a p× p symmetric and real-valued matrix, A. If, for any
non-zero real-valued vector x, the scalar given by the quadratic form x′Ax is non-
negative, it is said that A is a non-negative-definite matrix. If x′Ax is strictly positive
for any x ̸= 0, it is said that A is a positive-definite matrix.

Matrix inverse

Definition A.0.3. Let us consider the p× p square matrix, A. If the matrix B such
that AB = BA = Ip exists, it is known as the inverse matrix of A, and it is denoted
as A−1.

If the inverse matrix exists, it is said that the matrix is invertible, and it follows that
AA−1 = A−1A = Ip. Not every square matrix has an inverse, but every positive-
definite matrix is invertible. The inverse matrix is also positive-definite.

Matrix square root

Definition A.0.4. Let A be a p × p positive-definite matrix. Then there exists a
matrix B such that A = BB = B2, it is said that B is the matrix square root of A
and it is denoted by A1/2.
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The matrix square root of a positive-definite matrix is also positive-definite. The inverse
matrix can be written as A−1 = A−1/2A−1/2, where A−1/2 is the inverse of A1/2.

Spectral decomposition

Let A be a p× p symmetric matrix of real values. This matrix can be decomposed as

A =
p∑

k=1
λkϕkϕ

′
k = ΦΛΦ, (A.4)

where Λ = diag(λ1, . . . , λp), Φ = [ϕ1, . . . , ϕp], and {λk} are called the eigenvalues
that are associated with the eigenvectors, {ϕk}, for k = 1, . . . , p. These vectors are
orthogonal, i.e., ΦΦ′ = Φ′Φ = Ip. Observe that for a symmetric non-negative-definite
matrix A, then λk ≥ 0, and for a symmetric positive-definite matrix A, then λk > 0
for all k = 1, . . . , p. The matrix square root and its inverse can be written as A1/2 =
Φdiag(λ1/2

1 , . . . , λ
1/2
p )Φ′ and A−1/2 = Φdiag(λ−1/2

1 , . . . , λ
−1/2
p )Φ′, respectively.

Eigenvalues of the Transition Matrix

Let us consider the first-order vector autoregressive model,

Yt = MYt−1 + ηt, (A.5)

where Yt is an n-dimensional vector and M is an n× n real-valued transition matrix.

The eigenvalues and eigenvectors can tell us something about the dynamical properties
of the model. Taken together, an eigenvalue–eigenvector pair is sometimes referred to
as an eigenmode. Let us assume that λi = ai+bi

√
−1 (where bi = 0 if λi is real-valued),

and define the modulus to be |λi| =
√
a2
i + b2

i . If max {|λi| : i = 1, . . . , n} ≥ 1 then the
eigenmode, and hence the model, is unstable, and Yt will grow without bound as t
increases. On the other hand, if the maximum modulus of all the eigenvalues is less
than 1, then the model is stable. For more details see Cressie & Wikle (2011), section
3.2.1.

Singular value decomposition (SVD)

Let A be a p×n matrix of real values. The matrix A can be decomposed as A = UDV′,
where U and V are p × p and n × n orthogonal matrices, respectively. The p × n

matrix D contains all zeros except for the (k, k)th non-negative elements, {dk : k =
1, 2, . . . ,min(p, n)} which are known as singular values.
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