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Abstract. A new solver for the Stokes equations based on the finite volume method
is proposed using very accurate polynomial reconstruction to provide a 6th-order scheme.
We face two main difficulties: the gradient-divergence duality where the divergence free
condition will impose the pressure gradient, and on the other hand, we assume that the
domain has a regular curved boundary. The last point implies that a simple approximation
of the boundary using piecewise segment lines dramatically reduces the scheme accuracy to
at most a second-order one. We propose a new and simple technology which enables to re-
store the full scheme accuracy based on a specific polynomial reconstruction only using the
Gauss points of the curved boundary and does not require any geometrical transformation.
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1 INTRODUCTION

The Stokes or Navier-Stokes equations represent critical issues in modelling and simula-
tions since they encompass within a lot of applications and accurate numerical simulations
turns to be a big challenge to provide approximations. Since the finite element method is
still the major technique to tackle the discretisation question, finite volume method has
received considerable attention due to its intrinsics qualities: built-in conservative and
versatility. We refer to the pioneer book of Patankar [16] and the textbook of Ferziger
and Peric [7] for an overview of the finite volume for the Navier-Stokes equations.
Very high-order schemes for incompressible fluid flow have been developed using the finite
difference framework with the Padé methodology (the so-called compact scheme) [11] on
staggered structured grids (see [12][9] and references herein) providing fourth-order or
sixth-order approximations [3]. Finite element [10][8] and discontinuous Galerkin methods
[13][6][14] also received important contributions to achieve very high-order approximation
both in time and space. Sixth-order finite volume approximation is the current state-
of-the-art on structured using compact schemes but the unstructured mesh case is still
confidential and remains a important issue.
When dealing with very-high order scheme, a crucial point is the evaluation of boundary
conditions when the domain is curved. Finite elements or Discontinuous Garlekin meth-
ods used isoparametric elements which turns the implementation very complex while the
finite volume approach is simpler. Two techniques have been proposed in the convection
diffusion context. The first one directly used the Gauss points on the curved boundary to
achieve polynomial reconstructions [15] whereas the second one used the Gauss points on
the segment for the polynomial reconstruction but adjust a free parameter to reproduce
the Dirichlet condition at the Gauss points of the curve [4].
We present a finite volume scheme to provide a sixth-order approximation of the solu-
tion of the Stokes problem involving curved boundary. We use a staggered discretization
with a primal unstructured mesh for the pressure and the associated diamond mesh for
the velocity to avoid the Rhie-Chow interpolation [17][20]. The coupled velocity-pressure
approach is employed to avoid the pressure correction intermediate step to provide the
divergence-free velocity [9]. Moreover, we do not treat the steady-state as the asymp-
totic limit of an artificial time marching problem but we directly solve the linear system
associated to the saddle point problem. The main difficulty is to achieve an efficient
approximation of the solution taking into account the divergence-free velocity constraint
to determine the pressure. The method is based, on the one hand, in different kinds of
polynomial reconstructions to compute the viscous flux, the pressure gradient, the veloc-
ity divergence up to a sixth-order of accuracy and, on the other hand, in a matrix-free
formulation using the residual method as in [5][4] solve with the algebraic solver GM-
RES [19][18]. We detail in the paper the specific treatment of Dirichlet conditions with
curved boundary. Indeed, a straightforward approximation using the polygonal domain
will lead to a strong degradation of the order (at most second-order) and correction of the
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traditional reconstruction will be implemented to recover the optimal order. We design
a new local reconstruction involving a free parameter to be fixed such that the Dirichlet
conditions on the curved boundary are satisfied. Numerical tests are carried out to prove
the efficiency of the method.
The paper is organized as follow. Section 2 presents the generic finite volume scheme for
very high order approximation in the context of the Stokes equations. In the third section
we tackle the question of the polynomial reconstructions while section four is dedicated
to the specific case of the curved boundary. In section 5, we present the numerical results
and end the paper with a short conclusion.

2 FINITE VOLUME SCHEME FOR THE STOKES EQUATIONS

Let Ω be an open bounded domain of R2 with boundary ∂Ω and x = (x1, x2). We seek
functions U = (U1, U2) ≡ (U1(x), U2(x)), the velocity field, and P ≡ P (x), the pressure,
solutions of the steady-state flow of an incompressible Newtonian fluid governed by the
Stokes equations

∇ · (−µ∇U + PI2) = f, in Ω, (1)

∇ · U = 0, in Ω, (2)

where the dynamic viscosity µ ≡ µ(x) and the source term f = (f1, f2) ≡ (f1(x), f2(x))
are given regular functions. The tensor ∇U is defined as [∇U ]αβ = ∂Uα

∂xβ
, α, β = 1, 2,

and I2 stands for the identity matrix in R2×2. The system (1-2) is completed with the
Dirichlet boundary condition

U = UD, on ∂Ω, (3)

where UD = (U1,D, U2,D) ≡ (U1,D(x), U2,D(x)) is a given regular function on ∂Ω which
satisfies the compatibility condition

∫

∂Ω
UD · n ds = 0,

with n = (n1, n2) the outward unit normal vector on ∂Ω. Moreover, uniqueness for the
pressure is guaranteed by the additional constraint

∫
Ω P dx = 0.

2.1 Primal and diamond meshes

The primal mesh of Ω, that we denote by M, is a partition of Ω into I non-overlapping
convex polygonal cells ci, i ∈ CM = {1, . . . , I}, and adopt the notations we detail hereafter
(see Fig. 1, left):

• for any cell ci, i ∈ CM, we denote by ∂ci its boundary and by |ci| its area; the
reference cell point is denoted by mi which can be any point in ci (in the present
work we shall consider the centroid);
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Figure 1: Notation for the primal mesh (left) and for the diamond mesh (right).

• two cells ci and cj share a common edge eij whose length is denoted by |eij| and
nij = (n1,ij, n2,ij) is the unit normal vector to eij outward to ci, i.e. nij = −nji;
the reference edge point is mij which can be any point in eij (in the present work
we consider the midpoint); if an edge of ci belongs to the boundary, the index j is
tagged by the letter D;

• for any cell ci, i ∈ CM, we associate the index set ν(i) ⊂ {1, · · · , I}∪ {D} such that
j ∈ ν(i) if eij is a common edge of cells ci and cj or with the boundary if j = D.

The diamond mesh of Ω, that we denote by D, derives from the primal mesh M and is
constituted of K non-overlapping diamond-shape cell (which degenerate to triangles in
the boundary) ck, k ∈ CD = {I + 1, . . . , I + K}. Indeed, for each inner primal edge eij
corresponds a unique cell of the diamond mesh defined by the reference points mi and mj

and the vertices of the edge (the dual cell associated to a boundary edge eiD is defined by
the reference point mi and the vertices of the edge).
The notation for the diamond mesh follows the notation introduced for the primal mesh
where we substitute the index i ∈ CM by k ∈ CD and the index j ∈ ν(i) by ` ∈ ν(k) (see
Fig. 1, right). In particular mk is any point in ck (in the present work we shall consider
the centroid) and mk` is any point in ek` (in the present work we consider the midpoint).
To define the association between diamond cells and primal edges, we introduce the cor-
respondence operator ΠD such that for given arguments (i, j), i ∈ CM, j ∈ ν(i), we
associate the corresponding diamond cell index k = ΠD(i, j) ∈ CD. In the same way, for
each diamond edge, we introduce the correspondence operator ΠM such that for given
arguments (k, `), k ∈ CD, ` ∈ ν(k), we associate the corresponding primal cell index
i = ΠM(k, `) ∈ CM.
The numerical integrations on the edges are performed with Gaussian quadrature where
for the primal edges eij, i ∈ CM, j ∈ ν(i), we denote by qij,r, r = 1, . . . , R, their Gauss
points and for the diamond edges ek`, k ∈ CD, ` ∈ ν(k), we denote by qk`,r, r = 1, . . . , R,
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Figure 2: Gauss points on the edges of the primal cells (dashes lines) and on the edges of the diamond
cells (solid lines).

their Gauss points, both sets with weights ζr, r = 1, . . . , R (see Fig. 2).

2.2 Generic finite volume scheme

To provide the generic very high-order finite volume scheme, we first integrate equation (1)
over each diamond cell ck, k ∈ CD, and then apply the divergence theorem, yielding

∫

∂ck

(−µ∇U + PI2)n ds =
∫

ck

f dx,

which can be rewritten in the scalar form as
∫

∂ck

(−µ∇Uβ · n+ Pnβ) ds =
∫

ck

fβ dx, β = 1, 2.

Considering the Gaussian quadrature with R points, i.e. of order 2R, for the line integrals,
we get the residual expression

∑

`∈ν(k)

|ek`|
|ck|

[
R∑

r=1

ζr
Ä
FUβ,k`,r + FPβ,k`,r

ä]
− fβ,k = O

Ä
h2R
k

ä
, β = 1, 2, (4)

with the physical fluxes given by

FUβ,k`,r = −µ(qk`,r)∇Uβ(qk`,r) · nk`, FPβ,k`,r = P (qk`,r)nβ,k`,

hk = max`∈ν(k) |ek`|, and fβ,k an approximation of order 2R of the mean value of fβ over
cell ck (if cell ck is not triangular, we split it into sub-triangles which share the cell centroid
as a common vertex and apply the quadrature rule on each sub-triangle as in [?]).
We now integrate equation (2) over each primal cell ci and apply again the divergence
theorem, yielding ∫

∂ci
U · n ds = 0.
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Considering again Gaussian quadrature with R points for the line integrals, we get the
residual expression

∑

j∈ν(i)

|eij|
|ci|

R∑

r=1

ζr F∇ij,r = O(h2R
i ), (5)

with the physical flux given by

F∇ij,r = U(qij,r) · nij

and hi = maxj∈ν(i) |eij|.

3 POLYNOMIAL RECONSTRUCTIONS

The polynomial reconstruction is a powerful tool to provide an accurate local represen-
tation of the underlying solution and was initially introduced in [1, 2] for hyperbolic
problems. In [5] a new methodology was proposed in the context of convection-diffusion
problems in order to achieve very accurate approximations of the gradient fluxes and to
take into account the boundary conditions. The authors introduced different types of
polynomial reconstructions namely the conservative reconstruction in cells and on Dirich-
let boundary edges and the non-conservative reconstruction on inner edges, in order to
compute approximations of the convective and the diffusive fluxes. We now adapt this
technology for the specific Stokes problem where the main difficulty is to handle the two
meshes.

3.1 Stencil and data

A stencil is a collection of cells situated in the vicinity of a reference geometrical entity,
namely an edge or a cell where the number of elements of the stencil shall depend on
the degree d of the polynomial function we intend to construct. For each diamond edge
ek`, k ∈ CD, ` ∈ ν(k), we associate the stencil Sk` consisting of the indices of neighbor
diamond cells. Analogously, we associate the stencil Sk for each diamond cell ck, k ∈ CD,
and the stencil Si for each primal cell ci, i ∈ CM, consisting of the indices of neighbor
dual and primal cells, respectively. Remark. A polynomial reconstruction of degree d
requires nd = (d + 1)(d + 2)/2 coefficients. So, in practice, a stencil consists of the Nd

closest cells to each geometrical entity (edge or cell) in the respective mesh, with Nd ≥ nd
(we consider Nd ≈ 1.5nd for the sake of robustness).
Now, we want to compute the polynomial reconstructions based on the data of the as-
sociated stencil. To this end, we assume that vectors U1 = (U1,k)k=I+1,...,I+K , U2 =
(U2,k)k=I+1,...,I+K , and P = (Pi)i=1,...,I gather the approximations of the mean values of U1

and U2 over the diamond cells and P over the primal cells, i.e.

U1,k ≈
1

|ck|
∫

ck

U1 dx, U2,k ≈
1

|ck|
∫

ck

U2 dx, Pi ≈
1

|ci|
∫

ci
P dx.
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3.2 Conservative reconstruction for primal cells

For each primal cell ci, i ∈ CM, the local polynomial approximation of the underlying
solution P based on vector P of degree d is defined as

P i(x) = Pi +
∑

1≤|α|≤d
Rα
i [(x−mi)

α −Mα
i ] ,

where α = (α1, α2) with |α| = α1 + α2 and the convention xα = xα1
1 x

α2
2 , vector Ri =

(Rα
i )1≤|α|≤d gathers the polynomial coefficients, and Mα

i = 1
|ci|
∫
ci

(x−mi)
α dx in order to

guarantee the conservation property

1

|ci|
∫

ci
P i(x) dx = Pi.

For a given stencil Si, we consider the quadratic functional

Ei(Ri) =
∑

q∈Si

ñ
1

|cq|
∫

cq
P i(x) dx− Pq

ô2

. (6)

We denote by R̂i the unique vector which minimizes the quadratic functional (6) and
we set P̂ i(x) the polynomial which corresponds to the best approximation in the least
squares sense.

3.3 Conservative reconstruction for diamond cells

For each diamond cell ck, k ∈ CD, the local polynomial approximation of the underlying
functions U1 and U2 based on vectors U1 and U2 of degree d are defined as

Uβ,k(x) = Uβ,k +
∑

1≤|α|≤d
Rα
β,k [(x−mk)

α −Mα
k ] , β = 1, 2,

where vectorRβ,k = (Rα
β,k)1≤|α|≤d gathers the polynomial coefficients andMα

k = 1
|ck|

∫
ck

(x−
mk)

α dx in order to guarantee the conservation property

1

|ck|
∫

ck

Uβ,k(x) dx = Uβ,k.

For a given stencil Sk, we consider the quadratic functional

Eβ,k(Rβ,k) =
∑

q∈Sk

ñ
1

|cq|
∫

cq
Uβ,k(x) dx− Uβ,q

ô2

. (7)

We denote by R̂β,k the unique vector which minimizes the quadratic functional (7) and

we set Ûβ,k(x) the polynomial which corresponds to the best approximation in the least
squares sense.
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3.4 Non-conservative reconstruction for inner diamond edges

For each inner diamond edge ek`, k ∈ CD, ` ∈ ν(k), the local polynomial approximations
of degree d of the underlying functions U1 and U2 are defined as

Uβ,k`(x) =
∑

0≤|α|≤d
Rα
β,k`(x−mk`)

α, β = 1, 2,

where vector Rβ,k` = (Rα
β,k`)0≤|α|≤d gathers the polynomial coefficients (notice that in this

case |α| starts with 0 since no conservation property is required). For a given stencil Sk`
with #Sk` elements and vector ωβ,k` = (ωβ,k`,q)q=1,...,#Sk` of the positive weights of the
reconstruction, we consider the quadratic functional

Eβ,k`(Rβ,k`) =
∑

q∈Sk`
ωβ,k`,q

ñ
1

|cq|
∫

cq
Uβ,k`(x) dx− Uβ,q

ô2

. (8)

We denote by R̃β,k` the unique vector which minimizes the quadratic functional (8) and

we set Ũβ,k`(x) the polynomial which corresponds to the best approximation in the least
squares sense.

3.5 Conservative reconstruction for diamond boundary edges

We treat the boundary diamond edges in a particular way in order to take into account the
Dirichlet boundary conditions prescribed for the velocity. For each boundary diamond
edge ekD, k ∈ CD, the local polynomial approximations of degree d of the underlying
functions U1 and U2 are defined as

Uβ,kD(x) = Uβ,kD +
∑

1≤|α|≤d
Rα
β,kD [(x−mkD)α −Mα

kD] , β = 1, 2,

where vector Rβ,kD = (Rα
β,kD)1≤|α|≤d gathers the polynomial coefficients, Uβ,kD is an ap-

proximation of the mean value Uβ,D of order 2R over the diamond boundary edge ekD,
and Mα

kD = 1
|ekD|

∫
ekD

(x−mkD)α dx in order to guarantee the conservation property

1

|ekD|
∫

ekD

Uβ,kD(x) ds = Uβ,kD.

For a given stencil SkD with #SkD elements and vector ωβ,kD = (ωβ,kD,q)q=1,...,#SkD of the
positive weights of the reconstruction, we consider the quadratic functional

Eβ,kD(Rβ,kD) =
∑

q∈SkD
ωβ,kD,q

ñ
1

|cq|
∫

cq
Uβ,kD(x) dx− Uβ,q

ô2

. (9)

We denote by R̂β,kD the unique vector which minimizes the quadratic functional (9) and

we set Ûβ,kD(x) the polynomial which corresponds to the best approximation in the least
squares sense.
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Remark The motivation for introducing the weights in the case of a non-conservative
polynomial reconstruction and in the case of a conservative polynomial reconstruction for
Dirichlet boundary edges, is presented in [5] as well as the importance to set larger values
for the adjacent cells.

3.6 High-order finite volume scheme

This subsection is dedicated to design high-order numerical flux approximations based
on the polynomial reconstructions presented in the previous subsections to provide the
global residual operator.

3.6.1 Numerical fluxes

For a given polynomial degree d and the associated stencils which guarantee the d-
consistency property (see [5]), four numerical fluxes situations arise:

• for an inner diamond edge ek`, the fluxes at the quadrature point qk`,r write

FUβ,k`,r = −µ(qk`,r)∇Ũβ,k`(qk`,r) · nk` and FPβ,k`,r = P̂ i(qk`,r)nβ,k`, β = 1, 2,

with the correspondence i = ΠM(k, `);

• for a boundary diamond edge ekD, the fluxes at the quadrature point qkD,r write

FUβ,kD,r = −µ(qkD,r)∇Ûβ,kD(qkD,r) · nkD and FPβ,kD,r = P̂ i(qkD,r)nβ,kD, β = 1, 2,

with the correspondence i = ΠM(k,D);

• for an inner primal edge eij, the flux at the quadrature point qij,r writes

F∇ij,r = Û 1,k(qij,r)n1,ij + Û 2,k(qij,r)n2,ij,

with the correspondence k = ΠD(i, j);

• for a boundary primal edge eiD, the flux at the quadrature point qiD,r writes

F∇iD,r = Û 1,kD(qiD,r)n1,iD + Û 2,kD(qiD,r)n2,iD,

with the correspondence k = ΠD(i,D).

3.6.2 Residual operators

For any vector Φ = (U1,U2,P) in R2K+I , we define the residual operators for each diamond
cell ck, k ∈ CD, as

Gβk (Φ) =
∑

`∈ν(k)

|ek`|
|ck|

[
R∑

r=1

ζr
Ä
FUβ,k`,r + FPβ,k`,r

ä]
− fβ,k, β = 1, 2,
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and for each primal cell ci, i ∈ CP , as

G∇i (Φ) =
∑

j∈ν(i)

|eij|
|ci|

R∑

r=1

ζrF∇ij,r,

which correspond to the finite volume scheme (4-5) cast in residual form. Gathering all
the components of the residuals in vectors Gβ(Φ) =

Ä
Gβk (Φ)

ä
k=I+1,...,I+K

and G∇(Φ) =Ä
G∇i (Φ)

ä
i=1,...,I

, we introduce the global affine operator from R2K+I into R2K+I , given by

H(Φ) =
Ä
G1(Φ),G2(Φ),G∇(Φ)

äT
,

such that vector Φ? = (U?
1,U?

2,P?)T ∈ R2K+I , solution of the problem H(Φ) = 0, provides
a constant piecewise approximation of U1, U2, and P .

4 DIRICHLET CONDITION ON CURVED BOUNDARY

When dealing with curved boundaries, the substitution of domain Ω with the polygonal
domain deriving from the mesh dramatically reduces the method order due to a coarse
approximation of the boundary by line segments. A specific treatment of the polynomial
reconstruction associated to the edge on the boundary is required.

4.1 Second-order approach

Let ekD be an edge of the dual mesh situated on the boundary ΓD and set the mean value

Ūβ,kD =
1

|ekD|
∫

ekD

Uβ,D(s) ds with β = 1, 2 the two components of the velocity. In [5] the

following conservative polynomial function of degree d has been considered

“Uβ,kD(x; d) = Uβ,kD +
∑

1≤|α|≤d
Rd,α
β,kD

ß
(x−mkD)α −Mα

kD

™
, (10)

taking Uβ,kD = Ūβ,kD, mkD the midpoint of edge ekD and Mα
kD =

1

|ekD|
∫

ekD

(x−mkD)α ds

such that the conservative property
1

|ekD|
∫

ekD

“Uβ,kD(x; d) ds = Uβ,kD holds. To fix the

coefficients, we introduce the functional

Eβ,kD(Rd
β,kD; d) =

∑

`∈S(ekD,d)

ωβ,kD,`

ï 1

|c`|
∫

c`

“Uβ,kD(x; d) dx− Uβ,`
ò2
, (11)

where ωβ,kD,` are positive weights and vector “Rd
β,kD stands for the unique vector mini-

mizing the functional which provides the best approximation. Such an approach gives, at
most, a second-order approximation since we substitute the mean value on a curved arc
by the mean value on edge ekD leading to a loose of accuracy. The keypoint is to evalu-
ate the polynomial reconstruction with a better Uβ,kD choice, different to the candidate

Ūβ,kD, in order to provide better approximations of “Uβ,kD(x; d) at the Gauss points mkD,r,
r = 1, · · · , R2.
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4.2 High-order approximation

A local parametrization is introduced and a new quadrature formula is used to perform
accurate numerical integration on the curved arc. Let e be a generic boundary edge, we
denote by v1 e v2 the vertexes and denote e = v1v2 the segment with lenght |v1v2| while
v̄1v2 represents the boundary arc between v1 and v2 with length |v̄1v2|. We introduce the
edge parametrization q(t) = (1− t)v1 + tv2, t ∈ [0, 1] which satisfies |q′(t)| = |v1v2| while
p(t) is a parametrization of the arc such that

p(0) = v1, p(1) = v2, |p′(t)| = |v̄1v2| is constant.

Let us denote by q1, . . ., qR2 the Gauss points on edge e associated to parameters t1,
. . ., tR2 , then p1 = p(t1), . . ., pR2 = p(tR2) are the corresponding Gauss points on the
boundary arc. Indeed, using the quadrature rule for the numerical integration over the
arc, one has

∫

v̄1v2

Uβ,D(p)dp =
∫ 1

0
Uβ,D(p(t))|p′(t)|dt ≈

R2∑

r=1

ξrUβ,D(pr)|p′(tr)| = |v̄1v2|
R2∑

r=1

ξrUβ,D(pr).

Notice that the following property then holds for r = 1, · · · , R2

|v̄1pr|
|v1qr|

=
|v̄2pr|
|v2qr|

=
|v̄1v2|
|v1v2|

.

Let us now consider ÛekD the boundary arc associated to the edge ekD and assume that
the mean value approximations Ui, are given on the stencil. We consider the following
linear operator

Uβ,kD → “Uβ,kD(x; d, Uβ,kD) ∈ Pd
where Uβ,kD represents an approximation of the mean value on ekD and not on ÛekD and
is seen as a free parameter. The main difficulty is that the Dirichlet condition is defined
on ÛekD and not on ekD. To overcome the problem we introduce the functional

H(Uβ,kD) =
R2∑

r=1

Ä“Uβ,kD(pkD,r; d, Uβ,kB)− Uβ,D(pkD,r)
ä2

which corresponds to the error at the boundary arc Gauss points between the polynomial
approximation and the real Dirichlet condition. Since we are dealing with a quadratic
functional, existence and uniqueness of the minimum U?

β,kD is guaranteed and “Uβ,kD will
be the polynomial reconstruction where we take Uβ,kD = U?

β,kD.
To compute U?

β,kD in practice, we propose the following simple algorithm. We consider
the sequence (Un

β,kD)n initialized with U0
β,kD = Ūβ,kD and given by the following:

1. with Un
β,kB in hand, compute the associated polynomial function “Uβ,kD(x; d, Un

β,kB),
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2. evaluate the errors δnr = Uβ,D(pkD,r)− “Un
β,kD(pkD,r; d, U

n
β,kB),

3. update the mean value on ekD with Un+1
β,kD = Un

β,kD +
R2∑

r=1

ξrδ
n
r ,

4. stop if |Un+1
β,kD − Un

β,kD| < εBŪβ,nD where the tolerance εB has been prescribed and

set U?
β,kD = Un+1

β,kD, else goto step (1).

Numerical experiments shows that we quickly converge with two or three steps using
εB = 10−12. Furthermore, when Ūβ,kD = 0, we use the absolute error criterion |Un+1

β,kD −
Un
β,kD| < εB in place of the relative error criterion. Remark Notice that the method only

requires the arc length |ÛekD| and the Gauss point pkD,r on the boundary arc. No geometrical
tranformation is performed which provides a very simple method, easy to implement.

5 NUMERICAL RESULTS

To perform the numerical tests, we consider a fluid with viscosity µ = 1 flowing in a circlar
domain Ω = {x : τ 2 < 1} where τ 2 = x2

1 + x2
2. In order to check the implementation of

the method and assess the convergence rates, we manufacture an analytical solution for
the given problem setting

U1(x) = −ay exp(τ 2)(1− τ), U2(x) = ax exp(τ 2)(1− τ), P (x) = cos(πτ 2),

where a = 1/
Ä
(1/(2

√
2)) exp (1/2)

ä
in order to normalize the velocity. Then, the source

terms are computed such that equations (1) and (2) hold. The homogeneous Dirichlet
boundary condition UD(x) = (0, 0) prescribed on ∂Ω, derives from de exact solution.
Vectors U?

β = (U?
β,k)k∈CD , β = 1, 2, and P? = (P ?

i )i∈CM gather the approximate mean

values while vectors Uβ = (Uβ,k)k∈CD , β = 1, 2, and P = (P i)i∈CM gather the exact mean
values of the solution given by

Uβ,k =
1

|ck|
∫

ck

Uβ dx, β = 1, 2, and P i =
1

|ci|
∫

ci
P dx.

The L1-norm errors are given by

Eβ
1 (D) =

∑

k∈CD
|U?

β,k − Uβ,k||ck|
∑

k∈CD
|ck|

, β = 1, 2, and EP
1 (M) =

∑

i∈CM
|P ?
i − P

? − P i − P ||ci|
∑

i∈CM
|ci|

,

and the L∞-norm errors are given by

Eβ
∞(D) = max

k∈CD
|U?

β,k − Uβ,k|, β = 1, 2, and EP
∞(M) = max

i∈CM
|P ?
i − P

? − P i − P |.
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where P
?

is the mean value of the values gather in vector P? and P is the mean value of
the values gather in vector P, given by

P
?

=

∑

i∈CM
P ?
i |ci|

∑

i∈CM
|ci|

, P =

∑

i∈CM
P i|ci|

∑

i∈CM
|ci|

,

respectively, to guarantee a solution with null mean value pressure.
We evaluate the convergence rate of the L1-norm (and L∞-norm error) between two
different and successive finer primal meshesM1 andM2, with I1 and I2 cells, respectively,
as

OP
1 (M1,M2) = 2

| log(EP
1 (M1)/EP

1 (M2))|
| log(I1/I2)| .

In the same way, we define the convergence order between two different and successive
finer diamond meshes D1 and D2 with K1 and K2 cells, respectively, as

Oβ
1 (D1,D2) = 2

| log(Eβ
1 (D1)/Eβ

1 (D2))|
| log(K1/K2)| .

In all the simulations we have carried out, the weights in functional (8) are set ωβ,k`,q = 3,
k ∈ CD, ` ∈ ν(k), q ∈ Sk`, β = 1, 2, if ek` is an edge of cq and ωβ,k`,q = 1, otherwise,
following [5].

The second-order case As a first test, we consider the classical polynomial reconstruc-
tion on the boundary given in Section 4.1 using the straithforward method computing the
Dirichlet condition on the edge. We carry out simulations with successive finer regular
triangular Delaunay meshes and the associated diamond meshes and report in Tables 1,
2, 3 the L1- and L∞-norm errors and the convergence rates using the P1, P3, and P5

polynomial reconstructions, respectively. Notice that the number of unknowns (the same
as degrees of freedom) is DOF = K for U1 and U2 and DOF = I for P . The notation E1

is a generalization which stands for Eβ
1 or EP

1 depending on the variable we are dealing
with (Uβ or P , respectively). The same convention is valid for E∞, O1, and O∞.
The P1 polynomial reconstruction provides a second-order approximation for the velocity
and a first-order approximation for the pressure, as expected. The schemes based on the
P3 and P5 polynomial reconstructions, also provides second-order convergence rates for
the velocity since the reconstruction on dual boundary edges is of second-order. Inspite of
this negative results, the scheme achieves a third-order covergence for the pressure with P3

and P5 polynomial reconstructions. Such situation arises since the null-velocity boundary
condition guarantees that the divergence on ekD, k ∈ CM is very close to zero, the exact
flux.
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Table 1: Errors and convergence rates with P1 polynomial reconstructions where the polynomials on
boundary edges are computed according to Section 4.1.

DOF E1 O1 E2 O2 E∞ O∞

U1

1337 1.66E−02 — 2.03E−02 — 4.77E−02 —
2486 8.83E−03 2.03 1.06E−02 2.08 2.97E−02 1.53
9835 2.30E−03 1.96 2.80E−03 1.94 8.17E−03 1.88
21337 1.02E−03 2.10 1.24E−03 2.10 3.70E−03 2.05

U2

1337 1.67E−02 — 2.03E−02 — 4.73E−02 —
2486 8.79E−03 2.07 1.07E−02 2.08 2.97E−02 1.50
9835 2.30E−03 1.95 2.80E−03 1.95 8.44E−03 1.83
21337 1.02E−03 2.11 1.24E−03 2.10 3.68E−03 2.14

P

870 7.89E−02 — 1.42E−01 — 6.21E−01 —
1628 5.42E−02 1.20 9.83E−02 1.17 4.35E−01 1.13
6498 2.21E−02 1.30 4.03E−02 1.29 2.48E−01 0.81
14138 1.47E−02 1.06 2.58E−02 1.14 1.55E−01 1.20

Table 2: Errors and convergence rates with P1 polynomial reconstructions where the polynomials on
boundary edges are computed according to Section 4.1.

DOF E1 O1 E2 O2 E∞ O∞

U1

1337 3.07E−03 — 3.63E−03 — 7.41E−03 —
2486 1.65E−03 2.00 1.95E−03 2.01 3.90E−03 2.07
9835 4.18E−04 2.00 4.93E−04 2.00 9.85E−04 2.00
21337 1.92E−04 2.00 2.27E−04 2.01 4.53E−04 2.01

U2

1337 3.08E−03 — 3.63E−03 — 7.41E−03 —
2486 1.65E−03 2.01 1.95E−03 2.01 3.90E−03 2.07
9835 4.19E−04 1.99 4.93E−04 2.00 9.87E−04 2.00
21337 1.92E−04 2.01 2.27E−04 2.01 4.53E−04 2.01

P

870 1.41E−03 — 2.23E−03 — 9.77E−03 —
1628 5.08E−04 3.26 8.19E−04 3.20 3.74E−03 3.07
6498 6.13E−05 3.06 1.01E−04 3.03 5.50E−04 2.77
14138 1.87E−05 3.05 3.11E−05 3.03 2.29E−04 2.25

The high-order case We now consider the high-oder polynomial polynomial recon-
struction on the boundary using the correction given in Section 4.2. We carry out simu-
lations with successive finer regular meshes.
We report in Tables 4, 5, and 6 the L1- and L∞-norm errors and the convergence rates
using the P1, P3, and P5 polynomial reconstructions, respectively.
As in the previous case, the P1 polynomial reconstruction provides a second-order ap-
proximation for the velocity and a first-order approximation for the pressure. The scheme
based on the P3 reconstruction achieves an effective fourth-order approximation for the
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Table 3: Errors and convergence rates with P5 polynomial reconstructions where the polynomials on
boundary edges are computed according to Section 4.1.

DOF E1 O1 E2 O2 E∞ O∞

U1

1337 3.16E−03 — 3.73E−03 — 7.40E−03 —
2486 1.68E−03 2.04 1.98E−03 2.05 3.93E−03 2.04
9835 4.20E−04 2.02 4.95E−04 2.02 9.86E−04 2.01
21337 1.93E−04 2.01 2.27E−04 2.01 4.53E−04 2.01

U2

1337 3.16E−03 — 3.73E−03 — 7.40E−03 —
2486 1.68E−03 2.04 1.98E−03 2.05 3.93E−03 2.04
9835 4.20E−04 2.02 4.95E−04 2.02 9.86E−04 2.01
21337 1.93E−04 2.01 2.27E−04 2.01 4.53E−04 2.01

P

870 3.23E−05 — 5.09E−05 — 2.54E−04 —
1628 7.28E−06 4.76 1.23E−05 4.53 5.57E−05 4.84
6498 3.15E−07 4.54 1.04E−06 3.57 2.56E−05 1.12
14138 7.06E−08 3.85 3.33E−07 2.93 9.07E−06 2.67

Table 4: Errors and convergence rates with P1 polynomial reconstructions where the polynomials on
boundary edges are computed according to Section 4.2.

DOF E1 O1 E2 O2 E∞ O∞

U1

1337 2.01E−02 — 2.44E−02 — 5.50E−02 —
2486 1.07E−02 2.03 1.28E−02 2.07 3.40E−02 1.55
9835 2.77E−03 1.96 3.35E−03 1.95 9.26E−03 1.89
21337 1.24E−03 2.08 1.49E−03 2.09 4.19E−03 2.05

U2

1337 2.03E−02 — 2.44E−02 — 5.52E−02 —
2486 1.07E−02 2.08 1.28E−02 2.07 3.40E−02 1.57
9835 2.77E−03 1.97 3.35E−03 1.95 9.53E−03 1.85
21337 1.23E−03 2.09 1.49E−03 2.09 4.17E−03 2.13

P

870 7.86E−02 — 1.41E−01 — 6.20E−01 —
1628 5.42E−02 1.19 9.82E−02 1.15 4.36E−01 1.13
6498 2.21E−02 1.30 4.03E−02 1.29 2.47E−01 0.82
14138 1.47E−02 1.06 2.58E−02 1.15 1.55E−01 1.20

velocity and a third-order (slightly better) approximation for the pressure. The scheme
based on the P5 reconstruction achieves a sixth- and fifth-order approximations for the
velocity and the pressure, respectively, which demonstrates the effectiveness of the cor-
rection. Finally, we also mention that no oscillations or numerical locking are reported in
all the experiences.
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Table 5: Errors and convergence rates with P3 polynomial reconstructions where the polynomials on
boundary edges are computed according to Section 4.2.

DOF E1 O1 E2 O2 E∞ O∞

U1

1337 1.00E−04 — 1.25E−04 — 4.10E−04 —
2486 2.69E−05 4.23 3.45E−05 4.15 1.13E−04 4.16
9835 1.89E−06 3.86 2.35E−06 3.91 9.93E−06 3.54
21337 2.90E−07 4.84 3.99E−07 4.58 2.53E−06 3.53

U2

1337 9.18E−05 — 1.20E−04 — 4.36E−04 —
2486 2.70E−05 3.94 3.36E−05 4.10 1.14E−04 4.34
9835 1.81E−06 3.93 2.33E−06 3.88 1.26E−05 3.20
21337 2.90E−07 4.73 3.97E−07 4.57 2.67E−06 4.00

P

870 1.40E−03 — 2.21E−03 — 9.54E−03 —
1628 5.06E−04 3.25 8.15E−04 3.18 3.69E−03 3.03
6498 6.12E−05 3.05 1.00E−04 3.03 5.49E−04 2.75
14138 1.87E−05 3.05 3.10E−05 3.01 2.29E−04 2.25

Table 6: Errors and convergence rates with P5 polynomial reconstructions where the polynomials on
boundary edges are computed according to Section 4.2.

DOF E1 O1 E2 O2 E∞ O∞

U1

1337 4.18E−06 — 5.13E−06 — 1.38E−05 —
2486 6.17E−07 6.17 7.87E−07 6.04 2.52E−06 5.48
9835 1.30E−08 5.61 1.63E−08 5.64 4.91E−08 5.73
21337 1.20E−09 6.15 1.51E−09 6.14 4.91E−09 5.94

U2

1337 4.24E−06 — 5.15E−06 — 1.29E−05 —
2486 6.14E−07 6.23 7.90E−07 6.05 2.50E−06 5.30
9835 1.30E−08 5.61 1.63E−08 5.64 5.22E−08 5.63
21337 1.20E−09 6.16 1.51E−09 6.14 5.87E−09 5.64

P

870 3.15E−05 — 4.81E−05 — 2.09E−04 —
1628 6.98E−06 4.81 1.14E−05 4.60 4.73E−05 4.74
6498 2.01E−07 5.13 3.35E−07 5.10 1.99E−06 4.58
14138 2.93E−08 4.96 4.96E−08 4.91 3.01E−07 4.86

6 CONCLUSION

We have presented a powerful method to derived an effective sixth-order of approximation
for the Stokes equations involving curved boundary. We highlight that straightforward
approximation will provide at most a second-order approximation leading to a huge degra-
dation of the accuracy. The method is very simple to implement and only requires the
Gauss points on the curved boundary. It can be seen as a blackbox to improve the ac-
curacy since the structure of the polynomial reconstruction (we mean the matrix which
compute the polynomial coefficients) is independant of the position of the Gauss points.
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Consequently, the approximation of curved boundaries is just a plug-in function which
enable to use the polygonal domain and add a small correction provinding the optimal
order.
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