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Free-standing (FS) membranes have increasing applications in the biomedical field as drug delivery sys-
tems for wound healing and tissue engineering. Here, we studied the potential of free-standing mem-
branes made by the layer-by-layer assembly of chitosan and alginate to be used as a simple
biomimetic system of the periosteum. The design of a periosteum-like membrane implies the elaboration
of a thick membrane suitable for both muscle and bone formation. Our aim was to produce well-defined
~50 pum thick polysaccharide membranes that could be easily manipulated, were mechanically resistant,
and would enable both myogenesis and osteogenesis in vitro and in vivo. The membranes were chemi-
cally crosslinked to improve their mechanical properties. Crosslinking chemistry was followed via Fourier
transform infrared spectroscopy and the mechanical properties of the membranes were assessed using
dynamic mechanical analysis. The loading and release of the potent osteoinductive growth factor bone
morphogenetic protein 2 (BMP-2) inside and outside of the FS membrane was followed by fluorescence
spectroscopy in a physiological buffer over 1 month. The myogenic and osteogenic potentials of the
membranes in vitro were assessed using BMP-2-responsive skeletal myoblasts. Finally, their osteoinduc-
tive properties in vivo were studied in a preliminary experiment using a mouse ectopic model. Our
results showed that the more crosslinked FS membranes enabled a more efficient myoblast differentia-
tion in myotubes. In addition, we showed that a tunable amount of BMP-2 can be loaded into and sub-
sequently released from the membranes, depending on the crosslinking degree and the initial BMP-2
concentration in solution. Only the more crosslinked membranes were found to be osteoinductive in vivo.
These polysaccharide-based membranes have strong potential as a periosteum-mimetic scaffold for bone
tissue regeneration.

© 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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Bone structure is characterized as a complex 3-D tissue com-
posed of cells and mineralized extracellular matrix. Ongoing
research in the field of biomaterials aims to better mimic the prop-
erties of natural tissues [1] and to guide cell fate locally for the
regeneration of damaged tissues [2]. There are several mem-
brane-like native tissues, which have important physiological
roles. For instance, the periosteum—or pericranium for the skull—
is a thick membrane covering the outer surface of all bones except
at sites of articulation [3]. It consists of an outer fibrillar layer and
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an inner cellular layer, the thickness of which varies according to
age and species (eg 40 pm for mouse tibiae [4], 100 pm for human
tibiae [5] and 200 um for pig mandible [6]). The periosteum
constitutes a niche for many cells that participate in ossification
during prenatal development and fracture healing [7-9]. As the
periosteum is widely recognized to be of critical importance in
bone formation and regeneration, the development of a perios-
teum-like membrane would be a promising strategy for bone tis-
sue engineering [10,11]. There are only a few models of
periosteum for engraftment in bone defects, including natural scaf-
folds such as porcine small intestinal submucosa [12], decellular-
ized periosteum [13] and vascularized biomimetic cell-sheet-
engineered periosteum [14].

In the past few years, a periosteum-like environment has been
developed using electrospun hydroxyapatite-containing chitosan
(CHI) nanofibers [15]. Polyethylene glycol hydrogels have also been
used to emulate the periosteum in a murine femoral defect model
[16]. Recently, free-standing (FS) microgrooved poly(lactic-co-gly-
colic acid) nanosheets have been developed for the purpose of gen-
erating a biomimetic periosteum [11]. Since the muscle-
periosteum connection is important for periosteal healing [17],
the design of a periosteum-like membrane implies the elaboration
of a thick membrane suitable for both muscle and bone formation.

The layer-by-layer (LbL) technique appears to be a powerful
tool for the engineering of FS membranes. LbL coatings offer a large
range of potentialities for biomedical applications [18-21]. Their
thickness and internal structure can be easily tuned, depending
on the molecules used as building blocks [22], the number of layers
deposited and the assembly conditions (pH, ionic strength, concen-
tration of the polyelectrolytes). Several physico-chemical and
mechanical parameters can be directly controlled, including ion
permeation [23], crosslinking of the films (which changes their
Young’s modulus [24] but also their biodegradability properties
[25]) and loading of bioactive molecules [26].

To date, few studies have reported the production of polysac-
charide-based FS membranes constructed via the LbL technique
[27-29]. Interestingly, these FS membranes can be simply obtained
using a bottom-up approach by depositing oppositely charged
polysaccharides and then removing the underlying substrate
[27]. When the film is deposited on a low surface energy substrate,
it can be removed in mild conditions, leading an FS membrane
without the need for a post-processing step [28,29].

Polysaccharides can interact, via non-covalent interactions,
with several growth factors [30,31] that can stimulate cellular pro-
liferation, migration and differentiation. Furthermore, trapping
growth factors in a biomimetic matrix can provide a sustained
release at a lower dose [32]. Indeed, hydrogels based on CHI and
alginate (ALG) have already been used as a delivery carrier for bone
morphogenetic protein 2 (BMP-2) [30].

In our previous study [29], we engineered thick FS membranes
(4-35 pm) made of CHI and ALG by tuning the following deposi-
tion conditions: pH, polyelectrolyte concentration and number of
deposited layer pairs. These FS membranes were stable in a phys-
iological buffer and enabled the partial permeation of model drugs,
indicating that they may act as a reservoir for bioactive proteins.
Furthermore, we showed that these membranes enabled the
growth of skeletal myoblasts (C2C12), though with differences
depending on the chemistry of the ending layer.

In this work, we further explored the potentiality of the FS CHI/
ALG membranes as a simple model of a natural periosteum mem-
brane. We generated FS CHI/AGL membranes with tunable
mechanical properties, as confirmed by dynamic mechanical anal-
ysis, modulated by chemical crosslinking. BMP-2 was then incor-
porated into these membranes, and its release was followed for
1 month. Lastly, the bioactivity of these membranes towards both
myogenesis and osteogenesis was assessed in vitro using skeletal

myoblasts and their bioactivity in vivo was assessed using an ecto-
pic mouse model.

2. Materials and methods
2.1. Materials

CHI (medium molecular weight) was purchased from Sigma-
Aldrich (Germany) and was purified prior to use by a reprecipita-
tion method [33]. Briefly, the CHI was purified by dissolving it in
acetic acid and then precipitating it with NaOH (final pH ~8).
The suspension was subsequently sieved, and the precipitate was
thoroughly washed with distilled water and rinsed twice with eth-
anol for about 4 h. The product was frozen at —80 °C and lyophi-
lized. Finally, the obtained product was milled and the CHI
powder was dried at 60 °C overnight. The degree of N-deacetyla-
tion was found to be 78% by first-derivative ultraviolet spectropho-
tometry, using both glucosamine and N-acetylglucosamine
standards for calibration [34]. The molecular weight (M,) was
determined by viscometry in 0.5 M CH3COOH/0.2 M NaCHsCOO,
and was found to be 770 kDa according to the Mark-Houwing the-
ory (k=3.5x10"% a=0.76) [35]. The CHI was fluorescently
labeled using Alexa 568 (Invitrogen) following the manufacturer’s
protocol, except that the reaction was carried out for 2 h at pH 6
[29]. A Sephadex G-25 size exclusion column (PD-10, Amersham
Bioscience, Sweden) was used to purify the product and remove
any unbound dye.

Sodium ALG, derived from brown algae (low viscosity:
136 mPa.s), was obtained from Sigma and used as received. Human
recombinant BMP-2 was provided by Medtronics. BMP-2 labeled
with carboxyfluorescein (BMP-2F) was used to visualize BMP-2
in FS membranes as well as to quantify its incorporation by fluores-
cence spectrometry [26]. All reagents and solvents were used with-
out further purification. For staining of the cells, rhodamine
phalloidin (P2141) and the anti-troponin T antibody (T6277) were
purchased from Sigma. The 5-ethynyl-2’-deoxyuridine (EdU) pro-
liferation assay (C10340) was purchased from Life technologies.

2.2. Preparation of thick (CHI/ALG) free-standing films

The different steps of the FS membrane preparation are summa-
rized in Scheme 1. Briefly, the multilayer films were built on poly-
propylene substrates using freshly prepared polyelectrolyte
solutions (step 1). Prior to film deposition, the substrates were
cleaned with ethanol and rinsed thoroughly with water before
being dried with a stream of nitrogen. The substrates were first
dipped in the CHI solution for 5 min, then rinsed twice in water
(both at pH 5) for 2 min. Subsequently, they were immersed in
ALG solution (pH 3) for 5 min, followed by rinsing twice in water
(with the same pH as the ALG solution) for 2 min [29]. This proce-
dure was repeated using a dipping robot (DR3, Kirstein and Viegler
GmbH) until the deposition of 200 layer pairs had been achieved.
These FS membranes are hereinafter referred to as (CHI/ALG ),qo.
The membranes were subsequently allowed to dry in air and
detached from the substrates. For membrane crosslinking (step
2), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochlo-
ride (EDC) and N-hydroxysulfosuccinimide (s-NHS) were dissolved
in Milli-Q water, pH 5.5, at final concentrations of 10, 30,
50mg ml~! (for EDC) and 11 mgml~' (for s-NHS), respectively.
The FS membranes were put in contact with the freshly prepared
EDC/s-NHS solution overnight at 4 °C. They were then thoroughly
washed with HEPES (20 mM) at pH 7.4 and dried at room temper-
ature. In the following, the FS membranes crosslinked with EDC at
10, 30 and 50 mgml~! are denoted EDC10, EDC30 and EDC50,
respectively.
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Scheme 1. Different steps of the preparation of the (CHI/ALG),0 FS membranes. 1. The film is built on a polypropylene (PP) substrate before being air dried, detached and
stored. 2. The FS membrane is crosslinked using EDC and rinsed; it is then used for the myoblast culture. 3. The FS membrane is subsequently loaded with BMP-2; its
osteoinductive properties are assessed in vitro and in vivo in mice. After steps 2 and 3 of the procedure, the FS membrane can be stored in a dry state.

2.3. Fourier transform infrared spectroscopy (FTIR)

The chemical structure of the dry FS membranes was studied by
FTIR in transmission mode using a Vertex 70 spectrophotometer
(BrukerOptic Gmbh, Ettlingen, Germany) equipped with a mid-
infrared detector [36]. All spectra were recorded between 400
and 4000 cm ™! with a 2 cm™! resolution, using Blackman-Harris
three-term apodization and the standard Bruker OPUS/IR software
v6.5 (Bruker Optic Gmbh). After detachment of the FS membrane,
the spectra of the uncrosslinked and crosslinked (CHI/ALG )00 FS
films were acquired and the spectrum of air was taken as a refer-
ence. The experiments were performed in duplicate, with at least
four different samples per condition in each independent
experiment.

2.4. Scanning electron microscopy (SEM)

The morphological analysis of the uncrosslinked and cross-
linked (CHI/ALG)00 FS membranes was performed using SEM
(Quanta FEG 250 FEI), with both sides of the membranes being
observed in a high vacuum with a Everhart-Thornley detector for
secondary electrons at an acceleration of 3 kV. For cross-section
observations, the FS membranes were dipped in liquid nitrogen
until freeze fracture and the morphology was observed.

2.5. Dynamic mechanical analysis (DMA)

All viscoelastic measurements were performed using a
Tritec2000B dynamic mechanical analyser (Triton Technology,
UK) in the tensile mode. The measurements were carried out at
37 °C. The membrane samples were cut to ~4 mm width (mea-
sured accurately for each sample). Uncrosslinked and crosslinked
(CHIJALG),00 FS membranes were always analyzed immersed in
phosphate-buffered saline (PBS) placed in a Teflon® reservoir.
The geometry of the samples was then measured and the FS mem-
branes were clamped in the DMA apparatus at a spacing of 10 mm
and immersed in the liquid bath. After equilibration at 37 °C, the

DMA spectra were obtained from a frequency scan between 0.1
and 10 Hz. A static preload of 1 N was applied during the tests to
keep the sample tight. Three specimens were tested for each
condition.

2.6. BMP-2 loading and release

For the adsorption of BMP-2 on the FS membranes (Scheme 1,
step 3), a previously established protocol was followed [26,37].
Briefly, the FS membranes were cut into samples (~1cm?) and
deposited into 24-well plates, where they were immersed in a
1 mM HCI solution (pH 3) for about 1 h. After removal of the HCI
solution from the wells, the FS membranes were incubated with
the BMP-2 solution (overnight and at 4 °C). For the in vitro studies,
the loading was performed with a BMP-2 solution containing 2%
BMP-2F. The FS membranes were incubated at several concentra-
tions of BMP-2 (20, 60 and 100 g ml~') and their release profiles
were investigated. For EDC30, the loading was only performed at
20 pg ml~!'. Quantification of BMP-2 loading in and release from
the FS after several washes with a HEPES buffer (20 mM, pH 7.4)
was determined using a fluorescence spectrometer (Tecan Infinite
1000, Austria), as previously described [26]. Briefly, after the BMP-
2 loading solution had been removed from the wells, the HEPES
solution was added and the fluorescence of the well (including
FS membrane + HEPES solution) was measured (excitation
492 nm/emission 517 nm). At predetermined intervals, the HEPES
solution in the wells was replaced by fresh HEPES solution and
the fluorescence was measured. The amount incorporated was
calculated based on a calibration curve obtained with known
amounts of BMP-2 in solution (data not shown). The experiments
were performed in duplicate, with three different samples for each
condition in each independent experiment.

2.7. Cell culture

Murine C2C12 skeletal myoblasts (<20 passages, obtained from
the American Type Culture Collection) were cultured in tissue
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culture flasks in a 1:1 Dulbecco’s modified Eagle’s medium/Ham'’s
F12 medium (DMEM/F12; Gibco, Invitrogen, Cergy-Pontoise,
France) supplemented with 10% fetal bovine serum (PAA Laborato-
ries, Les Mureaux, France) containing 10 U ml~! penicillin G and
10 ug ml~' streptomycin (Gibco, Invitrogen) in a 37 °C/5% CO,
incubator. This medium is hereinafter denoted growth medium
(GM). Cells were subcultured prior to reaching 60-70% confluence
(approximately every 2 days).

2.8. C2C12 cell adhesion, proliferation and differentiation

Cell adhesion was performed on 10 x 10 mm? (CHI/ALG )20
membranes. At confluence, cells were trypsinized and seeded onto
the membranes at a density of 3 x 10% cells cm~! in 500 pl of med-
ium. For this purpose, the FS membranes were kept at the bottom
of the wells using a silicone ring. The cell suspension was added on
top of each immobilized membrane. In these culture conditions,
the medium was able to diffuse through the membrane. To commit
C2C12 cells toward myogenic differentiation, the cell medium was
switched from GM to a differentiation medium (DM; (1:1 DMEM/
F12) supplemented with 2% horse serum, containing 10 U ml~!
penicillin G and 10 pg ml~! streptomycin.

For fluorescent staining of the cells and myotubes, C2C12 myo-
blasts were fixed in a solution of 3.7% of formaldehyde in Tris-NaCl
buffer (0.15 M NacCl, 50 mM Tris-HCl, pH 7.4; TBS) for 20 min and
permeabilized for 4 min in TBS containing 0.2% Triton X-100. Sam-
ples were blocked in TBS containing 0.1% BSA for 1 h, and then
incubated with mouse anti-troponin T (1:100) antibody in TBS
containing 0.2% gelatin for 30 min. AlexaFluor488-conjugated sec-
ondary antibody was then incubated for 30 min. The actin cyto-
skeleton was stained by incubation in phalloidin-rhodamine
(1:800) for 30 min and nuclei were stained with 0.5 ug ml~! 4,6-
diamidino-2-phenylindole (DAPI). The fusion index of the myotu-
bes was calculated based on troponin T, as previously described
[38]. Briefly, the fusion index represents the proportion of fusion
events that occurs in a given condition. The higher the fusion
index, the more myoconductive the substrate. It was determined
by dividing the total number of nuclei in the myotubes (minimum
of two nuclei) by the total number of nuclei counted [38]. The
results represent at least three independent experiments, with
three FS membranes per condition. More than 100 nuclei were
analyzed for each condition.

The proliferation assay is based on the incorporation of the
modified RNA nucleoside uridine (5-ethynyl-2’-deoxyuridine,
EdU). During EdU assay, the dividing cells were stained and thus
quantified to rate the proliferation of cells onto the membranes.
The cells were then exposed to 10 uM EdU in culture medium for
30 min, fixed and permeabilized, and stained according to the
manufacturer instructions. Experiments were performed in tripli-
cate, with three different samples for each condition in each
experiment.

2.9. Alkaline phosphatase (ALP) assay and mineralization assay

ALP is an early marker of osteogenic differentiation. The ALP
assay determines the quantitative amount of ALP expressed by
the cells, which reflects their commitment to the osteogenic path-
way. BMP-2 bioactivity was assayed on C2C12 cells by quantifying
their ALP expression. C2C12 cells were seeded at 90,000 cells ml~'
of GM onto BMP-2-loaded membranes (20 pug ml~') deposited in
24-well plates. After 3 days of culture, the culture medium was
removed and the cells were washed with PBS and lysed by sonica-
tion over 5 s in 500 pl of 0.1% Triton-X100 in PBS. Next, 180 pl of a
pH 10 buffer containing 0.1 M 2-amino-2-methyl-l-propanol

(Sigma, France), 1 mM MgCl,, and 9 mM p-nitrophenyl phosphate
(Euromedex, France) was added to 20 pl of this lysate. The enzy-
matic reaction was monitored in a 96-well plate by measuring
the absorbance at 405 nm using a Tecan Infinite 1000 microplate
reader (Tecan, Austria) over 10 min. The total protein content of
each sample was determined using a bicinchoninic acid based pro-
tein assay kit (Interchim, France). The ALP activity was expressed
as millimoles of p-nitrophenol produced per minute per milligram
of protein. The experiments were performed for cells grown on
BMP-2-loaded membranes (bBMP-2) crosslinked to different
extents (EDC10, 30 and 50). A positive control was also included
by adding BMP-2 in solution (sBMP-2) for cells loaded on the
unloaded FS membranes. The experiments were performed in trip-
licate, with three different samples for each condition in each inde-
pendent experiment.

For mineralization, C2C12 cells were cultured on the FS mem-
branes (loaded or not with BMP-2) for 2 weeks in GM supple-
mented with 50mM ascorbic acid and 8 mM B-glycerol
phosphate. Alizarin red staining was used to detect mineralization.
Cells were fixed in 3.7% formaldehyde in PBS for 40 min. After rins-
ing with milliQ water, 500 pl of Alizarin red (2% w/v in water, pH
4.2, adjusted with NaOH and HCI) was added to each sample and
incubated at room temperature for 30 min then rinsed with
Milli-Q water. Images were taken using an Olympus bx41 micro-
scope. Alizarin staining was quantified by converting the uncali-
brated linear RGB pictures into an uncalibrated linear 32-bit
CMYK stack using the plug-in version of Stephan Saalfeld’s Bean-
Shell script in the Image ] software v1.43 m (NIH). The magenta
picture was then taken as being the closest to red and the inte-
grated density was determined for each condition.

2.10. Imaging of cells and FS membranes

Cells and membranes were observed using a Zeiss LSM 700
confocal laser scanning microscope (CLSM, Carl Zeiss SAS, Le Pecq,
France) in the HEPES-NaCl with a 10x or 20x air immersion
objective. The membranes were deposited in between two
25 mm diameter glass coverslips in a drop of HEPES 20 mM main-
tained by an Attofluor chamber (Invitrogen). All image quantifica-
tions were performed using Image ] software v1.43 m (NIH).

2.11. Preliminary in vivo ectopic assay in mice

Two female NMRI nude mice (5 weeks old) weighing 24 +0.5 g
were purchased from Janvier (Le Genest St Isle, France). Facility
rooms were maintained at constant temperature and humidity
(25 °C, 30-50% relative humidity), with a 12 h light/dark cycle.
All animal studies were conducted in accordance with European
Union guidelines and approved by the regional ethics committee.
Four FS membranes crosslinked at EDC10 and EDC50 and loaded
at two different BMP-2 amounts (60 and 100 pgml~!) (as
described in Section 2.6) were used for the preliminary tests. The
dry membranes were implanted subcutaneously into the backs of
anesthetized mice. Anesthesia was performed using 1.5 1m~! 4%
isoflurane in air (Axience, Pantin, France) during induction and
then 11 m~" 2% isoflurane in air for maintenance. After implanta-
tion, suture stitches were performed. Subcutaneous membrane-
mediated bone formation was monitored at days 0, 9, 21, 32,42
and 52 post-implantation with whole-body scanner using micro-
computed tomography (/CT; Viva-CT 40, Scanco Medical, Briitisse-
len, Switzerland) with low-resolution settings (an isotropic voxel
size of 80 um, a voltage of 70 kV and a current of 114 mA). Quan-
tification of bone formation was obtained using a low threshold of
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drawn around the observed new bone formations.

2.12. Statistical analysis

Data are reported as mean #* standard error of the mean and
statistical comparisons were performed using SigmaPlot software.
EdU, ALP and Alizarin red data were compared by t-test. For the
fusion index, as the numbers of cells for each condition were not
equal (there were much fewer cells in the EDC10 FS membranes),
a Mann-Whitney rank sum test was applied. All the conditions
for the released data (different EDC and different loading concen-
trations) were analyzed using a non-parametric Kruskal-Wallis
test. Statistically different values are reported in the figures
(p < 0.05 was considered significant).

3. Results
3.1. FS polysaccharide membranes: morphology and crosslinking

In this work, ~50 pm thick FS membranes made of (CHI/ALG),q0
were produced by the LbL assembly of CHI and ALG on a polypro-
pylene substrate and subsequently detached by air drying. Such
membranes were easy to handle with tweezers in both dry and
hydrated conditions (Fig. 1A), and can be cut into any shape
desired. The (CHI/ALG )00 FS membranes were crosslinked using
EDC in order to improve their stability in liquid conditions, as
LbL film stability and biodegradability can be significantly changed
by chemical crosslinking [28,39,40]. Interestingly, this chemistry is
of “zero length”, meaning that there is no additional molecule
introduced into the film, the carbodiimide being simply converted
to a water-soluble urea derivative, which has very low cytotoxicity
[41,42] and can be washed away. SEM observations of the upper
side and cross-sections of the FS membranes crosslinked at
different degrees (Fig. 1B and B’) revealed an increased roughness
when the crosslinking degree was higher. Cross-sections of the
FS membranes (Fig. 1B’) also revealed the homogeneous structure
of the membranes.

Crosslinking of the FS membrane was characterized by FTIR and
DMA. Fig. 2A shows FTIR spectra of the (CHI/ALG )00 membranes
crosslinked to different degrees. Two major regions can be
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Fig. 1. Optical microscopy and SEM images of free-standing (CHI/ALG)q0 mem-
branes. (A) Images of a dry (left) or hydrated (right) (CHI/ALG),00 FS membrane.
Scale bar = 1 cm. (B) SEM observations of the upper side of the native (CHI/ALG),00
membrane and for the FS membranes crosslinked at increasing concentrations of
EDC from 10 to 50 mg ml~". Scale bar = 10 um. (B’) Corresponding cross-sections of
the crosslinked FS membranes. Scale bar = 20 pm.

observed: a band at 1412 cm™!, corresponding to the COO™ sym-

metric stretch of ALG [43]; and a second band between 1500 and
1700 cm™!, containing the COO~ asymmetric stretch of ALG at
1605 cm~! [44] and the amide I band of CHI. As the EDC concentra-
tion increased, we noted a broadening of the amine I band, a
decrease in the carboxylic peak at 1605 cm™~' and an increase in
the C=0 ester band at 1736 cm™' (Fig. 2A). Differences between
the spectra obtained after crosslinking to the spectrum of a native
membrane enabled us to highlight the structural changes upon
crosslinking, i.e. the increase in the amide I band and the decrease
in the COO™ peak (Fig. 2A").

DMA experiments were performed to assess the mechanical/
viscoelastic behavior of the FS membranes in a physiological envi-
ronment (Fig. 2B and B’). The storage (elastic) modulus E’ and the
loss factor (tand) were determined. E' was always lower than
3 MPa for the uncrosslinked membranes and the crosslinked mem-
branes at EDC10. In contrast, it was always higher than 15 MPa for
all the other crosslinking conditions. E’ increased with increasing
EDC concentration except for the FS membranes at EDC70, which
were found to be brittle. We also noted a slight increase in E’ with
increasing frequency, which has previously been found in pure CHI
membranes [45]. The tand value is the ratio of the amount of
energy dissipated by viscous mechanisms relative to energy stored
in the elastic component. It provides information about the damp-
ing properties of the membrane. The tand value was very similar
for all conditions, but it also exhibited a slight increase with
frequency. The native membrane and the EDC10 membranes had
slightly higher dissipative properties at these higher frequencies,
which can be related to their lower crosslinking degree [46].

Based on these results and on the fact that crosslinking is
known to improve resistance to factors such as pH changes and
enzymatic degradation [39], we selected FS membranes cross-
linked at EDC10, EDC30 and EDC50 for further cellular assays.

3.2. Myogenic differentiation on crosslinked FS membranes

The C2C12 myoblasts were observed after 24 h in GM and after
5 days in DM (Fig. 3A). The percentage of proliferating cells and
their fusion index were quantified after 1 and 5 days, respectively
(Fig. 3B and C). We noted that few cells attached to the EDC10
membranes, whereas they adhered to and proliferated and fused
on the EDC30 and EDC50 membranes (Fig. 3A). The EdU prolifera-
tion assay confirmed that the cells were metabolically active and
exhibited significantly increased proliferation when the crosslink-
ing of the FS membrane was increased (Fig. 3B). After 5 days in DM
on EDC10 films, cells had begun to form large aggregates and there
was only a few short myotubes. However, cells differentiated into
long, thin myotubes on EDC30 and EDC50 crosslinked membranes
(Fig. 3C). The fusion index increased with the EDC concentration,
from 0.23 £0.11 for EDC10 to 0.41 +0.08 for EDC30 and 0.48 +
0.03 for EDC50 FS membranes. All together, these results showed
that myogenic differentiation was influenced by the crosslinking
degree, the more crosslinked membranes being more
myoconductive.

3.3. BMP-2 loading and release from the crosslinked FS membranes

In order to study the potentiality of the FS membranes for bone
repair, we selected BMP-2 as an osteoinductive growth factor
[47,48] to be loaded into the membranes. Here, we studied the
potentiality of crosslinked FS membranes to trap and subsequently
release BMP-2. CLSM images of the FS membranes after loading
with BMP-2 are shown in Fig. 4A, the FS membranes being labeled
in red with Alexa568. Two layers of BMP-2 were clearly visible at
the upper (ALG ending) and lower (CHI) sides of the membrane.
Moreover, the BMP-2-loaded FS membranes were found to be
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Fig. 2. Crosslinking and mechanical properties of the FS membranes. (A) FTIR spectra of native and crosslinked (CHI/ALG),00 FS membranes obtained at increasing EDC
concentrations and (A’) differences between the spectra of the crosslinked FS membranes to that of the native membrane. (B, B’) Results of the DMA experiments performed at
37 °C in PBS over 0.1-20 Hz. (B) Variation of the storage modulus (E’) and (B’) of the loss factor (tang).

stable and to retain their integrity when kept in HEPES at 4 °C for
8 months (Fig. 4A, right image).

The release kinetics of BMP-2 from the FS membranes was fol-
lowed over 1 month for FS membranes loaded with BMP-2 at con-
centrations of 20, 60 and 100 pug ml~' (Fig. 4B, B’ and B” and Table
1). The incorporation of BMP-2 was measured initially (I";) and
after 1 month (I'f). For all the EDC concentrations, the amounts
of BMP-2 incorporated, T, increased significantly with loading
concentration of BMP-2. For instance, for the EDC10 membrane,
the total amount of BMP-2 loaded increased from 2.7 to 10.8 pug
when the initial BMP-2 concentration loaded increased from 20
to 100 pg ml~". Also, the initial loading of BMP-2 in the FS mem-
branes was slightly higher for the EDC10 FS membranes than for
the EDC50 FS membranes.

Regarding the release profiles, the trends were similar, with a
“burst” release of ~5-20% (I',) observed in the first 4 h, followed
by a continuous release until a plateau was reached. It should be
noted that this burst was systematically higher for the low cross-
linking membranes (EDC10) compared to the EDC50 ones. This
was also the case for the absolute amount of BMP-2 released,
which was of the order of 1-2 g, and for the total percentage of
BMP-2 released.

However, the final loaded amounts I't of BMP-2 remaining in
the FS after extensive washes were statistically similar for EDC10
and EDC50. Globally, Iy increased with the initial concentration
of BMP-2 in solution. Maxima of 8.8 +2.3 and 7.4+2.3 ug per
membrane for EDC 10 and EDC 50, respectively, were reached for
the highest loaded BMP-2 concentration of 100 pgml~!. The
EDC30 FS membranes presented an intermediate trend and were
not considered for further evaluation.

All together, these results showed that the amount of BMP-2
incorporated and the corresponding release profile can be tuned

depending on the initial concentration of BMP-2 in solution and
the degree of crosslinking of the FS membrane.

3.4. Osteoinductive potential of FS membranes in vitro and in vivo

The bioactivity of the BMP-2-loaded FS membranes in vitro was
assessed using C2C12 myoblasts, these cells being an acknowl-
edged model of osteoinduction in vitro [49]. We noted that cell
adhesion slightly increased in the presence of bBMP-2 compared
to sBMP-2 (data not shown). Cell proliferation, as quantified by
the EdU assay (Fig. 5A), was only ~4% for the EDC10 membranes,
whereas it was significantly higher, at 17 + 8 and 16 * 6%, respec-
tively, for the EDC30 and EDC50 FS membranes loaded with
BMP-2. Regarding the osteogenic capacity of the FS membranes,
we first verified, as a negative control, that all the crosslinked FS
membrane did not induce ALP activity in the absence of BMP-2
(Fig. 5B and data not shown). The positive control consisted of
sBMP-2 added to the cells grown on the crosslinked FS membranes.
Cells were found to express a similar level of ALP on all the BMP-2-
loaded FS membranes whatever the crosslinking degree, but the
ALP level was lower than the positive control.

Longer term mineralization was also assessed after 1 and
2 weeks by visualizing Alizarin red staining (Fig. 5C and C'). As
anticipated, only a very low basal staining of the membranes in
the absence of BMP-2 was detected for all crosslinking conditions,
as shown in Fig. 5C" (and data not shown). In contrast, all BMP-2-
loaded membranes induced a positive staining with Alizarin, indi-
cating the presence of calcium deposits. The mineralization was
visible at both time points. However, we noted significantly higher
calcium deposition on EDC10 and EDC50 in comparison to EDC30
FS membranes. Overall, these results indicate that the BMP-2-
loaded FS membranes are osteoinductive in vitro. As the two
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Fig. 3. C2C12 myoblast proliferation and differentiation on the FS polysaccharide membranes. Cells were cultured on the FS membranes crosslinked at EDC10, EDC30 and
EDC50. (A) CLSM images of C2C12 myoblasts were taken after 24 h in GM and after 5 days in DM. The actin cytoskeleton was stained with rhodamine-phalloidin, the nuclei
were stained with DAPI and the myotubes with troponin T. Scale bar = 200 um. (B) Percentage of proliferating cells measured by the EdU assay after 24 h in GM and (C)
quantification of the fusion index after 5 days in DM on EDC10, EDC30 and EDC50 FS membranes (mean + SEM of three independent experiments, *p < 0.05).

extreme conditions, ie EDC10 and EDC50, showed higher calcium
deposition, we selected them for the in vivo preliminary study.

In order to further assess the osteoinductive potential of the
BMP-2-loaded crosslinked FS membranes, a preliminary study
was performed in vivo in a mouse ectopic model [50,51]. We
selected four different FS membranes crosslinked at EDC10 and
EDC50 and loaded at 60 and 100 pug ml~. In situ bone formation
was followed by UCT for 8 weeks (Fig. 6A) and the bone volume
was quantified (Fig. 6B). We noted that the EDC10 FS membrane
did not lead to bone formation whatever the amount of BMP-2
loaded (Fig. 6 and data not shown). In contrast, a bone nodule
was formed as soon as day 21 for the EDC50 FS membrane loaded
with 100 pg ml~! BMP-2, and this continued to grow up to day 52.
These preliminary data suggest that only the EDC50 FS membrane
loaded at the highest amount (100 pg ml~!) exhibited osteoinduc-
tive properties in vivo.

4. Discussion

In this work, we developed a periosteum-like biomaterial by
producing an ~50 pm thick FS membrane made of (CHI/ALG )00
by LbL assembly. The periosteum being a bilayer structure, com-
posed of a fibrous layer linking muscles and ligaments and a cellu-
lar layer of osteoblastic precursors [52], a biomimetic membrane
would assume the characteristics of being both myoconductive
and osteoinductive.

The development of skeletal muscle is a multistep process,
which includes initial cell adhesion and proliferation, followed by

withdrawal from the cell cycle and differentiation into multinucle-
ated myotubes [53]. ALG has already been used as biomaterial for
studying muscle cell growth [54-56]. Our previous work using
C2C12 skeletal myoblasts cultured on ALG- or CHI-ending FS native
membranes showed that cell adhesion was better on the ALG-end-
ing membranes [29]. Here, we found that crosslinked FS mem-
branes were myoconductive and that myoblast proliferation and
differentiation increased as a function of the crosslinking degree.
Our results are consistent with previous results showing that mus-
cle cell adhesion, proliferation and differentiation depend on sub-
strate stiffness [57-59]. It is important to note here that both the
stiffness and the roughness may influence the cell fate, as we visu-
alized by SEM that the surface of the FS membranes were rougher
with a greater degree of crosslinking (Fig. 1B).

Delivering BMP-2 in a controlled manner is a challenge for the
engineering of osteoinductive materials. It is known that the effi-
cacy of BMP delivery systems depends on the amount of BMP
delivered [60] but also on the formulation of the matrix. Commer-
cial collagen matrices are known to poorly retain BMP-2 as 40-60%
of the encapsulated protein is immediately released in the first 3 h,
leading to low therapeutic effect and cost-effectiveness [61-63]. In
order to overcome such drawbacks, several studies have been
undertaken with the aim of delivering BMP-2 more efficiently
[64-66]. Some of these studies used bulk polymers where consid-
erable amounts of BMP-2 were required (in the order of the milli-
grams). Recently, hydrogels that present a stronger affinity for
BMP-2 have also been developed [67,68].

To our knowledge, very few studies have aimed at delivering
BMP-2 from polysaccharide-based membranes. Recently, Chung
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Fig. 4. Quantification of BMP-2 loaded in and released from the (CHI/ALG) FS
membranes. (A) CLSM images of the EDC50 FS membrane labeled with Alexa 568
(red) and loaded with BMP-2 F (green). Two BMP-2 layers, on the lower and upper
side of the membrane, were observed over a period of 8 months. (B) Release profiles
of the EDC10, EDC30 and EDC50 FS membranes over a period of 1 month for an
initial BMP-2 loading concentration of 20 pg ml~'; (B, B") release profiles of the
EDC10 and EDC50 FS membranes over a period of 1 month for initial BMP-2 loading
concentrations of 60 ug ml~! (B’) and 100 ug ml~! (B”). Values are mean + SEM of
three samples.

et al. [69] produced an ~130 pm thick self-assembled membrane
made of collagen with HA. The membranes were fabricated in a
single step by adding BMP-2 to the collagen solution before over-
laying it on top of the HA solution. Chung et al. observed a slow,
sustained release of BMP-2 without an initial burst release. Such
behavior was attributed to the washing steps necessary to elimi-
nate the excess HA solution immediately upon membrane forma-
tion, and to both the physical entrapment of BMP-2 within the
collagen-HA membrane and the ionic complexation between the

negatively charged carboxyl groups of HA and the net positively
charged BMP-2 protein. Such bonds contributed to enhancing the
noncovalent immobilization, prolonged release of the protein and
lack of a burst release. The osteogenic potential of collagen-HA
membranes at 4 weeks in a subcutaneous mouse model was
shown via Von Kossa staining and immunostaining of osteopontin
and osteocalcin.

Surface coatings in the form of LbL films can be used to locally
deliver BMP-2 from biomaterial surfaces [26,51,70]. The different
strategies showed that: (i) the precise film architecture allowed
compartmentalization of the protein, leading to sequential release;
(ii) the loading of proteins can be done in mild conditions, thus pre-
serving their activity; and (iii) the release can be tuned by the num-
ber of layers.

In our previous study [29], we demonstrated that native (CHI/
ALG) FS membranes were permeable to FITC-dextran of different
molecular weights. Here, we showed that BMP-2 can be loaded
in crosslinked FS polysaccharide membranes. The amount loaded
can be tuned depending on the initial concentration of BMP-2 in
solution and the degree of crosslinking of the FS membrane
(Fig. 4 and Table 1). In view of the different parameters used by
the different research groups (including the formulation condi-
tions, BMP-2 doses used and loading conditions), it is difficult to
correlate our results directly with the other studies. Comparison
of the behavior of poly-L-lysine (PLL)/HA films might be more rel-
evant, as we followed the same protocol to load BMP-2 in the EDC-
crosslinked FS membranes as was previously used for crosslinked
PLL/HA-supported films [26]. In the work of Crouzier et al. [37],
the release of BMP-2 loaded at 100 pg ml~' in PLL/HA films depos-
ited on macroporous B-tricalcium phosphate/HA and crosslinked
(EDC10 and 50) membranes was followed over 46 days. At the
end of the study period, the amounts of BMP-2 retained were
3.2+ 0.4 and 4.1 + 0.7 pg per granule for the films crosslinked with
EDC10 and EDC50, respectively. Thus, about 75% of the initial
amount loaded was released from the crosslinked film with
EDC10 and 30% was released from the one with EDC50. In a recent
study, a porous titanium implant was coated using the same PLL/
HA film [51] crosslinked with EDC (EDC10, EDC30 and EDC70)
and loaded with BMP-2 at 20 and 100 pug ml~'. The amount of
BMP-2 incorporated could be tuned over a wide range, depending
on both the extent of the film crosslinking and the initial BMP-2
concentration. For example, EDC10 incorporated the highest
amount of BMP-2 (4.2 and 18.9 pg cm~2 when loaded with 20
and 100 pg ml~! of BMP-2, respectively). At the end of 7 days, such
EDC10 released 62 and 77% of the initial amount of BMP-2 incorpo-
rated for 20 and 100 pg ml~' BMP-2, respectively. The more cross-
linked films were found to load more BMP-2 and to release a lower
percentage of it. Thus, the incorporation and release profiles we
observed here are qualitatively similar, i.e. increased BMP-2 load-
ing with higher initial BMP-2 concentration and increased percent-
age released with less crosslinked film/membrane (EDC10
compared to EDC50).

Macdonald et al. [71] coated a 3-D scaffold by using LbL films
consisting of 100 successively deposited tetralayers. Each tetralay-
er consisted of a hydrolyzable poly(B-aminoester) as a polycation,
chondroitin sulfate as a polyanion and BMP-2 as a polycation at an
initial concentration of 50 pg ml~! paired with chondroitin sulfate.
A small burst release was observed and 80% of BMP-2 was released
over a period of 2 days, with the remaining 20% being released in a
sustained way over a period of 2 weeks. Macdonald et al. found
that the total amount of BMP-2 could be tuned depending on the
number of tetralayers. Other release profiles have also been dis-
cussed in the literature [70,72] using the LbL technology.

The loading of BMP-2 in our EDC50 crosslinked FS membranes
led to a decrease in cell proliferation after 24 h in culture in GM
(Fig. 5A) compared to the case without BMP-2 (Fig. 3). This result
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Table 1
Summary table of the initial (I';) and final (I'y) adsorbed amount of BMP-2 as well as burst (I'gur:) and percentage released after 28 days.
[BMP-2]iigiar (g ml~') 20 60 100
I (ng) T; I Tpurst % Released T I Tpurst % Released T I Tpurst % Released
EDC10 27+04 1.7+03 ~05 369+106 7418 5002 ~09 343+75 10.8+1.2* 88+03 ~1 18.0+34
EDC30 3.0+10 21+x03 ~03 29.5+438 NA NA NA NA NA NA NA NA
EDC50 39+02 3.1+x03 ~03 20.8+2.1 44+0.6 38+06 ~02% 144+20 8.0+2.6% 74+23 ~0.6 15.0+£1.3

The FS membranes crosslinked at EDC10, 30 or 50 were loaded with an initial concentration of BMP-2 of 20, 60 and 100 g ml~. p < 0.05 (*) when comparing to EDC10 loaded
@ 20 ug ml~'; (#) when comparing to EDC50 loaded @ 20 ug ml~'; ($) when comparing to EDC10 loaded @ 60 pig ml~".

NA: not applicable.
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Fig. 5. Proliferation and osteogenic differentiation of C2C12 myoblasts on BMP-2-loaded FS membranes. (A) Quantification of myoblast proliferation after 24 h of culture in
GM in the absence or presence of BMP-2 loaded in the FS membranes (triplicate samples, n = 3) or added in solution to the cells. (B) ALP activity of C2C12 myoblasts cultured
for 3 days on the BMP-2-loaded membranes crosslinked at EDC10, 30 and 50 (BMP-2 was loaded at 20 pg ml~' on the FS membranes) in comparison to an FS membrane in the
presence of sBMP-2 (positive control, BMP-2 added at 600 ng ml~') (triplicate samples, n=3). (C) Microscopic images of Alizarin red staining showing C2C12 cell
mineralization in contact with the crosslinked FS membranes after 1 and 2 weeks in culture. Upper panel: myoblasts on FS membranes in the absence of BMP-2, showing no
mineralization. Lower panels: cell mineralization on BMP-2-loaded FS membranes, the membranes crosslinked at EDC10, EDC30 or EDC50 (n = 3). Scale bar = 200 pm. (C')

Quantification of Alizarin red from groups of pictures shown in (C). *p < 0.05.

may be explained by the differentiation commitment of the cells,
as they exit the cell cycle to commit to osteogenesis. Indeed, this
finding is corroborated with the ALP activity after 3 days in culture.
Our results regarding the decrease in proliferation are consistent
with the results obtained by Chung et al. [69] for collagen/HA
membranes loaded with BMP-2.

The results of the preliminary in vivo study in an ectopic site of
nude mice revealed differences between the FS membranes
according to their degree of crosslinking and the amount of BMP-
2 incorporated. Note that we have already shown that, in the
absence of BMP-2, a polysaccharide film cannot itself be osteoin-
ductive [51]. Here, the EDC10 membranes did not lead to a visible
bone nodule formation even after 52 days. In contrast, EDC50
membranes led to observable bone formation in the vicinity of
the membrane as early as 21 days after implantation (Fig. 6A),
but only for the highest BMP-2 loading concentration. In view of
the different loading and release profiles of the FS membranes
(Table 1 and Fig. 4), several hypotheses may be made: first, these
differences in osteoinduction may be due to the different release

kinetics in vivo; second, they may be due to a different bioactivity
of the BMP-2 released from the cross-linked membranes; and
third, the biodegradability of the FS polysaccharide membranes
in vivo may play a role, as in vivo biodegradability of CHI/HA films
was previously shown to depend on the degree of crosslinking [25].

Several studies have shown that a carrier incorporating BMP-2
can induce bone formation in an ectopic site by activating a set
of cellular events [50,69,71,73,74]. Although all of these studies
observed bone formation, the amount of BMP-2 incorporated in
the carriers and the time in which osteogenesis occurred were
always different. Usually, in vivo experiments using rats (subcuta-
neous back) and rabbits (intramuscular) as animal models revealed
bone formation after 4 weeks. Kisiel et al. [74] using an injectable
hyaluronic acid hydrogel as a BMP carrier (20 pgml~') in a rat
ectopic model, observed bone formation after 7 weeks. Here, we
found bone formation at 3 weeks. In all cases, it seems that the
induction of bone formation requires a local retention of BMP-2,
a release over a prolonged period and exposure to the surrounding
cells.

http://dx.doi.org/10.1016/j.actbio.2014.12.027
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Fig. 6. (A) Time-lapse nCT imaging of bone formation for BMP-2-loaded crosslinked FS membranes implanted under the skin of mice, followed at regular time intervals up to
day 52. The bone nodule forming in the case of the EDC50 FS membrane is indicated with a red arrow. (B) Quantification of the bone volume as a function of time for the
EDC10 and EDC50 BMP-2-loaded FS membranes. No bone formation was detected for the EDC10 FS membrane.

In future studies, we aim to follow the biodegradability of the FS
membrane as well as BMP-2 release in vivo. In addition, the next
step will be to study their osteoinductive properties in a bone site.

5. Conclusions

In summary, FS membranes made of the polysaccharides CHI
and ALG were crosslinked chemically using EDC, which improved
their mechanical properties. The crosslinked membranes enabled
the proliferation of skeletal myoblasts and their subsequent differ-
entiation in myotubes, a process that depended on the extent of
crosslinking. Furthermore, the crosslinked FS membranes could
be loaded with the osteoinductive growth factor BMP-2. The
amount of BMP-2 loaded and the release profile were tuned
depending on the EDC concentration and the initial concentration
of BMP-2 in solution. After an initial burst, the growth factor was
released over 1 month by diffusion. The osteoinductive capacity
of the FS membranes was proved in vitro by the ALP test and min-
eralization assays. Preliminary in vivo data suggest that the EDC50
FS membrane was osteoinductive in a mouse ectopic model after
21 days. We believe that these myoconductive and osteoinductive
membranes will open new perspectives for future in vivo studies
as tissue-engineered constructs for the repair of bone fractures.
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Appendix A. Figures with essential color discrimination

Certain figures in this article, particularly Figs. 1, 3, 5 and 6 are
difficult to interpret in black and white. The full color images can
be found in the on-line version, at http://dx.doi.org/10.1016/
j.actbio.2014.12.027.
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