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Diabetic retinopathy diagnosis
through multi-agent approaches

Abstract

Diabetic retinopathy has been revealed as a serious public health problem in occi-
dental world, since it is the most common cause of vision impairment among people
of working age. The early diagnosis and an adequate treatment can prevent loss
of vision. Thus, a regular screening program to detect diabetic retinopathy in the
early stages could be efficient for the prevention of blindness. Due to its charac-
teristics, digital color fundus photographs have been the preferred eye examination
method adopted in these programs. Nevertheless, due to the growing incidence of
diabetes in population, ophthalmologists have to observe a huge number of images.
Therefore, the development of computational tools that can assist the diagnosis is
of major importance. Several works have been published in the recent past years
for this purpose; but an automatic system for clinical practice has yet to come. In
general, these algorithms are used to normalize, segment and extract information
from images to be utilized by classifiers which aim to classify the regions of the
fundus image. These methods are mostly based on global approaches that cannot
be locally adapted to the image properties and therefore, none of them perform as
needed because of fundus images complexity.

This thesis focuses on the development of new tools based on multi-agent approaches,
to assist the diabetic retinopathy early diagnosis. The fundus image automatic
segmentation concerning the diabetic retinopathy diagnosis should comprise both
pathological (dark and bright lesions) and anatomical features (optic disc, blood
vessels and fovea). In that way, systems for the optic disc detection, bright lesions
segmentation, blood vessels segmentation and dark lesions segmentation were im-
plemented and, when possible, compared to those approaches already described in
literature. Two kinds of agent based systems were investigated and applied to digital
color fundus photographs: ant colony system and multi-agent system composed of
reactive agents with interaction mechanisms between them. The ant colony system
was used to the optic disc detection and for bright lesion segmentation. Multi-agent
system models were developed for the blood vessel segmentation and for small dark
lesion segmentation. The multi-agent system models created in this study are not
image processing techniques on their own, but they are used as tools to improve
the traditional algorithms results at the micro level. The results of all the proposed
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approaches are very promising and reveal that the systems created perform better
than other recent methods described in the literature.

Therefore, the main scientific contribution of this thesis is to prove that multi-agent
systems based approaches can be efficient in segmenting structures in retinal images.
Such an approach overcomes the classic image processing algorithms that are limited
to macro results and do not consider the local characteristics of images. Hence,
multi-agent systems based approaches could be a fundamental tool, responsible for
a very efficient system development to be used in screening programs concerning
diabetic retinopathy early diagnosis.
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Diagnóstico de retinopatia diabética
através de abordagens multi-agente

Resumo

A retinopatia diabética tem-se revelado como um problema sério de saúde pública
no mundo ocidental, uma vez que é a principal causa de cegueira entre as pessoas
em idade ativa. Contudo, a perda de visão pode ser prevenida através da deteção
precoce da doença e de um tratamento adequado. Por isso, um programa regular
de rastreio e monitorização da retinopatia diabética pode ser eficiente na prevenção
da deterioração da visão. Devido às suas características, a fotografia digital colorida
do fundo do olho tem sido o exame adotado neste tipo de programas. No entanto,
devido ao aumento da incidência da diabetes na população, o número de imagens
a serem analisadas pelos oftalmologistas é elevado. Assim sendo, é muito impor-
tante o desenvolvimento de ferramentas computacionais para auxiliar no diagnós-
tico desta patologia. Nos últimos anos, têm sido vários os trabalhos publicados com
este propósito; porém, não existe ainda um sistema automático (ou recomendável)
para ser usado nas práticas clínicas. No geral, estes algoritmos são usados para
normalizar, segmentar e extrair informação das imagens que vai ser utilizada por
classificadores, cujo objetivo é identificar as regiões da imagem que se procuram.
Estes métodos são maioritariamente baseados em abordagens globais que não po-
dem ser localmente adaptadas às propriedades das imagens e, portanto, nenhum
apresenta a performance necessária devido à complexidade das imagens do fundo do
olho.

Esta tese foca-se no desenvolvimento de novas ferramentas computacionais baseadas
em sistemas multi-agente, para auxiliar na deteção precoce da retinopatia diabética.
A segmentação automática das imagens do fundo do olho com o objetivo de diagnos-
ticar a retinopatia diabética, deve englobar características patológicas (lesões claras
e escuras) e anatómicas (disco ótico, vasos sanguíneos e fóvea). Deste modo, foram
criados sistemas para a deteção do disco ótico e para a segmentação das lesões claras,
dos vasos sanguíneos e das lesões escuras e, quando possível, estes foram compara-
dos com abordagens já descritas na literatura. Dois tipos de sistemas baseados em
agentes foram investigados e aplicados nas imagens digitais coloridas do fundo do
olho: sistema de colónia de formigas e sistema multi-agente constituído por agentes
reativos e com mecanismos de interação entre eles. O sistema de colónia de formi-
gas foi usado para a deteção do disco ótico e para a segmentação das lesões claras.
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Modelos de sistemas multi-agente foram desenvolvidos para a segmentação dos vasos
sanguíneos e das lesões escuras. Os modelos multi-agentes criados ao longo deste
estudo não são por si só técnicas de processamento de imagem, mas são sim usados
como ferramentas para melhorar os resultados dos algoritmos tradicionais no baixo
nível. Os resultados de todas as abordagens propostas são muito promissores e reve-
lam que os sistemas criados apresentam melhor performance que outras abordagens
recentes descritas na literatura.

Posto isto, a maior contribuição científica desta tese é provar que abordagens baseadas
em sistemas multi-agente podem ser eficientes na segmentação de estruturas em im-
agens da retina. Uma abordagem deste tipo ultrapassa os algoritmos clássicos de
processamento de imagem, que se limitam aos resultados de alto nível e não têm em
consideração as propriedades locais das imagens. Portanto, as abordagens baseadas
em sistemas multi-agente podem ser uma ferramenta fundamental, responsável pelo
desenvolvimento de um sistema eficiente para ser usado nos programas de rastreio
e monitorização da retinopatia diabética.
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1. Introduction

In this chapter, a brief description of the problem under consideration, as well as
the motivation for this study realization are made. Then, the goals of this work are
succinctly indicated. Finally, the thesis structure is presented.

1.1. Problem definition

Diabetic retinopathy (DR) is a specific microvascular complication of diabetes and
it has been revealed as a serious public health problem in occidental world, since it
is the most common cause of vision impairment among people of working age. The
early diagnosis and an adequate treatment can prevent loss of vision. But this is not
an easy task because patients with DR have no symptoms until visual loss develops,
when the macular area is affected. Therefore a regular screening program to detect
retinopathy in the early stages could be efficient for the prevention of blindness.
Digital color fundus photographs have been the preferred eye examination method
adopted in these programs, because they permit a high quality record for detecting
early signs of DR and monitoring its progression. Furthermore, their acquisition is
cheap and noninvasive [1, 2].

Due to the growing incidence of diabetes in population, caused by the popula-
tion growth, aging, physical inactivity and an increasing prevalence of obesity, the
number of people affected by DR has grown to alarming numbers. Consequently,
ophthalmologists have to observe a huge number of images that is a time consum-
ing and exhausting process, being worsened by the lack of ophthalmologists in less
developed areas. In that way, an effective prevention of diabetic retinopathy in an
ophthalmologist based screening has been compromised. Thus, the development of
computational tools that can assist the early diagnosis is of major importance.

The digital nature of fundus photographs allows automatic analysis to reduce the
workload of ophthalmologists and the health costs of the screening program of the
disease. In recent years, a series of approaches based on image processing, pattern
recognition and machine learning algorithms, have been proposed for the early DR
diagnosis in color fundus images. In general, these algorithms are used to normal-
ize, segment and extract information from images to be utilized by classifiers which
aim to classify the regions of the fundus images. The fundus image automatic seg-
mentation should comprise both anatomical and pathological features. The fundus
anatomic structures are optic disc, blood vessels and fovea. The DR characteristic
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pathological features include dark lesions (microaneurysm, hemorrhages, neovessels)
and bright lesions (hard exudates and cotton wool spots). Several works have been
reported in literature concerning the segmentation of each of these structures [3, 4].
Despite all these studies, automatic fundus analysis remains a difficult task and an
automatic system for clinical practice has yet to come [3, 4]. The main difficulties of
these systems come from the fact that anatomical and pathological retinal objects
mutually affect each other segmentation, producing false positives. For example,
the blood vessels extraction may be influenced by the bright lesions and dark le-
sions presence; the optic disc may influence the bright lesions segmentation, and its
detection may be affected by bright lesions and blood vessels. Moreover, the digital
color fundus photographs frequently present poor contrast, noise, and great inter-
and intra-image variability, affecting the performance of many algorithms.

Using typical image processing operators, such as convolution kernels, leads to rigid
systems that are not able to adapt and generalize to unknown situations. In fact,
these algorithms cannot take into account the image local information, since they
process the entire image in the same way, forcing the designer to refer heuristics or
more advanced algorithms. Therefore, there is a need to increase the adaptability
of segmentation algorithms.

The methods reported in literature for the fundus image analysis are mostly based
on global approaches that cannot be locally adapted to the image properties and
therefore, none of them perform as needed because of this kind of image complex-
ity. In recent years, researchers have been working in multi-agent systems applied
to digital image processing. The main goal of multi-agent systems research is to
find methods that allow the building of complex systems composed of relatively
independent modules (called agents) that, while operating on local knowledge and
possessing only limited abilities, are nonetheless capable of enacting the desired
global behaviors. The novelty of this thesis lies on the use of this type of approach
- multi-agent systems - for the analysis of fundus images.

1.2. Aim and objectives

The aim of this thesis is the development of tools based on multi-agent systems,
for the early diabetic retinopathy diagnosis through fundus image analysis. The
objectives consist in the development of algorithms for the optic disc detection, blood
vessels segmentation, bright lesions segmentation and dark lesions segmentation.
Moreover, the potentialities of these tools will be evaluated through the comparison
with other state of the art techniques.

Since the multi-agent systems based approaches have never been applied in the
digital color fundus images, this thesis pretends to explore the use of such systems
for the objectives defined. In this kind of approach, each agent can locally process
and interpret the image information, avoiding the development of rigid systems.
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Moreover, the multi-agent systems provide a general way to give some independence
to each of the image processing methods, allowing an increased software engineering
capacity for the designer. In that way, the multi-agent systems may add competences
to the conventional image processing algorithms, that will be studied in this thesis
for the diabetic retinopathy early diagnosis through color fundus photographs.

1.3. Outline of this thesis

The rest of this thesis is divided into seven chapters plus the thesis conclusion
chapter.

Chapter 2 describes some theoretical and physiological concepts related to the eye
and the diabetic retinopathy. Furthermore, some retinal imaging techniques, image
acquisition protocols and the importance of digital color fundus image for screening
programs are explained. It also refers the importance of automatic system develop-
ment for the diabetic retinopathy diagnosis.

Chapters 3 and 4 present the fundamental theoretical concepts needed to under-
stand the developed algorithms described in the next sections. Chapter 3 introduces
multi-agent systems theory including definitions and properties of agent, multi-agent
system, environment and interactions. It also contains the explanation about two
important phenomena related to the behavior of this kind of systems - emergence
and self-organization. Chapter 4 describes a particular case of a simple multi-agent
system, the ant colony optimization. In this chapter, the characteristics of the bi-
ological and artificial ant systems, as well as the mathematical formulation of the
artificial ant system, are mentioned. Moreover, Chapters 3 and 4 present litera-
ture reviews related to the use of multi-agent systems and ant colony optimization
algorithms, respectively, in medical images.

Chapters 5, 6, 7 and 8 correspond to the practical sections of this study and de-
scribe algorithms for the optic disc detection, bright lesions segmentation, blood
vessels segmentation and dark lesions segmentation, respectively. These chapters
are organized in a similar way, beginning with an introduction section followed by
a literature review about the detection of the respective retinal feature. Then, the
used methodology is described and results, discussion and conclusion are presented
next.

In Chapter 9, the principal conclusions taken along this study are indicated and
some points of further work to overcome the problems still existent in the fundus
images analysis are proposed.
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2. Background

In this chapter, some theoretical concepts about the eye, its anatomy and imaging
techniques are described, in order to understand the importance of the digital color
fundus images used in this study. It also refers the diabetic retinopathy problematic,
as well as the relevance of the screening programs to prevent vision impairment
and the image acquisition protocols most suitable for these programs. Finally, the
importance of the development of computer based systems for the automatic diabetic
retinopathy early diagnosis is discussed.

2.1. Eye structure

The eye is a slightly asymmetrical globe with about 24.5 mm in diameter. It is
essentially compounded by three concentric layers with several structures. These
structures are responsible for controlling the light into the eye, operating on the
same basic principle as a camera. Figure 2.1 illustrates an eye cross section where
main structures are indicated. The light goes into the eye through the pupil and it
is focused on the retina. The lens is responsible for focusing images from different
distances on the retina and the iris controls the amount of light entering the eye.

The outer layer of the eye is called sclera and it is an opaque, fibrous and protective
membrane which is responsible for the eye shape. The intermediate layer is the
choroid, a vascular layer which supplies oxygen and nourishment to the eye struc-
tures. The inner layer is the retina that with its components, represents the most
important structure for this thesis.

The retina contains light sensitive cells that convert light stimuli into electric im-
pulses. According to its shape, these photoreceptor cells can be divided in two
groups: cones and rods, responsible for the daytime and night vision, respectively.
Cone cells are concentrated in the fovea and become gradually sparser towards the
border of the retina. The rods are situated at the outer edges of the retina and are
also used for the peripheral vision. Due to the high amount of cone cells, the fovea is
responsible for the accurate vision. This structure is located near the macula center.
The macula is an oval spot with a diameter of about 4 to 5 mm and situated near
the center of the retina.

The nerve fibers containing the electrical impulses, converge and leave the eye to-
wards the brain by means of the optic nerve. The head of the optic nerve is called
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optic disc or papilla, and it is also known by “blind spot” of the eye since it does not
contain any light sensitive cells. The optic disc is situated 3 to 4 mm to the nasal
side of the fovea and measures about 2 mm in diameter. The optic disc also serves
as the point of convergence and entrance of the retinal blood vessels.

The fundus eye corresponding to the central issue in this research study is com-
pounded by the three membranes described above: sclera, choroid and retina.

Figure 2.1.: Eye cross section

2.2. Fundus eye´s imaging techniques

For ophthalmologists, the human retina promises to be a window into the health of
a patient. The direct ophtalmoscope, still used today, was the first instrument used
by ophthalmologists for the direct examination of the retina. It was made known
by Helmholtz at the end of the XIX century, and since then it has not changed
much. The modern ophtalmoscope is a handheld instrument that contains a small
battery-powered lamp to direct a beam of light into the eye by way of a mirrored
prism. Despite being widespread in the clinical practice, the use of this instrument
yields poor sensitivity and results are highly dependent on the observer experience.

An alternative or complement to ophtalmoscope is the fundus photograph, which
first instrument appeared in the middle of the XX century. This was a photographic
35mm back connected to an optical system that focuses on the fundus oculi, illu-
minated by a coaxial flash. Around 1990, the first digital fundus camera appeared,
where the optical system is connected to a charge-coupled device (CCD) and the
image is sent to a computer for visualization and storage [5]. The use of digital
photography brought advantages over the film in DR research studies and clinical
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practice. Actually, digital fundus cameras allow the in vivo viewing of the retina for
disease diagnosis and patient consultation and, more convenient, for image storage,
indexing, retrieval, and transmission [6].

With a color fundus camera it is possible to acquire an image of the fundus eye. The
visible part of it is constituted by the retina with its vascular network and the optic
nerve head. The choroid is usually obscured by the retinal deepest layer, the pig-
mented epithelium that gives to retina its reddish color in color images. Therefore,
choroidal vessels are not normally visible in an image taken with a fundus camera,
unless the pigmented epithelium is very lightly pigmented or in case of pathological
depigmentation, where retina becomes almost transparent and the choroid becomes
visible.

From the existent examination modes with fundus camera, only two types will be
referred in this study. They are the fluorescein angiography (Figure 2.2 - left) and
the color fundus photography (Figure 2.2 - right) .

Figure 2.2.: Fundus photographs. The left one is a fluorescein angiography and
the right one is the color fundus photography of the same eye

2.2.1. Fluorescein angiography

The eye angiogram uses a fluorescein dye that is injected into a cubital vein of the
patient. Once injected, the dye takes about 10 to 15 seconds to circulate through the
body. When the dye enters the eye blood vessels, a series of photos are taken to map
the dye’s progress in the retina. More pictures are taken after most of the dye has
passed through the eyes to see if any of it has leaked out of the blood vessels. Any dye
that leaks out of the blood vessels will color the tissues and fluid in the eye. In that
way, it is possible to observe the diabetic retinopathy vascular abnormalities due to
the dye hyperfluorescence on the retina and the dye hypofluorescence in areas where
perfusion is inadequate. In fact, the diabetic retinopathy vascular abnormalities
(see section 2.3) include microaneurysms and dot or blot hemorrhages that can be
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distinguished with these kind of images, since the former appear as small bright dots
while the latter are dark [7].

Currently, the correct assessment of these images requires a specialist, which presents
difficulties in remote or less developed areas. Moreover, angiography is a relatively
invasive and dangerous procedure, since a dye is injected into the body with a very
slow excretion procedure.

2.2.2. Digital color fundus photography

The digital color images represent a good complementary exam for the fluorescein
angiography, since it is a non-invasive and easy to use procedure, and it is more
desirable for use in less developed areas, because the images can be obtained by
trained health professionals. Though the diabetic retinopathy lesions are also visible,
these images are more difficult to interpret and it is not possible to distinguish
microaneurysm from dot and blot hemorrhages.

In this kind of images, a normal fundus eye is composed by the retina and its
anatomical structures: optic disc, blood vessels and macula (Figure 2.3).

The normal optic disc is characterized as a bright yellow disc with a well defined
contour, especially at the temporal side. It contains a central depression that is the
physiological cup from which the blood vessels emerge.

The blood vessels divide dichotomously, first into superior and inferior branches and
then into temporal and nasal branches. The retinal arteries are narrower (arteriove-
nous ratio of 2:3) and lighter than retinal veins.

The macula is the area centered within the temporal arcades, placed 1.5 disc diame-
ters away from the optic disc temporal margin. It is darker in color than the fundus
background and it incorporates a central depression to form fovea, the retina most
sensitive part [8].

2.3. Retinal abnormalities in diabetic retinopathy

Diabetic retinopathy is one of the diabetes mellitus vascular complications. Diabetes
mellitus is a chronic pathology affecting a huge number of persons especially in
developed countries. According to [9], 11.7% of the population in Portugal with age
between 20 and 79 years is diabetic. Moreover, the same study refers that 34.8%
of the population have or are at risk of having diabetes, and almost an half of
the diabetic people do not know about the disease. That is, in Portugal there are
approximately 905 thousand people with diabetes and more or less 1 million and
780 thousand people with diabetes not diagnosed.
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2.3 Retinal abnormalities in diabetic retinopathy

Figure 2.3.: Normal color fundus image with the retinal structures marked

Diabetes is characterized by disordered metabolism and abnormally high blood sugar
(hyperglycemia) that affects blood vessels, nervous system and other internal struc-
tures. Diabetic retinopathy arises from microvascular retinal changes that occur in
the presence of hyperglycemia during long periods of time. The diabetic retinopa-
thy appearing and development depends on several factors: diabetes type, hormonal
and metabolic issues, patient age, sex and ethnicity.

2.3.1. Lesions

The diabetes has as consequence some structural changes in the retinal tiny ves-
sels resulting in the diabetic retinopathy characteristic lesions. The most common
are microaneurysms, oedema, hemorrhages, hard exudates, cotton wool spots and
neovessels. A brief description of these lesions taken from [7] and relevant for this
study will be present next.

2.3.1.1. Microaneurysms

Microaneurysms appear as small red dots (10-100 µm in diameter) in the color
fundus images (Figure 2.4 a) left and below) and as bright spots in the fluorescein
angiography. The larger microaneurysms are surrounded by a circle of oedema,
with hard exudates delimiting the boundary. Most microaneurysms are seen at the
posterior pole around the optic disc and macular area, where they can represent
the DR first sign. The microaneurysms are frequently indistinguishable from the
small hemorrhages and a fluorescein angiography is needed to distinguish them.
Counting the amount of microaneurysms can be used as a clinical evidence of the
DR progression.
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2.3.1.2. Oedema

The oedema is the result of the serum leaking into retina after capillaries being
damaged. As closer the oedema is to the fovea more affected is the vision. If the
oedema occurs at the fovea center may cause the permanent loss of vision. This kind
of lesion is difficult to see in the direct ophthalmoscopy, but is usually associated
with the presence of microaneurysms and exudates.

2.3.1.3. Hard exudates

Hard exudates are also an indicator of the capillaries damaged since they are a
result of the extravasated plasma proteins, mainly lipoproteins. In fundus images
they appear as yellow-white dots, shiny and with sharp borders (Figure 2.4 a) left
and above). It is important to distinguish the exudates from other kind of lesion that
is not related to diabetes: the drusen. The latter frequently represent age-related
macular degeneration manifestations and are not sight-threatening in themselves.
Their appearance is similar with hard exudates in terms of shape and size, but
the color and contour are a little different. Furthermore, drusen are not associated
with other diabetic retinopathy lesions, like the exudates that most of the times are
seen together with microaneurysms. This is also useful to distinguish these lesions.
In addition, since drusen are generally related to age-related macular changes (for
instance, hypopigmentation), they frequently manifest in a symmetrical way between
the two eyes.

2.3.1.4. Cotton wool spots

Cotton wool spots result from small artery occlusion. Their name comes from their
similarity to the cotton wool appearance since they are gray-white opaque patches
with poorly defined edges (Figure 2.4 a) right and above). Their location is peri-
papillary and close to blood vessels.

2.3.1.5. Hemorrhages

Hemorrhages are caused by the blood leaking into the retina through the damaged
capillary wall. Their appearance depends on its location in the retina. If they
are superficial, their flame-shape (Figure 2.4 a) right and below) is due to the blood
alignment with the superficial axons in the nerve fiber layer. Hemorrhages located in
the deepest layer are of dot and blot shape. The dot hemorrhages are tiny red spots
being indistinguishable from microaneurysms. The blot hemorrhages are larger and
with irregular borders.
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2.3.1.6. Intraretinal microvascular abnormalities

Intraretinal microvascular abnormalities (IRMA) represent new tiny blood vessels
that grow within retinal tissue. The origin of these vessels is generally from the
venous side of the retinal circulation and they grow toward an area of capillary
obstruction. Despite of being new vessels, they do not bleed or cause pre-retinal
or vitreous hemorrhages. On fluorescein angiography, in contrast with proliferative
new vessels, they do not leak. Moreover, it is possible to distinguish IRMA from
normal retinal vessels by their haphazard branching, with unusually large angles
between branches and an irregular caliber that varies from fine thread-like vessels
to dilated capillaries in the same IRMA.

2.3.1.7. Neovessels

The neovessels are new abnormal vessels that appear in the retina and grow to-
wards the eye center (the vitreous). Since they represent very fragile vessels, they
frequently bleed causing vitreous and pre-retinal hemorrhages, which lead to vision
impairment. These proliferative new vessels arise either from vessels on the optic
disc (Figure 2.4 b)) or from more peripheral large vessels.

(a) (b)

Figure 2.4.: Diabetic retinopathy characteristic lesions observed in color fundus
images. a) From left to right and from above to below: hard exudates, cotton
wool spot, microaneurysm and flame shape hemorrhage. b) Neovessels over the
optic disc
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2.3.2. Classification of diabetic retinopathy

The diabetic retinopathy classification needs to represent a continuous scale of risk
depending on clinical features, and to be meaningful to all specialists involved in
diabetes care [10]. The Early Treatment Diabetic Retinopathy Study (ETDRS) pho-
tography has been recognized as the gold standard for clinical trials in grading DR.
Grading protocols were derived from the Airlie House Symposium’s classification of
DR [11], modified for the Diabetic Retinopathy Study (DRS) [12], and extended for
the ETDRS [13]. The latter has been widely applied in research settings, publica-
tions and it has shown satisfactory reproducibility and validity. However, its use
in everyday clinical practice has not proven easy or practical for several reasons.
First the photographic grading system contains 90 levels, much more than what
is necessary for clinical care. Moreover, such number of levels, together with the
detailed specific definitions and the requirements of comparison with standard pho-
tographs, become the ETDRS grading procedure difficult to memorize and use in
clinical setting [5, 10]. Therefore, a simpler adaptation of the ETDRS classification
proposed in [14] is now widely used. This classification system proposes scales to
grade diabetic retinopathy (Table 2.1) and macular oedema (Table 2.2).

Table 2.1.: Diabetic retinopathy classification according to [14]

Classification Features

Apparently no DR Without alterations
Mild non-proliferative

DR
Only microaneurysms

Moderate
non-proliferative DR

More than only microaneurysms but less than
severe non-proliferative DR

Severe non-proliferative
DR (If instead of

considering “or” use
“and” the DR is

considered very severe
non-proliferative)

Any of the following: more than 20 intraretinal
hemorrhages in each of four quadrants; venous
beading in at least two quadrants; intraretinal
microvascular abnormalities (IRMA) in at least
one quadrant and no signs of proliferative DR

Proliferative DR
One or more of the following: neovascularization;

vitreous or pre-retinal hemorrhage

2.3.3. Treatment

During the initial stages of diabetic retinopathy, no treatment is needed, unless
macular oedema is present. Controlling levels of blood sugar, blood pressure and
blood cholesterol is important in slowing the progression of any type of retinopathy
or maculopathy and it prevents the need for future treatments [10].
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Table 2.2.: Diabetic macular oedema classification according to [14]

Classification Features

Diabetic macular
oedema apparently

absent

No apparent retinal thickness or hard exudates in
posterior pole

Mild diabetic macular
oedema

Some retinal thickening and presence of hard
exudates in the posterior pole but distant from

the macular center

Moderate diabetic
macular oedema

Some retinal thickening and presence of hard
exudates approaching the macular center but not

involving it
Severe diabetic macular

oedema
Some retinal thickening and presence of hard

exudates involving the macular center

Proliferative diabetic retinopathy is the most serious treatable stage of the pathology.
At this stage the treatment depends on the specific problems of the retina and
includes focal and scatter laser treatments and vitrectomy. Laser treatments can
stop or slow the leakage of blood and fluid in the eye, because leaks from abnormal
blood vessels are reduced with laser burns. With laser treatments, the main goal is to
prevent further vision loss. However, if patients have vision problems before surgery,
they may not recover completely normal vision after the procedure. The vitrectomy
is applied when there is a severe bleeding in the middle of the eye (vitreous). This
procedure has to be done in a surgery center or hospital using local or general
anesthesia. During a vitrectomy, blood is removed from the vitreous and replaced
with a salt solution that helps in maintaining the eye’s normal shape.

These surgery procedures often slow or stops the diabetic retinopathy progression,
but it is not a cure. Since diabetes is a lifelong condition, future retinal damage and
vision loss are possible. Therefore, control and prevention by doing some regular
exams is very important to stop the progress of the disease and avoid repetition of
treatments [7, 10].

2.4. Diabetic retinopathy screening

Diabetic retinopathy is one of the most prevalent but preventable blinding diseases.
Some studies [12, 13] have demonstrated that the blinding complications from dia-
betes can be largely prevented medically, by glycemic and blood pressure control,
as well as by early detection and timely treatment of diabetic retinopathy with ad-
equate techniques. Actually, the treatment is most effective before the eye disease
becomes symptomatic, that is, before the macular area is affected and thus, also
the vision [15]. In Portugal, diabetes affects the vision of at least 25 000 patients
and 13 000 are totally blind due to DR. Every year, more than 3000 patients have
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irreversible vision loss, and 90% of these cases can be preventable by an adequate
metabolic control and treatment [16].

Over the last few years, in several developed countries, there has been an effort to
implement screening for diabetic retinopathy with the aim of detecting it early and,
thus, prevent visual impairment and blindness in those with diabetes. Screening
guidelines have been developed by professional organizations such as the Sociedade
Portuguesa de Oftalmologia [16] and the American Diabetes Association [17]. In Eu-
rope, the St Vincent Declaration Working group suggests that the aims of screening
are mainly [7]: diagnosis of sight-threatening retinopathy requiring treatment; de-
tection of mild diabetic retinopathy needing follow-up but no treatment; diagnosis
of concomitant eye disease such as cataract or glaucoma. In USA, the American
Diabetes Association [17] establishes screening guidelines related to the examination
frequency as summarized in Table 2.3.

Table 2.3.: Recommended eye examination schedule for patients with diabetes
(adapted from [17])

Type of
diabetes

First retinal examination Follow-Up

Type 1 3-5 years after diagnosis At least yearly
Type 2 At time of diagnosis At least yearly

Before
pregnancy

Before conception and early
in the first trimester of

pregnancy

Less than severe NPDR,
every 3-12 months;

otherwise, every 1-3 months

Clinical trials have demonstrated the retinopathy screening benefits. Actually, vision
impairment and blindness can be preventable using existent technology and the
associated costs are much smaller than the costs achieved with the blind patients
[16]. However, current care frequently falls far below screening recommendations
due to the insufficient number of eye care specialists. The development of digital
imaging and, more recently, digital retinal photography could be a way to overcome
the barriers to access for diabetic retinopathy screening.

Screening methods include direct and indirect ophthalmoscopy, stereoscopic color
film fundus photography, mydriatic or nonmydriatic digital color, and monochro-
matic photography. With the increasing rate of diabetic patients, the favorite exam-
ination for the diabetic retinopathy screening have been the digital color photograph
as it is a non-invasive, fast and easy to use procedure. In fact, the images can be
obtained by a trained health professional and posteriorly observed by an ophthal-
mologist or forwarded to a reading center for interpretation and grading [15].

Although retinal imaging programs are important in improving access to care and
identifying patients who need further evaluation, they do not replace comprehensive
eye exams by ophthalmologists. A full evaluation is required when a screening
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retinal photograph is unreadable and for follow-up the abnormalities detected by
the screening system.

2.5. Image Acquisition Protocols

Since the development of fundus camera, its daily use in clinical practice has become
a reality, leading to some issues about which acquisition protocols may assure the
highest sensitivity and specificity for the early identification of sight-threatening
pathologies.

The gold standard for the diabetic retinopathy detection and classification is 30-
degree stereoscopic color fundus photographs in 7 standard fields, as defined by the
ETDRS group [13]. The seven fields are illustrated in Figure 2.5 and Figure 2.6
and described in Table 2.4. For the diabetic retinopathy detection, this technique
has superior sensitivity and specificity than direct and indirect ophthalmoscopy [15].
However, its practical usefulness is reduced by the complexity of acquisition proce-
dure, by the evaluation complexity of images for the ophthalmologist, and by the
discomfort for the patient involved in the procedure. Therefore, seven-field stereo-
scopic fundus photography is a good gold standard but is not suitable for widespread
implementation [5].

Figure 2.5.: Standard ETDRS 7-fields schematic for left eye (adapted from [18])

With the development of digital retinal photography and the increasing in fundus
camera quality, a number of protocols simpler than ETRDS protocol have been
proposed and validated against that gold standard.
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Figure 2.6.: 7 mydriatic ETDRS 30-degree color fundus fields of right eye (adapted
from [19])

For instance, from the EURODIAB IDDM Complications Study [20] a wide angle
retinal photography was developed. In EURODIAB protocol two 45-degree color
photographs of each eye are taken. One is macula centered, positioned such that
the exact center of the optic disc lay at the nasal end of the horizontal meridian
of the field of view. The other is the disc/nasal field and is acquired such that the
optic disc is positioned one disc-diameter from the temporal edge of the field, on the
horizontal meridian.

The Joslin Diabetes Eye Health Care Model also developed the Joslin Clinic protocol
[18] with the aim of reducing patient discomfort and providing an easy picture taking
by non-certified photographers. The Joslin Clinic protocol consists of three field
nonmydriatic 45-degree photographs, represented in Figure 2.7 superimposed to the
ETDRS protocol.

Several other imaging procedures have been developed and validated in the Fundus
Photograph Reading Center from University of Wisconsin [21].
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Table 2.4.: Early Treatment Diabetic Retinopathy Study Seven Standard Field
Descriptions

ETDRS field Field description

Field 1 Optic Disc: 30° field focused centrally on the optic disc
Field 2 Macula: 30° field focused on the macula center

Field 3
Temporal to Macula: 30° field focused so the nasal edge

of the field crosses the macula center

Field 4

Superior temporal: 30º field focuses so the field lower
edge is tangent to a horizontal line passing through the
optic disc upper edge and the field nasal edge is tangent
to a vertical line passing through the optic disc center

Field 5

Inferior temporal: 30° field focused so the field upper edge
is tangent to a horizontal line passing through the optic
disc lower edge and the field nasal edge is tangent to a

vertical line passing through the optic disc center

Field 6

Superior nasal: 30° field focused so the field lower edge is
tangent to a horizontal line passing through the upper
edge of the optic disc, and the field temporal edge is

tangent to a vertical line passing through the optic disc
center

Field 7

Inferior nasal: 30° field focused so the field upper edge is
tangent to a horizontal line passing through the lower
edge of the optic disc, and the field temporal edge is

tangent to a vertical line passing through the optic disc
center

According to Portuguese guidelines [16], two 45-degree color photographs taken
from ETDRS protocol fields 1 and 2 (Figure 2.8) should be used in the systematic
screening for DR.

2.6. Automatic systems related to diabetic

retinopathy studies

The combination between the large number of diabetic patients, the growing diabetes
incidence in the population and the facility of acquiring digital retinal images, has
made the development of novel image analysis methods an expanding research area.
From the clinical perspectives, image processing and analysis algorithms can be
conceived for the diabetic retinopathy diagnosis improvement in three domains [22]:

• Image enhancement: retinal images taken at standard examinations usually
present noise, poor contrast and variability inter-image and intra-image. The
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Figure 2.7.: Joslin Clinic nonmydriatic fields (black circles) superimposed to the 7
standard ETDRS protocol (dotted red) (adapted from [18])

Figure 2.8.: Color fundus photographs from right eye (left) and left eye (right)
taken according to the Portuguese guidelines for DR screening

use of different fundus cameras, illumination, acquisition angle and retinal
pigmentation is responsible for the inter-image variation. The intra-image
variation is a consequence of the light diffusion, the presence of abnormalities,
variation in fundus reflectivity and fundus thickness [23]. Therefore, techniques
for improving contrast and sharpness, reducing noise and normalizing color are
required.

• Mass screening: retinal image acquisition for systematic screening of DR has
been becoming a common practice. A huge number of images results from
these screening programs and frequently the number of specialists is insufficient
for analyzing all these images. Moreover, in a screening setting, the number of
images without any DR sign is typically over 90% [2]. Therefore, an automated
system that can exclude images with no signs of DR can improve efficiency in
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preventing DR.

• Monitoring the pathology: Comparing images taken at different examinations
allows the evaluation of a treatment or the disease progression. Though, this
is a time-consuming task and open to human error. Therefore, computer tools
including automatic registration and evaluation of changes between images
could provide a more effective disease monitoring [24].

The development of digital retinal photography makes possible the creation of
computer-based systems to be used in screening programs and save the workload
of ophthalmologists, letting hospitals and eye care specialists use their resources
in other important tasks. In fact, an automatic screening system would embrace
more people and more often, since it would be more inexpensive than screening
by humans. Another advantage of an automatic screening system is its immunity
to human weaknesses such as fatigue, sickness and dispersion in ophthalmologists
diagnose making, decreasing the DR diagnosis error.

As referred above, the main goal in developing a computer-based screening system
is to exclude the normal images, since they represent the most part of the screening
images. Then, only images deemed suspect by the system would be delivered to
a human expert for further classification. Therefore, if the screening first phase is
performed automatically by a computer, it must have as high sensitivity as possible
so that no pathological fundus images are missed by the computer. The British
Diabetic Association recommends that any procedure for screening DR should have
at least 80% sensitivity and 95% specificity [25]. Sensitivity means the percentage of
abnormal fundus images classified as abnormal by the procedure. Specificity means
the percentage of normal fundus images classified as normal by the procedure.

During this study, it will be possible to notice that several approaches for devel-
oping a computer based system to be applied in retinopathy screening have been
proposed in the literature. These algorithms consist of image processing and anal-
ysis techniques used to normalize, segment and extract information from retinal
images. Frequently, they also have classifiers aiming to classify the fundus image
regions, which are the diabetic retinopathy characteristic lesions and the eye fundus
anatomical structures. However, an automatic system ready to be applied in clinical
practices is not available yet.

This study was based on such findings and recommendations and, hence, the devel-
opment of novel algorithms for being applied in fundus images concerning the DR
early diagnosis is the focus of this thesis.
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3. Multi-Agent Systems

In recent years, multi-agent systems (MAS) have attracted much researchers´ atten-
tion in many fields of the computer science and engineering applications. Theories,
programming languages and tools have been developed for explaining, modeling,
and developing MAS to be applied in many different applications such as workflow
and business process management, information retrieval and management, electronic
commerce, human-computer interfaces, virtual environments, social simulation [26].

The MAS are composed of multiple interacting intelligent elements, called agents.
These kinds of systems can be used to solve complex problems that are difficult or
impossible for an individual agent to solve. Therefore, the main goal of multi-agent
systems’s research is to find methods that allow the building of complex systems
composed of autonomous agents who, while operating on local knowledge and pos-
sessing only limited abilities, are nonetheless capable of enacting the desired global
behaviors [27].

In this chapter the constituents of a multi-agent system as well as their properties,
fundamental for understanding the developed algorithms described in the next chap-
ters, are referred. At the end of the chapter, a literature review related to the use
of MAS in medical images is presented.

3.1. MAS elements

A multi-agent system is generally composed by a set of agents situated in a virtual
or real environment. The agents interact with each other to coordinate their be-
havior in a particular organization that can be dynamic and/or self-adaptive. The
self-adaptation results from the agents’ interaction to adapt themselves to the en-
vironment and its constraints. The differentiation of the agents and their complex
interaction allow the emergence of a global result. This global result influences the
agents of the system, making them converging towards a common and often un-
expected solution that is not comprehended at the individual level. The dynamic
of the system results from an emergent phenomenon giving additional functionality
that each agent cannot provide individually. For instance, the organization of an ant
colony provides the shortest path between their nest and a food point.When the ants
walk to and from the food source, leave some amount of pheromone on the ground
and this pheromone trail is used by ants to communicate with each other. Ants
probabilistically prefer to follow a direction regarding the quantity of pheromone on
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it. Therefore, this process could be considered as a positive feedback loop, as the
more ants follow a trail, the more attractive this trail becomes to the other ants.
This phenomenon would be impossible to get through the work of a single ant. It
is the whole (environment + agents + interactions) that allows an organization to
emerge [28].

According to Ferber [29]:

“The term ’multi-agent system’ (or MAS) is applied to a system com-
prising the following elements:

(1) An environment, E, that is, a space which generally has a volume.
(2) A set of objects, O. These objects are situated, that is to say, it

is possible at a given moment to associate any object with a position
in E. These objects are passive, that is, they can be perceived, created,
destroyed and modified by the agents.

(3) An assembly of agents, A, which are specific objects (A⊆O) rep-
resenting the active entities of the system.

(4) An assembly of relations, R, which link objects (and thus agents)
to each other.

(5) An assembly of operations, Op, making it possible for the agents
of A to perceive, produce, consume, transform and manipulate objects
from O.

(6) Operators with the task of representing the application of these
operations and the reaction of the world to this attempt at modification,
which we shall call the laws of the universe.”

Figure 3.1 illustrates a schematic with the typical structure of a MAS. The latter
contains several agents, each one with different perceptions and actions over the en-
vironment, represented by its own sphere of influence. In some cases, these spheres
of influence may overlap giving rise to dependency relationships between the agents
[26]. The MAS can contain more than one organization of agents and so, it should be
described on organizational concepts such as roles (function/position), groups (com-
munities), tasks (activities) and interaction protocols (dialogue structure). There
are several generic multi-agent structures which have been studied, considering the
interaction between the agents and the interaction between the agents and their envi-
ronment. The Agent/Group/Role model [31] formalizes the organization of groups
of agents. The IRM4MLS [32] model is proposed to generalize the interaction of
agents which are not in the same groups/levels.

3.1.1. Definition of Agent

Definition of agent has been vague. Some definitions found in literature are:

“An agent is a computer system that is situated in some environment,
and that is capable of autonomous action in this environment in order
to meet its design objectives.” [26]
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Figure 3.1.: Typical structure of a multi-agent system (adapted from [30])

“An agent is a physical or virtual entity
(a) which is capable of acting in an environment,
(b) which can communicate directly with other agents,
(c) which is driven by a set of tendencies (in the form of individual ob-

jectives or of a satisfaction/survival function which it tries to optimize),
(d) which possesses resources of its own,
(e) which is capable of perceiving its environment (but to a limited

extent),
(f) which has only a partial representation of this environment (and

perhaps none at all),
(g) which possesses skills and can offer services,
(h) which may be able to reproduce itself,
(i) whose behavior trends towards satisfying its objectives, taking ac-

count of the resources and skills available to it and depending on its
perception, its representations and the communications it receives.” [29]

Despite of not being consensual the definition of agent, there are two essential capa-
bilities that these computer systems have – autonomy and interaction between each
other (there are no agents without MAS) [26]. The first characteristic enables them
to perform some autonomous action in which they decide for themselves what they
need to do in order to satisfy their design objectives. The second characteristic con-
sists not simply in exchanging data between them, but also in engaging in analogues
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of the kind of social activity that we all are involved in every day of our lives: co-
operation, coordination, and negotiation [26] . Moreover, the definitions above refer
that an agent is situated in an environment, in which the agents should have the
ability to extract the information they need and act on it in an autonomously way.
Therefore, each agent must have the appropriate sensors and actuators to perform
the tasks for which it was designed (Figure 3.2).

Figure 3.2.: An agent and its environment. The agent percepts sensory input from
the environment and produces as output actions that affect it.

Wooldridge [26] defines an agent as a computer system based on software with the
following properties:

• Autonomy. The agents work without direct human or other agents intervention
and possess some control over their actions and internal state;

• Reactivity. The agents percept their environment and rapidly respond to
changes that occur in it.

• Proactiveness. The agents can take initiative and exhibit goal-directed behav-
ior.

• Social ability. The agents interact with other agents and possibly with humans.

As it is possible to see in the next sections of this chapter, the agents are frequently
created without considering all these properties, in particular the proactiveness.

3.1.2. Types of agents

Based on the agent properties described by Wooldridge, it is possible to classify
the agents in two types: reactive and cognitive. The frontier between these two
categories is arbitrary. The cognitive agents have a symbolic representation of their
environment. They have thus a high level of understanding of their environment
and they know the purpose for which they cooperate. This understanding can be
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determined, for example, by the Believe/Desire/Intention architecture [33] inspired
from psychology researches [34]. On the other hand, a reactive agent has only a
limited vision about its environment. It lacks the capacity to interpret and is limited
to its perceptions. Therefore, it reacts to stimuli and can influence its environment
by producing non-interpreted information. The reactive agents do not know the
system global function. This is also often the case of cognitive agents. A schematic
with these two types of agents is illustrated in Figure 3.3.

Approaches using cognitive agents can usually put together different and complex
behaviors and thus produces high-level results. The problem of using such agents is
that the collaborative behavior between them should be established by approximate
heuristics, and are often difficult to implement. For instance, in image processing
this would consist of putting together several algorithms of different natures. Since
these approaches are of different basis, it is difficult to combine them by means other
than using heuristics. Ultimately, for a generalized segmentation goal, the high level
processes are difficult to relate without using heuristic or questionable parameters
[28].

Approaches constituted by reactive agents permit a better identification of the
agents’ role and their cooperation, since agents operate at the lowest level. Ac-
tually, for image processing purposes, approaches consist of agents with low granu-
larity influence on the environment and among themselves, are fundamentally more
interesting, but are not devoid of difficulties. Agents can then be based on common
fundamental properties of the image processing and their interactions seem more
natural. However, these types of approaches are far from being simply procedural
to reach a goal. The problem of the emergent approaches is the degree of unpre-
dictability of the results, resulting from the agent interaction that is simple yet
complex. Even the mathematics cannot always help in the prediction of the multi-
agent system convergence, in so far as a single agent or a single critical event during
the system evolution can switch its future where mathematicians saw the system
moving towards equilibrium. Considering a system consisting of several layers of
agents, even after having developed each of these layers as emergent, it is difficult to
imagine a global emergent layer by making them interacting together. Therefore, it
is common to develop side approaches based on meta reasoning, and formalizing how
the system is organized and self-organizing, encapsulating the emergent / creative
/ pro-innovative property of the system for defined and specific tasks, and through
observed natural emergent processes [28]. Then, emergent phenomena from agent
interactions are framed into a defined space of possible solutions, by structuring the
environment/system in which they evolve [35].

Classifying the agents as cognitive and reactive, though essential and sufficient for
the scope of this study, it is a very limited classification for understanding the multi-
agent system potentialities. In fact, more detailed and embracing classifications can
be found in literature, such as Nwana et al.[36] study which proposes a typology of
agents that identifies seven distinct dimensions for classification. Thus, agents can
be static or mobile, deliberative (cognitive) or reactive. They can possess autonomy,
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(a)

(b)

Figure 3.3.: General schematic of typical agent architecture. a) Cognitive archi-
tecture; b) Reactive architecture (adapted from [30])
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cooperation mechanisms and learning capacities. Moreover, they are also classified
according to their function and can be hybrid, that is, combine two or more agent
philosophies in a single agent.

From the combination of the autonomy, cooperation and learning characteristics,
Nwana et al. [36] identifies four types of agents as illustrated in Figure 3.4.

Figure 3.4.: Category of agents defined by Nwana [36]

It is important to emphasize that these distinctions are not definitive. Several types
of agent can be used for the same application. However, for this study the reactive
agents are the most important and the predominant in the practical chapters.

3.1.3. Environments

The agents are situated in a particular environment, percept its information and
perform actions on it. The environment characteristics are important to define the
agent architecture and its method of operation. Before designing an agent, a careful
consideration of possible perceptions and actions and the complexity of the agent
tasks is required [30].

According to Russel and Norvig [37], the environment can be classified based on the
following properties:
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• Accessible versus inaccessible. In an accessible environment the agent can
acquire, through its sensors, up-to-date, complete and accurate environment
information.

• Static versus dynamic. A static environment remains unchanged except by the
influences of the agents’ actions. On the other hand, a dynamic environment
has other processes operating on it, and hence there are changes occurring
beyond the agent’s control.

• Deterministic versus non-deterministic. In a deterministic environment every
action results in a single guaranteed effect and there is no uncertainty about
the state that will result from performing an action.

• Discrete versus continuous. The environment is discrete if there is a finite
number of possible perceptions and actions in it.

At this thesis scope, the environment will be mainly constituted by images, that
represent an accessible, static, deterministic and discrete environment, considering
the above properties.

Environmental properties have a role in determining the complexity of the agent
design process, but they are by no means the only factors that play a part. The
second important property that plays a part is the nature of the interaction between
agent and environment.

3.1.4. Interaction

According to Ferber [29] “an interaction occurs when two or more agents are brought
into a dynamic relationship through a set of reciprocal actions. (...) The agents in-
teract through a series of events, during which they are in contact with each other
in some way, whether this contact is direct or takes place through another agent
or through the environment.” Therefore, when talking about interaction, any kind
of mechanisms allowing some individuals to orchestrate and influence each other’s
actions can be referred. These interactions mechanisms are crucial elements in a so-
cial organization. They are represented by sophisticated patterns of agent behaviors
such as coordination, negotiation and communication.

Coordination means the act of working together with the aim of achieving a common
goal (task, agreement). The coordination between agents can occur in cooperative
or competitive environments. At the cooperative environment, agents act to increase
the overall utility function of the system and not their personal utility. Moreover,
they are more committed to increase the global performance instead of the individual
performance. On the contrary, at the competitive environments, agents possess its
own schedule and motivation and they are only interested in their personal satisfac-
tion. The competitive environment is mostly used in scenarios involving acquisition
of products and services and, thus, is not relevant to the present work.
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During the coordinating actions of the goal-driven agents some conflicting goals typ-
ically appear. That is, sometimes, not all agents may be able to satisfy their respec-
tive goals simultaneously. This can happen, for example, with regard to contested
resources or with multiple demands on an agent’s time and attention. Therefore,
conflict resolutions are required and this can be done by negotiation mechanisms
between agents. Negotiation is thus the process by which two or more entities com-
municate in a certain way, to reach a joint decision. There are several negotiation
mechanisms, from which the most common are auctions, argumentation, game the-
ory and heuristic approximations.

Hereupon, for interacting and cooperating with each other, agents should have some
communicative abilities. The communication is essential for an agent organization,
since it is because agents communicate that they can cooperate, coordinate their
actions, carry out tasks jointly and so, became truly social beings [29]. There are
essentially two ways of communication: direct and indirect. Examples of direct com-
munication include shared blackboards and message-passing. In order to message-
passing, each agent must be able to: deliver and receive messages which can be
represented by strings or objects; parse the messages to correctly decode the mes-
sage to its parts (syntactic level); and understand the information contained in the
messages, that is, the ontology describing the symbols must be shared or explicitly
expressed among the agents (semantic level). Indirect communication involves the
implicit transfer of information from agent to agent through modification of the en-
vironment. An example of indirect communication has taken inspiration from social
insects’ use of pheromones to mark trails or to recruit other agents for tasks (see
chapter 4) [38].

3.2. System behavior

In order to infer the potentiality of the MAS as an organization of individual entities,
it is important to understand the meaning of two concepts already referred above:
emergence and self-organization. Emergence and self-organization refer to processes
and phenomena that can be observed in nature. Examples are brain-cells producing
“intelligence” while networking, food foraging of ants, honey bees organizing their
comb, magnetic fields, thermodynamics systems. Despite these two concepts often
appear as synonyms in the literature, some authors agree that they correspond to
different characteristics of a system’s behavior [39, 40].

3.2.1. Emergence

The emergent phenomena have been studied since the Greek antiquity and can be
found in some ancient writings with the notion of “the whole before the parts” or
“the whole is more than all the parts”. This phenomenon exists in a large number
of scientific fields, e.g. psychology, biology, physics and many more [39, 41].
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Wolf and Holvoet described in their paper [40]: “a system exhibits emergence when
there are coherent emergents at the macro-level that dynamically arise from the
interactions between the parts at the micro-level. Such emergents are novel with
respect to the individual parts of the system.” In fact, from local interactions of
small, "simple" pieces, or agents at the micro-level, a global behavior “emerges” at
the macro-level. And this global behavior is not evident in the parts alone. The
macro-level referred here corresponds to the system as a whole, and the micro-level
considers the system from the point of view of its individual parts. The emergent
phenomenon requires at least these two levels, and needs to be observable at least
at the macro level. In general, there are some interdependencies between the levels,
because the macro level constrains the micro level and the micro level causes the
macro level.

Some properties that the emergent systems must show are [40, 41]:

• Novelty, since something new is produced at the macro-level that did not exist
previously, i.e, the individuals at the micro-level have no explicit representation
of the global behavior;

• Coherence, in the sense that the global system behavior has its own identity
but it is strongly linked to parts that produce it.

• Decentralized control, because it uses only local mechanisms to influence the
global behavior. There is no central control, i.e. no single part of the system
directs the macro-level behavior. The actions of the parts are controllable but
the whole is not directly controllable

• Robustness and flexibility, because emergents are relatively insensitive to per-
turbations or errors. Increasing damage will decrease performance, but degra-
dation will be “graceful”: the quality of the output will decrease gradually,
without sudden loss of function. The failure or replacement of a single entity
will not cause a complete failure of the emergent. This flexibility makes that
the individual entities can be replaced, yet the emergent system can remain.

3.2.2. Self-organization

The concept of self-organization is more widely used than the one of emergence, but
it can be also interpreted in different ways. Generally, “self-organization” serves as
a concept for a variety of natural self-organizing systems. Moreover, it is used to
classify distributed computer systems and algorithms that seemingly “exhibit” self-
organizing properties. Presently there are two possibilities to engineer self-organizing
systems: take inspiration from nature or trial and error [39].

In fact, several examples of self-organizing systems can be found in nature, both
in the non-living system (galaxies, stars) and in the living world (cells, organisms,
ecosystems). Natural self-organizing systems are composed by a large number of
individuals who interact and coordinate to achieve tasks that overcome by far their
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capabilities as single individuals. The social behavior of humans is also self-organized
and allows the emergence of complex global behaviors. Human beings typically work
with local information and through local direct or indirect interactions producing
complex societies.

Among artificial multi-agent based self-organizing systems, a lot of the self-organized
phenomena found in nature provide a useful inspiration to solve computer science
problems. Nevertheless it is also possible to observe applications coming from
the establishment of new mechanisms and whole infrastructures supporting self-
organization of artificial systems [41].

Wolf and Holvoet [40] described that, “self-organization is a dynamical and adaptive
process where systems acquire and maintain structure themselves, without external
control.” In other words, in a self-organizing system, the organization is intrinsic and
results from internal constraints or mechanisms, due to local interactions between
its components. For the self-organizing systems the main characteristics are [40]:

• Increase in order – Organization can be seen as the arrangement of selected
parts so as to promote a specific function. This restricts the behavior of the
system in such a way as to confine it to a smaller volume of its state space. This
smaller region of state space is called an attractor. In essence, an organization
can be looked at as an increase in the order of the system behavior which
enables the system to acquire a spatial, temporal, or functional structure. A
system with no order cannot exhibit useful behavior. But also a system with
too much order can have this problem. It is possible that processes organize
themselves into conditions so complex that no usable functionality can result
from it.

• Autonomy referring the absence of external control, as the system needs to
organize itself without interference from outside.

• Adaptability or robustness with respect to changes – in self-organizing systems,
robustness is used in terms of adaptability in presence of perturbations and
change. A self-organizing system is expected to cope with that change and
to maintain its organization autonomously. In other words, a self-generated,
adaptive behavior is needed, and taking into account past experiences can be
helpful.

• Dynamical, i.e. far-from-equilibrium - An essential property of self-organization
is that it is a process. Over time, there is an increase in order, i.e. a dynamic
towards more order.

3.2.3. Stigmergy

A combination of emergence and self-organizing phenomena often occurs in dynam-
ical systems. In the case of dynamic self-organizing systems with decentralized
control and local interactions, the notion of emergent properties is closely linked
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with self-organization (Figure 3.5). Examples of such a system can be observed in
social insects as ants, bees, wasps and termites. In these societies, the emergent
collective behavior is the outcome of a process of self-organization, in which insects
are engaged through their repeated actions and interactions with their surrounding
environment. The interaction with the environment involves the mechanism of stig-
mergy, in which the environment is used as a medium of inscription of past behaviors
effects to influence the future ones. That is, the individuals of the system use the en-
vironment to communicate and interact indirectly with each other. This mechanism
also represents a self-catalytic process, since the more a process occurs, the more it
has chance to occur in the future. More generally, this mechanism shows how simple
systems can produce a wide range of more complex coordinated behaviors, simply
by exploiting the influence of the environment [42].

Figure 3.5.: Self-organization and emergence

3.3. MAS applied in image processing – a literature

review

Within the image processing domain, MAS can be used essentially in two ways
[43]: 1) they can be used to exploit different macro levels results provided by image
processing algorithms, using negotiation among agents [44, 45, 46], or 2) they can
be used as artificial social systems, composed of entities, usually reactive and au-
tonomous, which exploit micro level image processing results [43, 47, 48], adapted
to the intrinsic image processing issue.
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For this application, the environment often plays several roles. The micro-level
corresponds to a medium of interaction where the agents communicate and interact
indirectly via changing the environment. At the macro-level, it can represent a
collective memory. By saving the set of modifications made by interacting entities,
the environment memorizes the reproduced dynamics which will influence future
interactions. Also at the macro-level, it can control the micro-level because, as
a feedback, the environment may be modified by an observer for influencing the
dynamics of the micro-level and its global trajectory.

There are some works described in the literature that associate MAS with image
processing. In this domain, almost all the MAS models include mechanisms for
cooperation. The global task of the system is decomposed into sub-tasks assigned
to the agents. Each agent can communicate with other agents to ask for a service,
to give relevant and necessary information to the stability of the system, to send
new constraints to meet or to give orders. The cooperation between all the agents
allows the emergence of a global behavior, that is, in this case, the segmentation of
an image or the object recognition.

In Haroun et al. [44] approach, the fuzzy C-mean algorithm is initially used to
segment the image in an imprecision way. Then, a region growing algorithm designed
in a massive multi-agent environment is proposed. The agents are of two types: one
image agent and several region agents. The image agent controls the region agents
by creating and destroying them or by activating and deactivating their behaviors.
The region agents are initially positioned over a seed pixel and their behaviors can be
three: growing, negotiation and fusion. A schematic of this approach is represented
in Figure 3.6. The use of agents and their cooperation allows a better quality of
segmentation. The segmentation by region growing is done in parallel since all
regions grow simultaneously in the image. This prevents that some pixels are added
to the first developed region.

Figure 3.6.: Schematic representation of a MAS approach [44] with centralized
control
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A MAS model including several region agents controlled by a global agent was also
described by Benamrane and Nassane [46]. In this approach the global agent is
responsible for the initial segmentation by a region growing approach. Then, on
each region it creates and launches the region agents which will cooperate in a
synchronous and parallel manner to do the required fusions according to some cri-
teria. The fusion steps are done iteratively and under the coordination of the global
agent. The proposed approach presented good results in Magnetic Resonance Imag-
ing (MRI), particularly in the tumor regions segmentation. However, the authors
referred its execution time to be high.

Duchesnay et al. [48] presented an approach based on an agents’society organized
as an irregular pyramid where agents are situated in the image and perform local
cooperation and local adaptation. The initial environment is constituted by two
images: a region segmentation image obtained by the quadtree method, and an
edge image resulted from a succession of edge procedures. Each level of the pyramid
is an agent organization in which the region agents stand in an area of the image and
the edge agents represent an edge primitive. The agents run a sequence of behaviors
at each level: territory marking and feature extraction; exploration to determine the
neighbors; merging planning based on similarity features; and finally, cooperation
and negotiation mechanisms with each other to decide on the fusion, and destruction
/reproduction to create new region agents in higher levels of the pyramid. Therefore,
the proposed method does not require substantial tuning effort and it is completely
autonomous. Furthermore, there is no need of prior information to segment images,
and the method can be applied in different kinds of images. Figure 3.7 shows a
simple representation of this approach.

Figure 3.7.: Schematic representation of a MAS approach [48] with decentralized
control

Idir et al. [49] also proposed a pyramid scheme for the segmentation of the mammog-
raphy images. The pyramid base consists of the initial segmentation of the image
by means of a region growing process (regions primitives). The edge primitives are
obtained by a Canny edge detector. The behaviors are similar to the Duchesnay
approach [48]. Though, they also include agents to control the good functioning of
the multi-agent system: user interfaces-agents, monitor-agent, sequencer-agent and
agent known as a dual-agent which influence and control the fusion process.

The last two approaches have in common the integration of region and edge prim-
itives resulting in an improvement of the initial pre-segmentation. In fact, this
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cooperation reduces the false contours resulting from noise presence, and closes un-
interrupted contours due to the duality of the two approaches.

Liu and Tang [47] described an approach in which the emerging phenomenon of
the system is edge detection. In the proposed agent-based approach, agents oper-
ate directly on the individual pixels of a digital image by continually sensing their
neighboring regions and checking the homogeneity criteria of relative contrast, region
mean, and regional standard deviation. Agents that are able to detect a homoge-
neous region replicate themselves on their neighbors to explore the entire region.The
offspring agents have the same properties as their parent and siblings. The authors
affirmed that their system is more robust than conventional methods of splitting
and merging of regions. However, the agents have no mechanisms of cooperation,
neither between them or with the environment. Their actions are based solely on
their perception and their replication mechanism.

Mahdjoub et al. [43] proposed an approach in which the MAS model interprets
information given by traditional image processing filters, to reconstruct and reorga-
nize it. The system initializes with exploration agents looking for edges according
to the gradient vector flow. This gradient attracts the exploration agents towards
existing edges. After finding an edge, they create the edge following agents to follow
the detected edges. The role of these agents is to rebuild the edges by approximat-
ing them with segments. A segment is represented by two agents collocated on its
extremities, called node agents. If the node agent is not linked with another node
agent is called end agent. The role of the end agents is to negotiate with each other
the closing of the edge they are representing. These negotiations are part of the
reinterpretation by the system of the information provided by the image processing
algorithms. The result of the local behavior of all these agents is the emergence of
a representation of the image edges.

Mazouzi et al. [50] presented a multi-agent approach for range image segmentation.
They use reactive agents moving over the image and acting on the visited pixels,
according to both its state and the state of the pixel on which it is situated. The
agent first searches for a planar region using the region seed formed by the last
visited pixels. Then, while moving inside the planar region, the agent adapts to
it, memorizes its properties (plane equation) and smooths the visited pixels. At
the boundaries between the planar regions, the agents are in competition to align
the pixels of the frontiers to their respective regions. This interaction between
agents allows the preservation of the region edges against smoothing. Around the
aligned pixels, an artificial electrostatic-like potential field is created and updated,
in order to allow agents to be gathered around pixels of region edges and make them
concentrate their actions at these pixels. Also a relaxation mechanism of potential
field is introduced to allow the releasing of the agents gathered around pixels of
interest and thus to explore other regions of the image. In that way, with this
approach, the image edges, for which no explicit detection is coded in any agent,
result from the collective action of all agents.
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Bovenkamp et al. [51] proposed a multi-agent system for the segmentation of the
intravascular ultrasound (IVUS) images. The main characteristic of this approach
is the elaboration of a high-level knowledge-based control over the low-level image
processing algorithms. In this system, each agent is responsible for the detection
of exactly one type of image object. The agents interact with each other through
communication, act on the environment by performing image processing operations
and perceive that same environment by accessing image processing results. So, the
agents cooperate and dynamically adapt the segmentation algorithms, according to
the contextual knowledge, the local information, and their personal beliefs. In this
work, the problem of the control over the segmentation algorithms seems to be well
resolved. However, no agent or even behavior has been proposed to deal with the
problem of uncertain and noisy data.

Richard et al. [45] proposed a hierarchical architecture of situated and cooperative
agents for the management of the various processing steps required for the localiza-
tion of cerebral tissue in MRI images. Several types of agents are defined: global
control agent, local control agent, and tissue-dedicated agent. The image is divided
by the global agent in several 3D zones, each containing one local control agent and
tissue-dedicated agents. The local control agents create the tissue-dedicated agent,
estimate model parameters and confront tissue models for final labeling decisions.
The tissue-dedicated agents collaborate with their neighbors situated in the adjacent
partitions in order to serve their respective local agent and to progress ultimately
toward the global goal.

Figure 3.8.: Schematic representation of Melkemi et al. [52] approach

The algorithm proposed by Melkemi et al. [52] and illustrated in Figure 3.8 is
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structured as a multi-agent system composed of a set of segmentation agents inter-
connected around a coordinator agent. Segmentation agents use the Markov random
fields (MRF) based iterated conditional modes (ICM) method to accomplish their
segmentation tasks. The coordinator agent combines the crossover and mutation
genetic operators with the extremal optimization local search to provide new initial
images for the segmentation agents.

Table 3.1 refers the image modality of each of the above approaches when tested in
medical images. Moreover, it also briefly mentions the multi-agent systems architec-
ture of each approach. The centralized approaches here refer to local agent behaviors
controlled by a global agent. It can be noticed that, except the approach of Liu and
Tang, all other approaches presents some kind of interaction mechanisms, mainly
cooperative actions by means of direct and indirect communication. Furthermore,
for the reasons referred in subsection 3.1.2, reactive agents have been the preferred
architecture for medical image applications. Bovenkamp et al. and Richard et al.
approaches also possesses reactive agents, but which are specialized and use some
knowledge for interpretation of objects present in the image.

Table 3.1.: Medical image modality used to test the multi-agent system approaches
and respective architecture

Researcher Image modality Observations

Liu and Tang
[47]

Brain scan image
Reactive agents in a decentralized

approach without cooperation
mechanisms

Duchesnay et al.
[48]

Computed
tomography breast

image

Reactive agents organized as an
irregular pyramid

Bovenkamp et
al. [51]

Intravascular
ultrasound images

Decentralized approach developed
with the cognitive architecture Soar

Richard et al.
[45]

Brain magnetic
resonance images

Situated cooperative agents
organized in a centralized approach

Haroun et al.
[44]

Brain magnetic
resonance images

Reactive agents in a centralized
approach and developed with Madkit

platform

Idir et al. [49]
Mammography

images
Reactive agents organized as an

irregular pyramid
Mahdjoub et al.

[43]
Lung computed

tomography images
Reactive agents in a decentralized

approach
Benamrane and

Nassane [46]
Brain magnetic

resonance images
Centralized approach of reactive

agents working in JADE platform
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4. Ant Colony Optimization

Ant colony optimization (ACO) is inspired by the behavior of real ants in the wild,
mainly by their foraging behavior. Within the artificial intelligence community, ant
based algorithms belongs to the swarm intelligence category. Swarm intelligence
is an approach to problem solving that encompasses the implementation of multi-
agent systems that are based on the collective behavior of nature, decentralized and
self-organized systems like real world insect swarms.

The first ant system (AS) algorithm was a stochastic local search method proposed
in the early nineties. Since then, the AS has attracted an increasing number of re-
searchers, and in the meantime it has reached a significant level of maturity. In fact,
many successful applications are now available for a wide variety of computationally
hard problems [53].

In this chapter the transition from the biological to artificial ant colony is exposed.
Furthermore, the AS metaheuristic proposed by Dorigo et al. [53] is explained,
because it is essential to understand the ACO used in practical chapters of this
thesis. At the end of this chapter, a literature review related to the use of artificial
ant colony in images is described.

4.1. Biological Ant Colony

In many real ant species, ants make their own tasks independently from each other.
Nevertheless, when act as a community, they are capable to solve their daily complex
problems, which require sophisticated planning, without any kind of supervising or
controlling. For instance, when searching for food in the environment (foraging
behavior), ants leave their nest and wander randomly until they reach a source of
food. While moving, ants lay a pheromone trail on the ground. After carrying a
piece of food, they return back to the nest and deposit an amount of pheromone
along its route, that depends on the quantity and quality of the food. Pheromones
are chemical compounds whose presence and concentration can be sensed by fellow
insects, and like many other media for indirect communication, pheromones can last
a long time in the environment, though they may diffuse or evaporate. Therefore,
when an ant encounter a trail of pheromone while exploring the environment, it is
attracted to follow this trail until the food, and on its way it enforces the initial trail
by laying additional amounts of pheromone. The more a trail is followed, the more
it is enforced and has a chance of being followed by other ants in the future. At the
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end of the process, the ants through collaboration find the shortest path to the food
source [42, 53]. Figure 4.1 represents an illustration of the ants foraging behavior.

Figure 4.1.: Representation of the ants foraging behavior

4.2. Artificial Ant System - from biological to

computational entities

Using simple reactive agents allows the transition from the natural to artificial ant
colony. These agents cooperate by exchange information through environment mod-
ifications. That is, artificial ants communicate indirectly via artificial pheromone
trails.

For mathematically modeling an artificial ant system behavior, some assumptions
have been made [54]:

• Ants move through a discrete environment defined by nodes or states S;

• Each ant possesses an internal memory used to store the path followed by the
ant;

• Starting from an initial state, each ant iteratively moves in its search space
(environment) trying to build a feasible solution to the given problem;

• Ants move from one state to another according to a transition rule, which may
include problem specific constraints and may utilize the ants internal memory;

• The amount of pheromone deposited by each ant is determined by a problem
specific pheromone rule;
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Therefore, the exploration space can be referred as a graph where artificial ants
move from one node to another searching for a solution. After constructing a solu-
tion, the ant evaluates it and deposits pheromone proportional to its quality. The
ants transition from one node to another depends on two main factors: heuristic
information and artificial pheromone trail.

Heuristic information When constructing a solution, the ant has to decide to
which neighboring node to move. This decision is made according to a probabilisti-
cally rule taking into account the pheromone values and some heuristic information.
The heuristic information is meaningfully to find a good solution in the beginning
of the algorithm since all pheromone values are equal. Actually, the heuristic in-
formation is application based and is known a priori to the algorithm run, without
suffering modifications during the process.

Pheromone matrix The pheromones associated with the edges of the construction
graph are represented as a matrix (below) and measure the pheromone deposition
from ants previous transitions between the same states.

τ =



















τ1,1 τ1,2 τ1,3 τ1,4

τ2,1 τ2,2 τ2,3 τ2,4

τ3,1 τ3,2 τ3,3 τ3,4

τ4,1 τ4,2 τ4,3 τ4,4



















All values of the matrix are initialized to some appropriate value and then suffers
modifications along the algorithm run. If the initialization value is too high it spends
some iterations until the pheromones updates influences the behavior of the ants. On
the other hand, if this value is too low, the search is early trended to a suboptimal
part of the solution space.

Algorithm 4.1 Ant Colony Optimization Metaheuristic

Set parameters, initialize pheromone trails
while termination condition not met do

ConstructAntSolutions
ApplyLocalSearch
UpdatePheromonesTrails

endwhile

Algorithm 4.1 describes the AS metaheuristic proposed by Dorigo et al. [53]. After
initialization, the algorithm iterates over three components: construction of a num-
ber of solutions by the ants; an optional improvement of these solutions by local
search; updated of the pheromone values.

During the construction step, a set of artificial ants constructs solutions from el-
ements of a finite set of solution components. A solution construction contains a
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certain number of construction steps made by each ant. The construction process
starts with an empty partial solution, which is extended at each construction step
by adding a feasible solution component. The solution component is chosen from
the set of components that can be added to the current partial solution without vio-
lating any constraint, that is, the solution component usually corresponds to a node
neighboring of the current position in the graph. This choice is taken according to
a decision rule which varies across different artificial ant colony variants. The most
common is given in Equation 4.1 that corresponds to the one used in the original
AS.

p(n)
i,j =

(

τ (n−1)
i,j

)α
(ηi,j)

β

∑

j∈Ωi

(

τ (n−1)
i,j

)α
(ηi,j)

β
if j ∈ Ωi (4.1)

Equation 4.1 refers the transition probability that on nth construction step the ant
kth moves from node i to node j, where τ (n−1)

i,j and ηi,j are the quantity of pheromone
and the heuristic information on the edge from node i to node j, respectively; Ωi is
the neighborhood nodes for the ant, given that it is at node i; α and β are constants
that control the influence of the pheromone and heuristic information, respectively.
The values of p(n)

i,j are limited to [0, 1] due to the normalization factor represented
by the denominator of Equation 4.1.

After constructing solutions, it might be a need to include additional actions to
improve the solutions obtained by the ants through local search. This phase is
highly problem specific and optional.

The last component of the AS algorithm consists of updating the pheromone values.
The goal of this phase is to increase the pheromone values associated with good or
promising solutions and to decrease those associated with bad ones. Normally, this
is obtained by decreasing all the pheromone values through pheromone evaporation,
and by increasing the pheromone values related to a chosen set of good solutions.
The intended purpose of pheromone evaporation is that the algorithm “forgets”
older solutions after some time, preventing premature convergence to sub-optimal
solutions and promotes the exploration of new areas of the search space. The AS
pheromone update follows the Equation 4.2, where ρ ∈ (0, 1] is the pheromone evap-
oration rate, K is the number of ants, ∆τ k

i,j is the quantity of pheromone deposited
on path (i,j) by the kth ant.

τ (n)
i,j = (1 − ρ)τ (n−1)

i,j +
K

∑

k=1

∆(k)
i,j (4.2)
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4.3. Ant Colony System

An ant colony system (ACS) differs from the AS in way solutions are constructed
and pheromone trails are updated [53]. Actually, the most important difference is
the introduction of a local pheromone update in addition to the pheromone update
at the end of each construction process (offline pheromone update).

The local pheromone update is performed by each ant immediately after moving
from one node to another, that is, after each construction step. The ant updates
pheromone in the last path traversed according to Equation 4.3, where ϕ ∈ (0, 1] is
the pheromone decay coefficient and τ0 is the initial value of the pheromone.

τi,j = (1 − ϕ).τi,j + ϕ.τ0 (4.3)

Using local pheromone update allows a diversification of the search performed by
subsequent ants during an iteration. In fact, by decreasing the pheromone quantity
on the path traversed, ants stimulate subsequent ants to opt for other paths, and
therefore, to construct different solutions. In that way, it is less likely that during
one iteration there are several ants producing the same solution.

The offline pheromone update is performed at the end of each iteration by only one
ant, which can either be the iteration-best or the best-so-far ant. The update is
making according to Equation 4.4 where ∆(k)

i,j = 1/Lbest and Lbest can either be the
iteration-best or the best-so-far.

τ (n)
i,j =















(1 − ρ)τ (n−1)
i,j + ρ∆(k)

i,j , if (i, j) belongs to

best tour

τ (n−1)
i,j , otherwise

(4.4)

Another relevant variation between ACS and AS is the fact that ants use a different
decision rule during the construction process, known as pseudorandom proportional
rule. This rule states that the probability of an ant k to move from node i to node
j depends on a random variable q uniformly distributed over [0,1] and a parameter
q0 ∈ [0, 1], according to Equation 4.5.

if q ≤ q0 : pi,j =







1, if j = argmaxj∈Nk(i)τi,j. (ηi,j)
β

0, otherwise

else (q > q0) Eq.4.1 is used

(4.5)
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4.4. Ant colony optimization in image processing - a

literature review

Several methods find in the literature utilize artificial ant colony systems, imple-
mented as agent-based algorithms which simulates the behavior of real ants with
some differences. The created artificial ants behave like intelligent agents with mem-
ory and ability to see. They share their experiences in order to search optimal paths
iteration by iteration.

Using ant algorithms to perform image analysis and processing tasks is a relatively
new technique. Ant techniques have been used essential for low level image segmen-
tation through edge detection methods and clustering approaches [54].

For the edge detection algorithms, the use of pheromones aspect of ant algorithms is
done in a novel way. The digital image corresponds to the environment/search space
where ants occupy pixels and move around the image on a pixel-wise fashion. The
main goal of the AS algorithm is to locate and map out the image edges for which
heuristic information is needed. The heuristic information weighs higher the prob-
ability of an ant moving from its current position to the allowed neighboring pixel
that has the greatest edge characteristics (for example, the greatest change in im-
age gradient). When moving between pixels each ant lays an amount of pheromone,
which may also be a function of the change in image gradient. The pheromone evap-
oration takes place at a fixed rate per iteration. As the original AS, the transition
rule usually is a function of the heuristic information and the pheromone map. Nor-
mally, these algorithms initialize with a number of ants located in random positions
within the image. Then a convergence toward the edge areas within image occurs,
and the resulting pheromone trails map the boundaries between image segments.

The main differences between this kind of algorithms and the “traditional” AS
are that individual ants never construct complete solutions of their own, and the
pheromone values are not only used to guide the ants’ movements but also represent
the final solution in its entirety [54].

Examples of such algorithms are described in studies of Nezamabadi-pour et al. [55],
Tian et al. [56], Jevtic et al. [57] Ma et al. [58] and Zhang et al. [59]. A schematic
of a typical ACO for edge detection is represented in Figure 4.2.

In the clustering methods, the pheromone is not used as a visual solution, but
instead applies a more standard ant algorithm for optimizing the mapping of pixels
to clusters within the image. For example, Han and Shi [60] used the ACO algorithm
to perform fuzzy clustering in image segmentation. Three features were used for the
clustering and searching process, including gray level, gradient and neighborhood
of the pixels. They improved the heuristic function and the initialization of the
clustering centers to accelerate the clustering process and to improve the efficiency
of the proposed approach. Also as an optimization technique, the ACO was used in
work of Tao et al. [61] to look for the optimal combination of the fuzzy parameters,
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Figure 4.2.: Schematic of a typical ACO algorithm found in literature used for
edge detection in images (adapted from [56])

as they used the fuzzy entropy for the segmentation of infrared objects. In Lu et
al. [62] study, the authors used the ACO algorithm to improve the traditional edge
detection approaches. The ants used the local information of the original image to
search for paths among break edges and to explore compensable edges.

In medical image processing, the ant colony optimization algorithm has been already
used in brain MRI images [63] and in retinal images for the optic disc [64], macula
[65] and vessels segmentation [66, 67]. Therefore, the application of ACO algorithms
to medical images is rather recent and rudimentary and still need improvements.
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5. Detection of the optic disc
location

This chapter describes a method for the optic disc detection in fundus images,
based on an ant colony optimization approach preceded by anisotropic diffusion.
Experimental results demonstrate the good performance of the proposed approach,
because the optic disc is detected in most of all the images tested, even in the images
with great variability.

5.1. Introduction

The localization of the optic disc (OD) is of great importance in the retinal image
analysis because it is used as a landmark for the other features in fundus images.
For instance, the location of OD is usually used to locate the macular area, and
some blood vessels tracking methods start from the OD. Moreover, the accurate
localization of OD is indispensable in the detection of some lesions such as exudates,
because the OD has similar attributes in terms of brightness and contrast [68].
In fact, OD is characterized as a bright yellow disc from which the blood vessels
emerge. While the accurate segmentation of the OD is sometimes very useful, such
as for the glaucoma diagnosis in which the OD diameter increases, for this work
the location of this retinal structure is sufficient to distinguish it from the bright
lesions characteristic of the diabetic retinopathy. As it will be shown in section
5.2, there are many works reported in the literature with the purpose of detecting
and segmenting the OD, based on its shape, brightness, size and as the point of
convergence of the retinal vessels.

In this study, a new approach based on an ant colony system is proposed for locating
the OD. Ant colony optimization is a branch of a larger field referred to as Swarm
Intelligence and is inspired by the observation of the collective foraging behavior of
real ant colonies (see chapter 4 for more information). Recently, an ACO approach
[64] was also used in fundus images to detect edges, and therefore, to segment the
OD and other retinal structures. The cited authors analyzed the results in terms
of visual quality, computation time and preservation of useful edges. The work
described in this thesis for the OD detection starts with an anisotropic diffusion
process, which aims to smooth the retinal blood vessels. Then, an ACO algorithm
based on the approach developed by Tian et al. [56] to edge detection was applied
to the resultant image to detect OD edges.
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5.2. Related work

Locating and segmenting the OD have been attempted by several recent researches.
Ying et al. [68] presented an algorithm to localize and segment the optic disc
based on local fractal analysis. Since the OD area is the converging point of all
major vessels, it presents the highest fractal dimension compared to other bright
regions, such as hard exudates and artifacts. The algorithm proposed in [69] was
based on the algorithm of Hoover and Goldbaum [70], where they locate the optic
disc by searching for regions of high intensity, diversity of gradient directions and
convergence of vessels. Papers [71, 72] were also based on the geometrical directional
pattern of the retinal vasculature and aimed to locate the optic disc as the point
of convergence of all vessels. The work developed by Fleming et al. [73] aimed to
locate the optic disc and the fovea. The approach began with the detection of the
main vessels known as the temporal arcades, and which form approximately semi-
elliptical paths enclosing the fovea. The optic disc was located using a circular form
of the Hough transform and the fovea was detected by template matching. The
model of the fovea was derived from a set of training images of high quality. Hough
transform was also employed in [74, 75], where the OD boundary was estimated
using edge detectors or morphological operators.

Some morphological operators were used in [22, 76, 77]. Reza et al. [76] used the
green plane image and a morphological opening for detecting the connected compo-
nents. The extended maxima operator was then applied to identify groups of pixels
that have significantly higher values compared to their immediate surroundings.
The last steps consisted of a minima imposition procedure and the watershed trans-
form. The Lee et al. [77] algorithm began with the segmentation of the vasculature
using morphological operations. After the blood vessel structures were removed by
anisotropic diffusion smoothing, the next step was to estimate coarsely the optic disc
contour. In that way, a collection of contour points was determined by analyzing its
intensity profiles. Walter et al. [22] applied morphological filtering techniques and
an area threshold on the lightness channel of the HLS color space. The contours
were detected using the watershed transform on the red channel of the RGB color
space.

Li and Chutatape [78] presented an approach to locate the optic disc in the intensity
plane based on the principal component analysis (PCA). They detected its shape
by applying a modified active shape model (ASM).

The papers [79, 80, 81] present methods to segment the optic disc based on snake
models. Snake is an active contour that deforms to locate minimal energy points.
Therefore, the OD boundary is delineated by iteratively fitting the snake active
contour. A variant of deformable models is the active net model. In [82] an extension
of this model, called topological active net (TAN) was used to locate the OD at the
same time that performs its segmentation. Moreover, the TAN model was optimized
by means of a genetic algorithm.
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A supervised method was used in the paper [83]. Some vessel characteristics and the
pixel intensities were used as the parameters for a regression model of the optic disc
position. The authors used the k-nearest neighbors (kNN) regression to determine
the relationship between the dependent variable d, representing the distance to the
optic disc center, and a feature vector measured around a circular template.

The results of some of the above approaches are summarized in Table 5.1. In gen-
eral, these methods have difficulties in dealing with pathological images as many of
them showed worse results in the presence of pathological images in the database.
In fact, the algorithms proposed by Novo et al. [82] and Abràmoff et al. [83] that
demonstrate the best results used few pathological images and with only mild early
diabetic retinopathy. In addition, the retinal images frequently present poor con-
trast, noise, and great inter- and intra-image variability which affect the performance
of many algorithms.

Table 5.1.: Results from works reported in literature related to the segmentation
of optic disc

Researcher Database Success rate (%)

Hoover and Goldbaum [70] 81 (STARE) 89
Zhu et al. [75] 40 (DRIVE) 90
Lee et al. [77] 23 92
Xu et al. [81] 100 94

Walter et al. [22] 30
96.7 (localization)

90 (boundary)
Ying et al. [68] 40 (DRIVE) 97.5

Foracchia et al. [71] 81 (STARE) 98
Fleming et al. [73] 1056 98.4

Li and Chutatape [78] 35
99 (localization)
94 (boundary)

Youssif et al. [72]
81 (STARE)
40 (DRIVE)

98.8
100

Abrámoff et al. [83] 1000 99.9

Novo et al. [82]
233 (VARIA)
40 (DRIVE)

100
100

5.3. Materials and methods

The proposed approach is constituted by two main steps. First an anisotropic diffu-
sion process is applied to smooth the retinal images, particularly, the dark structures,
such as blood vessels. Then, the ACO algorithm is used to detect the other retinal
structures edges, mainly the OD edges.
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5.3.1. Anisotropic Diffusion

Anisotropic diffusion is similar to the process that generates a scale-space, where
an image is embedded into a parameterized family of successively more and more
blurred images based on a diffusion process. In fact, anisotropic diffusion is normally
implemented by means of an approximation of the generalized diffusion equation
and each new image in the family is determined by applying this equation to the
previous image. Thus, the anisotropic diffusion is an iterative process continued
until a sufficient degree of smoothing is obtained [84]. Qualitatively, the effect of
anisotropic diffusion is to smooth the original image while preserving brightness
discontinuities [85].

The first elegant formulation of anisotropic diffusion was introduced by Perona and
Malik [86] (Equation 5.1).

∂I

∂t
= div (c (x, y, t) ∇I) = ∇c.∇I + c (x, y, t) 'I (5.1)

They used the original image I(x, y, 0) as the initial condition. In Equation 5.1,
t is an artificial time parameter, div represents the divergence operator, ' and ∇
indicate the Laplacian and the gradient operators, respectively, with respect to the
space variables, and c(x,y,t) is the diffusion coefficient. This coefficient controls the
rate of diffusion and can be one of the two functions described in Equations 5.2 and
5.3 [86].

g1 (‖∇I‖) = e−(‖∇I‖/K2) (5.2)

g2 (‖∇I‖) =
1

1 +
(

‖∇I‖
K

)2 (5.3)

The constant K in the above equations controls the sensitivity to edges and is usually
chosen experimentally or as a function of the image noise.

The right choice of the diffusion coefficient, also called edge-stopping function, can
significantly influence the extent to which discontinuities are preserved. In fact, the
scale spaces obtained by these two functions are different: the first privileges high
contrast edges over low contrast edges, and the second privileges wide regions over
smaller ones and so preserves edges better than g1. However, in both cases the
diffusion process converges to an image with constant gray level when t → ∞ [86] .

Perona and Malik discretized their anisotropic diffusion equation [85] and this is
represented in Equation 5.4, where I(s,t) is a discretely sampled image, s denotes
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the pixel position in a discrete two dimensional (2D) grid, t ≥ 0 now denotes discrete
time steps (iterations), the constant λ determines the rate of diffusion, ηs indicates
the spatial neighborhood of pixel s and |ηs| is the number of neighbors. For 2D
images, usually 4 neighborhoods are used: north, south, west and east, except at
the image boundaries. Perona and Malik linearly approximated the image gradient
magnitude in a particular direction, at iteration t according to Equation 5.5.

I (s, t + 1) = I (s, t) +
λ

| ηs |
∑

p∈ηs

g (| ∇Is,p(t) |) ∇Is,p(t) (5.4)

∇Is,p(t) = I(p, t) − I(s, t), p ∈ ηs (5.5)

5.3.2. Ant Colony Optimization

Ant Colony Optimization algorithm is a stochastic local search method that has
been inspired by the foraging behavior of some ant species. For instance, locating
the shortest path between the colony and a food source is done by an exchange of in-
formation about the route that should be followed. When the ants walk to and from
the food source, leave some amount of pheromone on the ground; this pheromone
trail is used by ants to communicate with each other. Ants probabilistically prefer
to follow a direction proportional to the quantity of pheromone on it [53].

The proposed approach utilizes a specific number of ants moving on the image
driven by the local variation of the image intensity values. This variation establishes
a pheromone matrix with the same size of the image, which represents the edge
information at each pixel location of the image [61].

ACO is an iterative algorithm. At each iteration, a specific number of artificial ants
are considered. Each of them builds a solution over the solution space through their
movements and by constructing the pheromone information. The process starts with
an initialization stage, and then runs for N iterations to construct the pheromone
matrix by iteratively performing both the construction and the update processes.
At the end, a decision process is performed to determine the edges.

Suppose that K ants are used to find the optimal solution (image edges) in a space
X, i.e., in an image I with size M1 × M2, and where each pixel can be viewed as a
node; the ACO algorithm implemented could be summarized as in Algorithm 5.1.

Similar to the artificial ant based systems described in chapter 4, the above algorithm
contains two crucial issues that have to be defined: the establishment of the prob-
abilistic transition matrix and the pheromone matrix update. For the former the
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Algorithm 5.1 Summary of the implemented Ant Colony Optimization algorithm

1. Initialize randomly the positions of the K ants and the pheromone matrix τ (0)

2. For the construction step index n=1:N
i. For the ant index k=1:K

1. Consecutively move the kth ant for L steps, according to a probabilis-
tic transition matrix p(n) (with a size of M1M2 × M1M2), and locally update the
pheromone matrix τ (n)

ii. Global update of the pheromone matrix τ (n)

3. Make the solution decision according to the final pheromone matrix τ (N)

probabilistic action rule determined by Dorigo et al. [53] was used (Equation 5.6).

pn
(l,m),(i,j) =

(

τ (n−1)
i,j

)α
(ηi,j)

β

∑

(i,j)∈Ω(l,m)

(

τ (n−1)
i,j

)α
(ηi,j)

β
if (i, j) ∈ Ω(l,m) (5.6)

This equation indicates the probability that at nth construction step of ACO, the
kth ant moves from node (l, m) to node (i, j). τ (n−1)

i,j is the pheromone information
value of the arc linking the two nodes under consideration; Ω(l,m) is the set of feasible
components, that is, edges (l, m), (i, j)) where (i, j) is a node not yet visited by ant
k; α and β are constants that represent the influence of pheromone and heuristic
information, respectively; ηi,j represents the heuristic information for going from
node (l, m) to node (i, j), fixed to be the same for each construction step. In paper
[56] this parameter was determined by local statistics at the pixel position (i, j)
as referred in Equation 5.7, where Z =

∑

i=1:M1

∑

j=1:M2
Vc(Ii,j) is a normalization

factor,Ii,j is the pixel intensity value at position (i, j) of image I, and the function
Vc(Ii,j) is a function of a local group of pixels. The value of this function depends on
the image intensity values variation on this group of pixels with the shape showed
in Figure 5.1. Consequently, for pixel Ii,j, the function Vc(Ii,j) is described as the
Equation 5.8.

ηi,j =
1

Z
Vc (Ii,j) (5.7)

Vc(Ii,j) = f(|Ii−2,j−1 − Ii+2,j+1| + |Ii−2,j+1 − Ii+2,j−1|
+ |Ii−1,j−2 − Ii+1,j+2| + |Ii−1,j−1 − Ii+1,j+1|
+ |Ii−1,j − Ii+1,j| + |Ii−1,j+1 − Ii+1,j−1|
+ |Ii−1,j+2 − Ii+1,j−2| + |Ii,j−1 − Ii,j+1|)

(5.8)

52



5.3 Materials and methods

Figure 5.1.: Local configuration at the pixel Ii,j for determining the variation Vc

In order to establish the function f(.) in Equation 5.8, four different functions were
considered by Tian et al. [56]. They are mathematically expressed in Equation 5.9-
5.12. The parameter λ, present in each of these equations, adjusts the function’s
shape.

f(x) = λx for x ≥ 0 (5.9)

f(x) = λx2 for x ≥ 0 (5.10)

f(x) =







sin
(

πx
2λ

)

, for 0 ≤ x ≤ λ

τ (n−1)
i,j , otherwise

(5.11)

f(x) =







πxsin(πx
λ )

λ , for 0 ≤ x ≤ λ

0, otherwise
(5.12)

As far as the pheromone matrix is considered it needs to be updated twice during
the ACO process. The first update occurs after the movement of each ant within
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each construction step. This update is performed using the Equation 5.13, where
ρ is the evaporation rate and ∆(k)

i,j , in this particular case, is determined by the

heuristic matrix, that is ∆(k)
i,j = ηi,j .

τ (n−1)
i,j =















(1 − ρ)τ (n−1)
i,j + ρ∆(k)

i,j , if (i, j) is visited

by current k − th ant

τ (n−1)
i,j , otherwise

(5.13)

The second update occurs after the movement of all K ants within each construction
step, and the matrix is updated according to Equation 5.14, where ϕ ∈ (0, 1] is the
pheromone decay coefficient.

τ (n) = (1 − ϕ)τ (n−1) + ϕτ (0) (5.14)

Another issue that has to be established is the ant’s movement permissible range
(Ω(l,m)). In this paper, the 8-connectivity proposed in paper [56] was chosen.

Finally, the decision process consists in a binary decision made at each pixel location
to determine whether it is an edge or not by applying a threshold T on the final
pheromone matrix τ (N). The threshold T is proposed to be adaptively chosen based
on the Otsu’s method [87].

5.3.3. Retinal images

The DRIVE (Digital retinal images for vessel extraction) dataset, a publicly available
dataset developed by Niemeijer et al. [88] was used to test the proposed approach.
It is composed of 40 images, which 7 of them present signs of mild early diabetic
retinopathy, with 565x584 pixels and 8 bits per color channel. These images were
captured with a Canon CR5 non mydriatic 3 charge-coupled device camera at 45
field of view (FOV), and they are JPEG compressed, which is very common in
screening programs. This dataset has been used in the literature [82, 68, 72, 75] and
the results are shown in Table 5.1.

Another publicly available dataset named DiaRetDB1 (Diabetic retinopathy database,
calibration level 1) [89] was used to evaluate the performance of the proposed ap-
proach. The dataset consists of 89 images of which 84 contain at least mild nonpro-
liferative signs (microaneurysms) of the diabetic retinopathy, and 5 are considered
as normal (with no signs of the diabetic retinopathy). The images were taken in the
Kuopio University Hospital. The signs of diabetic retinopathy in the dataset are
relatively small, but they appear near the macula which is considered to threaten
the eyesight. Images were obtained with the same 50 FOV digital fundus camera
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with varying imaging settings such as flash intensity, shutter speed, aperture and
gain controlled by the system. Moreover, the images present a varying amount of
noise, but the optical aberrations (dispersion, transverse and lateral chromatic, field
curvature, coma, distortion) and the photometric accuracy (color or intensity) are
the same. As a result, the system induced photometric variance over the visual
appearance of the various retinopathy findings can be considered as small.

A third dataset, named HCAA, was used in this work and it comprises images
provided by Hospital Center of Alto Ave, EPE—Unit of Guimarães keeping the
privacy protection of the patient information. This dataset consists of 50 images
of which only 8 have no signs of diabetic retinopathy. Various levels of this ocular
pathology are present in all the other images oscillating among mild, moderate
and severe nonproliferative retinopathy and proliferative retinopathy. Moreover,
the images were acquired with different digital fundus camera and present different
characteristics such as resolution and dimension.

The two last datasets described correspond to good practical situations where the
commonly imaging conditions were used, i.e., the conditions encountered in hospital.
Therefore, the chosen datasets can be an effective way to evaluate the performance
of the proposed approach for being applied in real screening programs.

5.4. Results and Discussion

In the first step, the anisotropic diffusion parameters were empirically determined
and are represented in Table 5.2. The ACO algorithm parameters were the same
used by Tian et al. [56], already experimentally determined by Nezamabadi-pour et
al. [55] and are also indicated in Table 5.2.

All retinal images from the datasets were converted to size of 128 × 128 to be
considered for analyzing by the proposed algorithm. The average computational
time for the proposed approach was approximately 75 seconds. This time increased
to 1260 seconds, when the input image size was 256 × 256 and the results are very
similar. Using such a small size is advantageous since it works as a multi resolution
decomposition and as a result it minimizes the number of OD candidates.

Results of the proposed approach applied to pathological images with the red and
bright lesions characteristics of diabetic retinopathy are shown in Figure 5.2 and
Figure 5.3. These Figures illustrate the original image (a), the original gray level
image (b), the result of the diffusion process (c) and the result of the ACO algorithm
with each of the Equation 5.9-5.12 as shown in d–g, respectively. It can be noticed
from these Figures that the proposed approach could be an effective way to roughly
segment the optic disc, especially using the second or the fourth function in the
heuristic information. The other two functions also detect pixels not belonging to
the optic disc, particularly pixels near the contour of the FOV, around the main
blood vessels and around the bright lesions. Moreover, a qualitative analysis of
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Table 5.2.: Parameter values of the proposed algorithm

Algorithm Parameter Value

Anisotropic
Diffusion

t, number of iterations 15
c, diffusion coefficient function g2

K, in diffusion coefficient function 2
λ, rate of diffusion 1/7

ηs, spatial neighborhood 4-neighborhood

Ant Colony
Optimization

K , total number of ants
⌊√

M1 × M2

⌋

τinit, initial value of each component of the
pheromone matrix

0.0001

α, weighting factor of the pheromone
information

1

β, weighting factor of the heuristic
information

0.1

λ, adjusting factor of the function in
Equation 5.9- 5.12

10

ρ, evaporation rate 0.1
L , total number of ant’s movement steps

within each construction step
300

ϕ, pheromone decay coefficient 0.05
N , total number of construction steps 3

all tested images shows that the second and fourth function are considerably less
affected by the variability existing in the images. This was expected as the first and
third functions operate in a proportional way over all the gray values of the image
while the second and fourth functions enhance more the highest gray levels.

Results of applying the proposed approach to three images with different number of
ants are shown in Figure 5.4. From above to below, Figure 5.4 shows the original
color image and the result of ACO algorithm with 128 and 500 ants, respectively.
The average computational times of the proposed approach with 128 and 500 ants
are approximately 75 seconds and 630 seconds, respectively. As can be seen by
Figure 5.4 center and below the use of different number of ants results in different
segmentations, being the most accurate segmentation the one with the major number
of ants. However, the difference between the results does not seem to be so significant
to justify the discrepancy in computation time.

To evaluate and quantify the performance of the proposed approach, the OD centers
and diameters were manually determined in all the images. The estimated OD center
is considered acceptable if it is located within the circular OD area considered, i.e.,
if the distance between the estimated location and the manually segmented location
is smaller than half of the manually determined diameter. For the determination
of the estimated OD location, the centroid of the region with the biggest area from
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(a) (b) (c)

(d) (e) (f) (g)

Figure 5.2.: Experimental results (a) original image with principally red lesions,
(b) original gray-level image, (c) image resultant of the diffusion process, (d)–(g)
results of applying the ACO algorithm with the four equations superimposed on
the original image , respectively

the binary images corresponding to the second function was calculated. Figure 5.5
shows the results of this process applied to several images, where the OD location
estimated is represented by a cross (×). Figure 5.6 illustrates the results for each of
the images from the datasets in terms of the ratio (r) (Equation 5.15). Dist is the
distance between the estimated OD location and the manually segmented location;
Radius is the manually determined radius of the OD.

r =
Dist

Radius
(5.15)

The optimal value of r is 0, meaning that the estimated OD location is equal to the
manually segmented OD location. If the value of r is between 0 and 1, the estimated
localization of the OD can be considered acceptable as the estimated OD location
is inside the OD. On the other hand, a value of r bigger than 1 means that the
estimated OD location is outside of the OD, corresponding to the outliers. In the
DiaRetDB1 database, there are six obvious outliers corresponding to a success rate
of 93.25 %. In the HCAA dataset, the proposed method achieved a success rate of
94 % as it could not correctly locate the OD in three images. In the DRIVE dataset,
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(a) (b) (c)

(d) (e) (f) (g)

Figure 5.3.: Experimental results (a) original image with principally bright lesions,
(b) original gray-level image, (c) image resulting from the diffusion process, (d)–(g)
results of applying the ACO algorithm with the four equations superimposed on
the original image , respectively

the algorithm was able to locate the OD in all the images achieving a performance
of 100 %.

Figure 5.7 illustrates three representative images of the DiaRetDB1 database where
the approach failed. The problem of the first image (left) is the presence of a large
bright lesion characteristic of a more advanced stage of the diabetic retinopathy.
The second image presents poor contrast causing the OD difficult to see. In the
last image (right) the proposed approach also roughly segmented the OD, but the
ants were more concentrated in the artifact resulting from a bad acquisition of the
image. Nevertheless, this approach combined with a method to segment the blood
vessels could be an effective way to overcome these problems due to the possibility
to detect the OD as the point of convergence of blood vessels.

From Figure 5.5, it can be seen that this approach overcomes the main problems
characteristic of the retinal images resulting from the screening programs. That is
with ACO algorithm preceded by anisotropic diffusion, it can be possible to locate
the OD in images with great variability between them and inside them without any
other preprocessing. In addition, conversely to the works described in literature, the
algorithm was applied in pathological images and in most of them (94%) it worked
well.
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Figure 5.4.: Results of applying the proposed approach to three color images
(above) with 128 ants (center) and 500 ants (below)

Furthermore, this approach in general outperforms the work developed by Kavitha
and Ramakrishnan [64] in segmenting the optic disc. They used the ACO algorithm
in the same way preceded by adaptive histogram equalization technique consider-
ing an exponential distribution function. With their approach they could segment
the optic disc and also some of the blood vessels. However, as the images of the
paper show [64], their algorithm is affected by noise and by the presence of a great
variability in the image background. With the approach proposed here, it is easy
to detect the optic disc and to differentiate it from the other pixels also detected,
which are significantly fewer than in Kavitha and Ramakrishnan’s approach due to
the use of the anisotropic diffusion.

Although it is useful sometimes to completely segment the OD, such as for the
glaucoma diagnosis in which the OD diameter increases, this is not the reasoning
of this work. As the aim of this project is to develop a system for the detection
of DR in fundus images resulting from screening programs, the location of the OD
is sufficient to distinguish it from the bright lesions characteristic of the pathology.
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Figure 5.5.: Results of applying the proposed approach to twenty different images,
from the DiaRetDB1 and HCAA datasets, with great variability and various levels
of DR. The estimated localization of the OD is marked with a cross (×)

With this purpose, the proposed method achieved success rates higher than 90% in
the three datasets used. The results achieved with the DRIVE dataset are good as
or better than the ones described in the literature [68, 72, 75, 82]. The comparison
with the results obtained with the DiaRetDB1 and HCAA datasets have to be done
carefully. Actually, these two datasets are compounded of more diverse and realistic
universe of images, regarding intra and inter variations and the existence of lesions.
As we intend to develop a reliable system with generalized clinical application, it
is important to use real images. In that way, the use of these two datasets can be
considered as an advantage of the proposed approach over the methods found in the
literature.

5.5. Conclusion

In this study, ACO algorithm preceded by anisotropic diffusion was successfully
applied in retinal images to segment the optic disc. The superior performance in
pathological images and images with great variability intra and inter images could
be considered the major advantage of this approach.
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Figure 5.6.: Quantitative results for all the images of the databases used, where
each point represents the ratio between the distance from the estimated location
and the true location, and the radius of the OD

For this work, the accurate localization of the OD is sufficient since our goal is to
develop a system able to detect DR in fundus images. The localization of the OD
is important to distinguish it from the bright lesions characteristics of the pathol-
ogy. The proposed method achieved success rates of 93.25%, 94% and 100% in the
DiaRetDB1, HCAA and DRIVE datasets, respectively. The algorithm is affected
essentially by the poor contrast of imges complicating the OD detection, by the
presence of large bright lesions, and by the large bright artifacts resulting from a
bad acquisition of the image. However, these problems could be overcome by con-
sidering the OD as the point of convergence of blood vessels and, consequently, by
adding the segmentation of the blood vessels.

As the experimental results show, the ACO algorithm could be efficient in extract-
ing other features in the image such as the major blood vessels and macula. The
diffusion process applied in the methodology described here is an important way to
segment only the OD, and, consequently, to distinguish it from the other features
also detected when only the ACO algorithm was used. Then the localization of the
OD by a point was a simple task.
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Figure 5.7.: Images where the proposed approach achieves the worst results. Orig-
inal images with the wrong localization of OD identified by a cross (×) (above)
and the results of applying the ACO algorithm (below)
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6. Bright lesions detection

This chapter describes a technique to perform the exudate segmentation by means
of a new unsupervised approach based on ant colony optimization algorithm. The
proposed approach performance was evaluated on an online available dataset and
the experimental results shows that the ant colony algorithm performs better than
one traditional filter for exudates detection.

6.1. Introduction

Exudates are one of the DR earlier signs. They are an indicator of increased vessel
permeability as they are plasma lipid and protein accumulations in the retina. In
fundus images they appear as yellow-white dots, shiny and with sharp borders.
Moreover, they are frequently observed together with microaneurysms. The main
difficulties in accurately detecting exudates in fundus images are brought by noise
presence, low contrast, uneven illumination and color variation. Moreover, there is
some difficulty in distinguishing among the exudates and drusen, the “bright lesions”
associated especially with age-related macular degeneration (AMD) and which can
have a similar appearence with exudates.

In this study, a new exudates segmentation approach is proposed based on Ant
Colony Optimization. The ACO was already used in fundus images to analysis
the OD [64], the macula [65] and segment retinal blood vessel [66, 67]. Chapter 5
describes an ACO based approach to locate the OD. As far as known, this kind of
approaches has never been applied to retinal images to detect DR lesions.

6.2. Related work

Several approaches have been proposed in literature to segment bright lesions from
the color fundus photographs. Giancardo et al. [90] roughly divided them into four
categories: thresholding, morphology, region growing and supervised methods.

Thresholding methods are based on global or local gray level analysis. For instance,
Sanchez et al.[91] presented a thresholding method based on a statistical mixture
model. This was employed on the enhanced image histogram to determine a dynamic
threshold for each image. Then, a postprocessing technique based on edge detection
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using Kirsch’s method, was applied to distinguish hard exudates from other bright
lesions.

Morphology methods consist of applying morphological operators to identify struc-
tures with specific shape (such as vessels). These structures are then removed and
therefore exudates can be selected [22, 92, 93, 94]. Morphological operators are
sometimes combined with other techniques, such as contrast enhancement and clus-
tering methods [94].

Region growing methods segment the image based on the spatial gray level conti-
guity. For instance, Li and Chutatape [78] used CIE Luv color space images and
applied to them a region growing method proceeded by the Canny edge detector.
The edge detection decreases the size of the regions and improves significantly the
computation time. They also created a fundus coordinate system which allowed the
automatic identification of the lesions presence in the macular area.

Supervised methods are the most common in the literature [25, 90, 95, 96, 97, 98].
They consist of building a feature vector for each pixel or pixel cluster, to be clas-
sified by a machine learning approach into exudates or non-exudates. The features
are based on color, brightness, size, shape, edge strength, texture and contextual
information of pixel clusters. The machine learning methods commonly used are
Neural Networks (NN) [95, 98], Support Vector Machines (SVM) [90, 97], Linear
Discriminant classifiers [25, 96], and Naïve Bayes classifier [90]. Fleming et al. [97]
detected candidate exudates using a multi-scale morphological process. For each
scale, the result was an enhancement of the bright dots present in the original im-
age. The application of a dynamic threshold reduced the candidates which were
false positives. Garcia et al. [95] study made use of the global histograms shape
properties. The histogram of the preprocessed images shows one maximum that
corresponds to the background. The tail on the right of this maximum corresponds
to the bright structures present in the images. In that way, the method consisted in
applying a threshold at the gray level of this tail for which the histogram decreased
to 10% of the maximum. Moreover, the authors also considered the properties of
the local histograms which were obtained by dividing the image into square blocks
of side 200 pixels. Niemeijer et al. [96] presented an algorithm which aims to detect
exudates and cotton-wool spots and differentiate them from drusen. In a first stage,
a k-nearest neighbor classifier was used to detect candidate bright lesions. A linear
discriminate analysis was then applied to differentiate among lesion types. Sanchez
et al. [25] describes an algorithm based on Fisher’s linear discriminate analysis,
which made use of statistical recognition and of color information to perform the
classification of exudates. The classification rule was automatically adapted to each
image.

The results of the above approaches are summarized in Table 6.1. Unfortunately,
the majority of these algorithms was tested on independent databases with different
characteristics. Therefore, it is not possible to prove their capacity to generalize.
Moreover, results were quantified using different evaluation methods, becoming dif-
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ficult the comparison between them.

Table 6.1.: Results and methodology categories of literature approaches for the
exudates segmentation

Author
Method

category
Results Dataset

Walter et al. 2003

[22]
Morphology

Sensitivity/ Predictive value

pair of 92.8%/92.4% (per

lesion)

30 images: 15 with

exudates

Li et al. 2004[78] Region growing
Sensitivity/Specificity pair of

100%/71 % (per image)

35 images with

exudates

Fleming et al. 2007

[97]
Supervised

Sensitivity/Specificity pair of

95%/84.6% (per image)

13 219 images: 300

with exudates

Niemeijer et

al.2007 [96]
Supervised

Area under ROC

curve=0.95;

Sensitivity/Specificity pair of

95%/88% for the detection

of bright lesions of any type

(per lesion)

300 images: 100

with bright lesions

and 200 without

Sanchez et al. 2008

[25]
Supervised

Sensitivity of 88% and mean

number of false positive per

image of 4.83±4.64 (per

lesion);

Sensitivity/Specificity pair of

100%/100% (per image)

83 images: 25 for

training and 58 for

testing (36 with

exudates)

Sopharak et al.

2008 [92]
Morphology

Sensitivity/Specificity pair of

80%/99.5% (per lesion)

60 images: 40 with

exudates

García et al. 2009

[95]
Supervised

Sensitivity/ Predictive value

pairs of 88.1%/80.7 % with

MLP, 88.5%/77.4 with RBF,

87.6%/83.5% with SVM (per

lesion) and

Sensitivity/Specificity pairs

of 100%/92.5% with MLP,

100%/81.5% with RBF,

100%/77.8% with SVM (per

image)

117 images: 50 for

training and 67 for

testing (40 with

DR signs)

Sanchez et al. 2009

[91]

Dynamic

Thresholding

Sensitivity/Predictive value

pair of 90.2%/96.8% (per

lesion) and

Sensitivity/Specificity pair of

100%/90% (per image)

106 images: 26 for

training and 80 for

testing (40 images

with exudates)
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Author
Method

category
Results Dataset

Osareh 2009 [98] Supervised

Sensitivity/Specificity pair of

96%/94.6% (per image) and

Sensitivity/ Predictive value

pair of 93.5%/92.1% (pixel

level)

300 images: 150

with DR signs

Welfer 2009 [93] Morphology
Sensitivity/Specificity pair of

70.5%/98.8 % (per image)
DIARETDB1[89]

Amel 2012 [94] Morphology
Sensitivity/ Predictive value

pair of 95.9%/92.3%

50 images from

MESSIDOR[99]

Giancardo 2012

[90]
Supervised

Area under ROC curve

between 0.88 and 0.94

depending on the

dataset/features used

MESSIDOR[99];

HEI-MED[90] and

DIARETDB1[89]

6.3. Materials and methods

As exudates have the highest contrast with the background in the green plane of
the RGB color model [22], this was chosen to implement the proposed approach.
This approach is mainly constituted of two parts. First, a preprocessing phase
is developed to find a binary image with exudates candidates based on its high
intensity gray level. Since sharpness of exudates edges is an important attribute to
distinguish them from other bright structures [25], edge strength for each candidate
is then evaluated. This is performed by analyzing the resultant image of applying
ACO in image windows of size 128 × 128. An outline of the proposed approach is
illustrated in Figure 6.1.

Figure 6.1.: Schematic representation of the proposed approach

For evaluating the edge strength with different preprocessing phases, other authors
[25, 91, 100] used a traditional edge detector, the Kirsch filter (subsection A.3.1).

66



6.3 Materials and methods

In order to compare the proposed approach with those, a part of the Giancardo’s
approach [100] were also implemented and evaluated in the same way.

6.3.1. Preprocessing

The intra and inter image variability of fundus images, mainly due to retinal pig-
mentation and acquisition process, affects the exudates automatic segmentation.
Therefore, a preprocessing step for image normalization is very important to im-
prove the algorithm capacity for generalizing.

The intensity variation in the background across the image can be eliminated by
estimating the background image and subtracting that from the original green
plane image. The background image is estimated by applying a median filter
(subsection A.2.2) with a 50x50 pixel kernel. The size of this filter was chosen ac-
cording to the widest blood vessel of the database. The obtained shaded corrected
image shows a characteristic gray level distribution: the highest histogram peak is
always centered on zero and there is a clear distinction between dark and bright
structures. The left histogram tail with negative values belongs to dark structures
such as vessels, macula and dark lesions. The positive histogram tail corresponds to
the bright structures including optic disc, bright lesions, and other bright structures.
Figure 6.2 shows three different color retinal images and the respective, green plane
image, normalized gray level image and histogram of the normalized image (from
left to right).

At this point, and since all the normalized images have similar histogram char-
acteristics, it is possible to select all the exudates candidates with a simple hard
threshold. However, it was experimentally noticed that the use of two hard thresh-
olds with posterior morphological reconstruction can improve results (Figure 6.3).
Applying a low threshold value (T1) permits the selection of all exudates and re-
spective borders. With a higher threshold value (T2), the bright intensity peaks,
which mostly correspond to exudates, are detected. In fact, in that way it is possible
to eliminate several false positives and maintain the correct candidates border that
are really exudates. The values for T1 and T2, experimentally determined, are 0.008
and 0.02 respectively. In the resultant binary image (Icand) all bright lesions should
be identified.

The preprocessing step finalizes with candidates elimination that belong to optic
disc. The OD was detected by the method described in chapter 5.

6.3.2. Ant Colony Optimization Algorithm

The artificial ant colony system used in this approach for the exudates detection
follows the same algorithm used for the optic disc location and it is summarized
in Algorithm 6.1. For determining the heuristic information, the function Vc(Ii,j)
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Figure 6.2.: (From left to right): original color image; green plane image; normal-
ized gray level image; normalized image histogram

used was the function mathematically expressed in Equation 5.10. The quadratic
function was chosen because it enhances more the highest gray levels, representing
an advantage in this case as we are looking for exudates.

Due to the large image size and to reduce computation time, the ACO algorithm
was independently applied on non-overlapping image windows of size 128 × 128.

Algorithm 6.1 The Ant Colony Optimization algorithm implemented
1. Determination of the heuristic information and initialize the resultant image

Ires = 0
2. For each original image window of size 128 × 128

i. Initialize randomly the positions of the K ants and the pheromone matrix
τ (0)

ii. For the construction step index n=1:N
1. For the ant index k=1:K

i. Consecutively move the kth ant for L steps according to the prob-
abilistic transition matrix p(n)(Equation 5.6), and locally update the pheromone
matrix according to Equation 5.13

2. Global update of the pheromone matrix according to Equation 5.14
3. Assign pheromone matrix τ (N) to the correspondent window on the resultant

image
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Figure 6.3.: Using two hard thresholds with posterior morphological reconstruc-
tion eliminates a number of false positives and maintains the correct candidates’
border.

6.3.3. Exudates detection

From Icand the object candidates were obtained using 8-neighbor connected com-
ponent analysis. As proposed by Sanchez et al. [91] the edge strength of each
object candidate was determined as the mean intensity under the object in the
edge-enhanced image resulting from the ACO algorithm step. A candidate was then
considered an exudate if its edge strength value is bigger than a threshold (th). th
is an algorithm parameter which determines the minimum value that an edge must
have to be considered as a sharp boundary. To detect more exudates, a lower value
has to be chosen, but false positives also increase.

To reduce the number of false positives that usually appears close to blood ves-
sels, the segmented vasculature map obtained with the method of Zana and Klein
[101] was used to eliminate the blood vessels edges found by the ACO algorithm.
Then, to evaluate the final output the following thresholds were employed th ∈
{0 : 0.005 : 0.02}.

6.3.4. Giancardo’s approach

Giancardo’s approach [100] is, as well as the proposed method, constituted of two
main parts. First, the intensity component of the HIS color space was used to
estimate the background image. Then, a morphological reconstruction step was
used to enhance the normalization as it seems to improve the removal of nerve fiber
layer and other structures close to OD. After normalization, a small hard threshold
was applied and candidates were selected from the resulting image. For each of the
exudate candidates, edge strength was defined by the average intensity under the
candidate in the Kirsch resultant image. The Kirsch filter was applied in the original
image green plane. Figure 6.4 illustrates the schematic of this method.
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Figure 6.4.: Schematic representation of the Giancardo´s approach with Kirsch
filter

To make a fair comparison between Giancardo´s approach and the proposed ap-
proach, a step was added to the former. The segmented vasculature map used in
our approach was added to eliminate the blood vessels edges enhanced by Kirsch
filter.

The Giancardo’s study also used stationary wavelets to evaluate the peak intensity
of each candidate. However, they reported [100] that the Kirsch approach generally
showed better results. Moreover, the proposed approach follows the same idea of
the Giancardo’s Kirsch approach as the candidates are evaluated in terms of edge
strength. In that way, the comparison in this study is just between the proposed
approach and the Giancardo´s approach that used Kirsch edges.

6.3.5. Retinal images and system performance evaluation

The HEI-MED (Hamilton Eye Institute Macular Edema Dataset), a publicly avail-
able dataset developed by Giancardo et al. [90] was used to test the approaches.
This dataset is composed by 169 images representative of various degrees of DR.
The images present a great variability among them as they belong to patients with
different age and ethnicity. Moreover, the authors developed an image quality met-
ric ranging from poor, good and excellent and referred that the percentages of each
category are 8%, 18% and 74%, respectively. In addition, the dataset contains the
bright lesions manual segmentation for each image, where the exudates are distin-
guished from other bright lesions, such as cotton wool spots and drusen.

To evaluate the approaches performance two different criteria were used: the pixel
based criterion and image based criterion. For the first, all pixels belonging to a
candidate that partially or totally overlaps a manually segmented bright lesion were
considered true positive (TP). All candidate pixels outside this criterion were reg-
istered as false positives (FP). All exudate pixels manually segmented that were
not segmented by this approach were considered false negatives (FN). In the image
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based criterion, the capacity of the algorithm to exclude healthy images was eval-
uated. An image was considered healthy if it does not contain any exudate, and
pathological if it contains at least one exudate.

Researchers frequently evaluate their approaches performance in terms of sensitivity
(Equation 6.1) versus predictive positive value (Equation 6.2) (see Table 6.1). How-
ever, this does not seem to be a good quantitative evaluation as predictive positive
value is prevalence dependent. Therefore, if images have a big quantity of exudates,
the prevalence would be naturally bigger than in images with few exudates. To avoid
this, the proposed approach was also evaluated in terms of Receiver operating char-
acteristic (ROC) curves, which plot the true positive rate (Sensitivity) in function
of the false positive rate (1-Specificity). Therefore, to determine the ROC curve,
specificity values have to be calculated (Equation 6.3). The problem in calculating
the specificity is that if all image pixels are considered, the number of true negative
(TN) pixels will be huge comparing with FP values and so, the specificity will always
have high values. To overcome this problem, we propose to calculate the TN as a
function of the threshold value (Equation 6.4). When th is 0, the FP number has
its maximum. Increasing th by 0.005 the FP number decreases and pixels that were
false positive became true negative pixels (Figure 6.5). On the other side the TN
number has its minimum when th=0 and afterward it increases with the threshold
variation. In that way, if the TN number is considered zero when th=0, then its
value can be compared to the FP number and the specificity value will be more
representative of the approach capacity to exclude pixels that are not exudates. In
this study, ROC curves were constructed following this idea.

In addition to the ROC curves, the approaches were also evaluated in terms of the
accuracy (Equation 6.5).

Sensitivity =
TP

TP + FN
(6.1)

PPV =
TP

TP + FP
(6.2)

Specificity =
TN

TN + FP
(6.3)

TN(th) = FP (th − 0.005) − FP (th) + TN(th − 0.005) (6.4)

Accuracy =
TP + TN

FP + TN + TP + FN
(6.5)
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Figure 6.5.: Schematic representing statistical measures: FN, TP, TN and FP.
From left to right represents what happens when threshold increases: the TP and
FP decreases and becomes FN and TN, respectively.

6.4. Results and discussion

The results of the proposed approach applied to images with exudates from HEI-
MED dataset are shown in Figure 6.6. The latter illustrates (from left to right):
original color image; binary image resulting from the preprocessing step with the
exudates candidates; gray level image resulting from the ACO algorithm; green
plane image with the exudates segmented by the proposed approach. From the pre-
processing phase results a binary image with all exudates segmented and a lot of
false positives. The ACO algorithm resultant image reveals exudates edge enhance-
ment. The combination of both images taking into account the edge strength of
each candidate can remove the most part of FP pixels.

The lesion segmentation performance of the proposed algorithm was evaluated by
determining the overall sensitivity, specificity, accuracy and predictive positive val-
ues for each threshold value. Figure 6.7 illustrates the proposed approach and Kirsch
approach ROC curves and the respective Area Under Roc Curve (AUC) values. AUC
is an accuracy measure, that is, it measures the approach capacity to distinguish
between normal and exudate pixels. Therefore, the proposed approach performs
better than the Kirsch approach since the respective AUC values are 0.975 against
0.971. Since the candidates of both approaches were obtained by different pro-
cesses, Figure 6.7 also contains the ROC curve of a different approach that begins
with the proposed candidate detection method and uses the Kirsch filter to enhance
edges. The respective AUC demonstrates that the ACO edge enhancement method
performs better than the Kirsch filter.

Table 6.2 describes the quantitative results for these three approaches when the
overall accuracy reaches its maximum. It can be noticed how the three methods
perform comparably, with the proposed approach performing somewhat better in
terms of sensitivity.

Despite being important the performance evaluation in terms of pixel-based crite-

72



6.4 Results and discussion

Figure 6.6.: From left to right: original color image; binary image with exudate
candidates (Icand); ACO algorithm gray level resultant image; green plane image
with the exudates segmentation

rion, image-based criterion is crucial when goal is the development of a system for
the diabetic retinopathy diagnosis. Thus, the detection of a single exudate in an im-
age with many of them is as useful and important as the detection of an exudate in
an image with only one lesion of this type. Consequently, the algorithm capacity to
distinguish patients with or without bright lesions should be evaluated. Figure 6.8
illustrates the proposed and Kirsch approaches ROC curves calculated with all im-
ages from the HEI-MED dataset and using image-based criterion. In spite of the
AUC value for the Kirsch approach being higher than for the proposed approach,
the discrepancy is very small. Furthermore, the shape of the curves is irregular
and intersects several times, indicating that for some threshold values, the proposed
approach has better performance than the Kirsch approach. For other threshold
values, the opposite is observed. The point is that none of the approaches perform
as needed for clinical practices and both need improvements. The same applies to
the approaches found in literature that are described in section 6.2. A comparison
between our approach and those found in literature is not possible, since the reti-
nal image datasets used and the way to measure performance were not the same.
Therefore, the comparison was limited to the segmentation step of the Giancardo’s
approach [90] that was described in a previous work [100], since their database was
used in this study and their approach follows similar ideas.
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Figure 6.7.: ROC curves using all images and the pixel-based criterion

Table 6.2.: Quantitative results using pixel-based criterion for the three approaches
and using all images

Approach Accuracy Sensitivity Specificity PPV

Our 0.9785 0.8082 0.9916 0.7301
Kirsch 0.9767 0.7575 0.9961 0.8348

Our+Kirsch 0.9786 0.5986 0.9988 0.8944

Although the preprocessing phase is very important to normalize images and to
locate exudates at a global level, the diversity of brightness and size become difficult
the detection of all the exudates. Since exudates often appear in groups, failing in
the detection of some very faint exudates is not relevant. Nevertheless, when only a
few faint exudates are present in the retina, this method may fail in the identification
process, even if the ACO algorithm has succeeded in their detection.

6.5. Conclusion

In this chapter, a new algorithm based on ACO is described for exudates detection
in color fundus images. The contributions of this study are the use of an online
available dataset, which permits future comparisons with other approaches, and the
development of a new unsupervised method for the exudates detection. Using the
pixel based criterion, the experimental results show that the proposed approach
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Figure 6.8.: ROC curves using all images and the image-based criterion

yields better AUC than the Giancardo’s method with Kirsch filter. With the image-
based criterion none of the approaches performs as needed for clinical practices.

The application of an ant colony to locally explore the image gray level variation
is the greatest novelty of this study. The ACO algorithm can be seen as an agent-
based algorithm, because it contains several agents with memory moving on the im-
age (environment) and that communicate indirectly through the environment [102].
Furthermore, it presents some MAS properties, such as self-organized mechanisms
that allow the emergence of complex behaviors, which, in this case, are the edges
enhancement. In this way, a new category of approaches based on MAS is being
applied to retinal images for the exudates segmentation.
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7. Blood vessels segmentation

This chapter presents a new approach based on an agents’ organization enabling
vessel detection. This multi-agent approach is preceded by a preprocessing phase
in which the fundamental filter is a Kirsch derivative improved version. This first
phase allows the environment construction where agents are situated and interact.
Then, blood vessel edges detection emerges from agent interaction. According to
this study, competitive results as compared with those present in the literature were
achieved.

7.1. Introduction

The retinal blood vessels segmentation is of major importance for clinical purposes.
In fact, by analyzing the vascular structures it is possible to have the early diagno-
sis of several chronic pathologies, such as arteriosclerosis, hypertension or diabetic
retinopathy.

In retinal photographs, blood vessels appear as elongated features, much darker than
the background, and their width is smaller than a certain value (up to 0.2mm [103]).
They enter into the retina by the optic disc and they can be seen as a connected
line segments series. The main difficulties in accurately segment vessels in fundus
images are brought by noise presence, low contrast between vasculature and back-
ground, vessels width, brightness and shape variability. Furthermore, the presence
of pathological features, such as exudates or hemorrhages, causes large abnormal
region in the retinal image. To solve this variability problem, it is important to
adapt locally image interpretations instead of applying only one algorithm on the
entire image. A multi-agent system approach is thus proposed as a solution since
agents allow several algorithms cohabitation. In fact, agents can analyze problems
which they are locally confronted with, and then select the most suitable algorithm
to their local context [43].

Therefore, the association of MAS and image processing has been revealed as an
expanded research area. As far as known, multi-agent approaches have never been
applied to the retinal images. In this study, two new approaches based on the
previous work of Mahdjoub et al. [43] were applied to the digital color fundus
images for the retinal blood vessel edge detection and segmentation tasks. These
new approaches use some image processing algorithms as concrete perception and
action tools for defining autonomous agents that interact among themselves and

77



Chapter 7 Blood vessels segmentation

with the environment (the image). Then the blood vessel segmentation emerges as
a global behavior.

7.2. Related work

Retinal vasculature segmentation has become crucial for several medical diagnostic
systems and numerous research efforts have been done in this field. The most
common techniques reported in the literature are based on matched filters, machine-
learning algorithms, blood vessels geometry and colors properties as main features.

The matched filtering approaches [104, 105, 106, 107, 108] consist on the blood
vessels enhancement followed by a multi-threshold probing scheme. In these methods
it is assumed that the vessel cross section can be modeled as a Gaussian function.
For instance, Gabor filters were used by applying a multi-scale analysis scheme to the
image in order to enhance the different widths blood vessels. That is, Gabor filters
were applied as line detectors with variable thickness to obtain a bank of filters at
different scales for multi-resolution filtering and analysis. Then, a multi-threshold
probing scheme was applied to determine an appropriate threshold for each area
being probed, based on the local and regional attributes of the blood vessels. Zhang
et al. [108] improved this approach by considering not only the response to the
matched filter but also the local mean of it. In fact, the response of the matched
filter with the first-order derivative of Gaussian function is strong and has a local
mean close to zero around vessels peak position. In contrast, for the non-vessels
structures both response and its local mean are high.

The machine-learning approaches are frequently compounded by an image analysis
step followed by a classification step. The work developed by Staal et al. [109] began
with the image ridges extraction from the green plane, used to compose primitives in
the form of line elements. With these primitives the image was divided into patches
by assigning each image pixel to the closest primitive. Finally local features were
extracted from each patch to be used in a kNN classifier. Each pixel of an image was
represented by a feature vector in [110] and [111] to classify it as a vessel or a non
vessel pixel. These vectors included the two-dimensional Morlet wavelet transform
responses taken at multiple scales. In [110] the feature vector also contained the
pixel’s intensity in the green plane. In [111] the pixel feature space also included the
Gaussian gradient responses taken at different scales and some color information.
For the classification step it was employed a Bayesian classifier with class-conditional
probability density functions. In Ricci and Perfetti [112] study, the inverted green
channel image was scanned and two orthogonal line detectors were applied to each
pixel. The line detector evaluated the average gray level along fixed length lines
passing through the target pixel at different orientations. These detectors results
and the pixel’s intensity formed a feature vector used in a supervised classification
with Support Vector Machines. Salem et al. [113] presents an algorithm called
radius based clustering algorithm that used a distance based principle to map the
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distributions of the data and did not have to specify the number of clusters. The
data resulted from a first segmentation phase in which three features were extracted
from each image pixel: the green channel intensity; the local maxima of the gradient
magnitude (recognition of the parallel edges of the vessels); the local maxima of the
largest eigenvalue (recognition of piecewise linear property of the vessels).

Other techniques present in literature made use of the vasculature geometry such
as shape and measurements, and of the vasculature contrast to help in extracting
vessels. In [114] each image pixel from the green plane was tested by a vessel shape
kernel at different directions to determine the directional local contrast. This one was
compared to a certain threshold value, which determined the lowest level of contrast
of blood vessels that can be detected by the algorithm. In that way, each image pixel
was classified as vessel or background. Huang and Yan [115] proposed an algorithm
to detect the blood vessel that quantitatively measured the salient properties of
retinal vessels and combined the measurements by Bayesian decision to determine a
confidence value for each detected vessel segment. The salient properties of vessels
used in this work were the dark appearance and the continuous linear structure
of the blood vessel in retinal images. Lam and Yan [116] algorithm firstly locates
the pixels which are in thin concave regions by applying the Mumford-Shah model,
and secondly extracts the connected vessels by skeletonization from these regions.
Recently, they presented an extension of their preliminary study [117]. Following
the vessels properties, they located centerlines using the normalized gradient vector
field.

Al-Diri et al. [118] proposed an algorithm for segmenting and measuring retinal
blood vessels. This began with the identification of an initial set of potential vessel
segment centerline pixel by using a generalized morphological order filter. Then a
segment growing algorithm was applied to convert the map obtained in the last stage
into a set of segments, each consisting of a series of profiles. This last algorithm
was based on the Ribbon Twins model that used two pairs of contours to detect
each vessel edge while maintaining width consistency. Finally, a junction resolution
algorithm was applied to extend the discrete segments and resolve various crossings,
junctions and joining.

Many other approaches are found in the literature to obtain a vasculature map: mor-
phological operators combined with other techniques [24, 119, 120]; a vessels signals
frequency domain analysis applying a band of Local-Mean-Interpolation filters [121];
multi-window Radon transform [122]. Narasimha-Iyer et al. [69] presented a vessel
detection method where starting from initial seed-points, vessels are tracked recur-
sively using directional templates.

Most of the above algorithms were implemented and tested with the STARE (struc-
tured analysis of the retina) [104] and DRIVE [88] databases and results are sum-
marized in Table 7.1. These approaches were generally evaluated in terms of area
under the ROC curve and accuracy, that is the fraction of pixels correctly classified.
Despite some of them present good results comparing with the 2nd observer manual
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segmentation [109, 112], they often have difficulty in distinguishing the blood vessels
from the other retinal structures. This is due to the use of centralized mechanisms at
the macro level that cannot be locally adapted to the image properties. Therefore,
none of the methods presented in the literature perform as needed because of retinal
image complexity.

Table 7.1.: Results from works reported in literature related to the retinal blood
vessels segmentation

STARE DRIVE
AUC Accuracy AUC Accuracy

2nd observer - 0.9351 - 0.9473
Hoover et al. (2000) [104] 0.759 0.9275 - -
Staal et al. (2004) [109] 0.9614 0.9516 0.9614 0.9441
Soares et al. (2006) [110] 0.9671 0.9480 0.9614 0.9466
Oloumi et al. (2007) [106] - - 0.96 -

Li et al. (2006) [105] 0.85 - - -
Ricci and Perfetti (2007) [112] 0.968 0.9646 0,9633 0.959

Mendonça and Campilho (2006) [119] 0.842 - 0.7315 0.9463
Estrabidis and Figueiredo (2006) [122] 0.863 - - -

Lam and Yan (2008) [117] 0.9392 0.9474 - -
Zhang et al (2010) [108] - 0.9484 - 0.9382

7.3. Materials and methods

The proposed approaches use MAS models to improve retinal blood vessels edges
detection resulting from a preprocessing phase. This preprocessing phase consists of
a conventional image processing algorithms group (Figure 7.1) and provides adapted
information (environment) for the MAS model.

7.3.1. Image preprocessing

For this first step the green plane (Igreen) was chosen because it represents the plane
where vasculature has the highest contrast with the background. Since fundus pho-
tographs often contain an intensity variation in the background across the image,
any slow gradient in the background of Igreen was removed, resulting in a “shade
corrected” image (Isc). This was made by estimating the background image Ib and
subtracting that from Igreen. The Ib is estimated by applying a median filter with
a 25 × 25 pixel kernel. The size of this filter was chosen according to the DRIVE
database widest blood vessel width [2].
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Figure 7.1.: Schematic representation of the preprocessing phase

Affected DR fundus images often present bright lesions. Since this approach goal
is to segment blood vessels that are dark structures, the bright structures can be
removed from Isc, as soon as the shade corrected image has negative values for all
pixels having an intensity lower than the background. In that way, all pixels with a
positive value were set to zero in Isc. A Gaussian filter (see subsection A.2.1; width
3 pixels; σ= 2) was then applied to attenuate the high frequency noise and other
undesirable details resulting in image Igaussian.

In order to remove fundus image noise while preserving the edges, Kuwahara filter
(see subsection A.2.3) was applied to Igaussian. Finally, a Kirsch filter modified version
(see subsection A.3.2) was employed in the image resulted from the last step (Ikw).
This improved Kirsch filter [43] enables edges detection with a two pixel thickness
whose external edge is represented by a positive or negative value, whereas the
internal edge has an opposite value (Figure 7.2 a). This enables the MAS model
detection process as the agents determine the edges thanks to these two internal and
external edges presence. Moreover, the blood vessels gradient has a specific pattern
(Figure 7.2 b) since they can be represented by two parallel linear segments series.
Thus, agents search for blood vessels edges by looking for this specific gradient
pattern.

7.3.2. Multi-agent system models

MAS is composed by an agents set and their environment. The environment contains
the green plane image in which each pixel contains the gray level intensity and a
boolean value defining if the pixel has already been explored by an agent. Moreover,
when located in the environment the agents perceive the modified Kirsch gradient
which defines a right visible edge. Agents are of several kinds with different behaviors
according to their current state and perception.

Each of the agents presents its own sensors, behavior and influences (reactions) over
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Figure 7.2.: a) Resultant image of the modified Kirsch filter where the blue and
white pixels represent negative and gradient values, respectively. b) Expanded
version of one section of image a), where is possible to see a characteristic pattern
in the blood vessel gradient values.

the environment (see Table 7.2 and Table 7.3 for details). The sensors allow the
agent to perceive, for instance, its current position; environment information; its
current position correspondent gradient; messages destined to it; connections be-
tween the agent and its neighbors. The behaviors are the agent deliberative steps.
According to the returned sensors perceptions, agent deliberates by sending influ-
ences to the system (agents or environment). A behavior may have several possible
influences. The influences are all the actions an agent can carry out. These can be:
agent movement; influences on the environment, like black board modifications re-
vealing to other agents positions already treated; messages sending; agents’ removal
and addition.

7.3.2.1. Agents and behaviors for the blood vessel edge detection

The MAS model developed for the detection of the blood vessel edges is compounded
by four kinds of agents: the search agent (SA) explores the environment looking for
blood vessels edges; the following agent (FAs) follows a detected edge; the node
agent (NA) builds segments; the end agent (EA) confirms if the segment belongs to
a blood vessel edge.

The system initializes one SA launched on one of the white points from Figure 7.2,
randomly chosen and it has to find edges. Agent evolves in the environment by
analyzing the points with positive gradient gathered in one list (Lp). When it finds
an edge, it determines the possible directions to follow the contour, creates a NA
and moves to another position. The NA creates FAs in the directions given by
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the SA and establishes segments with them. The FAs follow the detected edge till
its segment no longer corresponds with the explored contour anymore. They then
create NAs, give them information about the direction to follow and die. These new
NAs create new FAs, and so it carries on. Considering that several agents can follow
the same contour, they end up meeting and merging. When there is no direction to
follow, the NA creates an EA. These agents clean the small segments not belonging
to blood vessels, but to some noise and other background imperfections that still
remain after the preprocessing phase, by analyzing the environment information
related to the image gray levels. Moreover, EAs are responsible to close edges by
creating speculation links with the closest EA.

At the process end, agents must rebuild vessels edge by representing it with a suc-
cession of segments .

Table 7.2.: Summary of the agents’ sensor, behaviors and influences in the MAS
model proposed for the blood vessel edges detection

Agent Sensor’s function Behavior Reactions

Search Agent

- Current position
- Gradient correspondent
to its current position and
neighbors

- Positive gradient points list

(Lp)

Search

behavior

- Remove the explored
point from the list Lp

- Add SA and NA

Node Agent
- Current position
- Segment list

- Possible directions list

Node behavior

- Establishes the seg-
ments to reconstructs
the vessels’ edges

- Add FA and EA

Following

Agent

- Current position
- Its segment list points
(Lpos)
- NA to which it is connected
- Messages destined to it

- Gradient correspondent

to its current position and

neighbors

Edge following

behavior

- Mark the environment
to say that it has al-
ready explored this area
- Send messages

- Add NA

End Agent

- Current position
- NA to which it is connected
- EA with which it estab-
lishes a link of speculation

- Gray level correspondent

to its current position and

neighbors

Edge end

behavior

- Clean the segments

not belonging to blood

vessels

Search behavior. The search behavior of the agent initially launched by the system
is composed of two stages. First, the agent verifies if the pixel where it is located
agrees to the conditions: (1) not visited yet by another agent; (2) corresponds
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to vessel pattern. To verify if the pixel belongs to a vessel pattern, the agent
calculates the line slope formed by its position and the positions of its positive
gradient neighbors (Figure 7.3 a). Then, it analysis the gradient values profile in
the perpendicular line to it (Figure 7.3 b), and if it corresponds to negative-positive-
null-positive-negative values, the pixel belongs to a vessel edge. When verifying the
two conditions, it determines the possible directions to follow, launches a NA on
its position and moves to another white point, also randomly chosen. Moreover, it
launches another SA on the parallel line to the one where it was initially located
(Figure 7.3 c). This last SA already knows that it is located on a pixel belonging to
a vessel pattern, and thus its behavior is just to determine the possible directions
to follow, and to launch a NA on its position before dying. To determine which
directions to follow, agents look for the white points in their 8-neighboring having
a blue point in the 4-neighboring. This blue point has also to belong to the 8-
neighbors of the target pixel. For instance, in Figure 7.3 d), there are just two
directions available.

The initially launched SA stops its behavior and disappears when all the points of
the list Lp were analyzed.

(a) (b) (c) (d)

Figure 7.3.: The search agent (red circle) behavior. a) It calculates the slope of the
line to determine the perpendicular line (b). Then it verifies the gradient values
profile and as the pixel belongs to a vessel pattern it launches another search agent
(c); d) Possible directions (red arrows) that the agent has to follow according to
the follow agents’ restrictions

Node behavior. The node behavior is executed just one time. The NA launches
FAs in the directions given by the launcher agent (SA or FA) by means of a possible
direction to follow list. If this list is empty it launches an EA. Then the NA estab-
lishes segments with those launched agents and keeps these segments in its segment
list.

Edge following behavior. When the FA perceives another FA moving on the same
line vessel but in the opposite direction, they demand a fusion process with each
other by linking respective NAs, since FA is linked with a NA which does not move.
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To construct the edge, the FA moves pixel per pixel and it stores the pixel position
where it is located in its segment list points (Lpos). The aim is to ensure that each
position characterizing the edge portion which separates it from its neighbor can
be approximated by the segment connecting the two agents (Figure 7.4). That is,
the distance between each point and the segment must be lower than a threshold
(Tseg). To determine this distance, the projection of these points onto the segment
is first calculated using Pythagoras theorem by Equation 7.1. Then, Equation 7.2
is checked and if all the distances between Lpos[i] and Hi are lower than Tseg, the
segment is considered valid.

∀Lpos[i] ∈ Lpos,
−−→
AHi = µi

−→
AB and µi =

1

2
−

−−→
CB2 −

−→
AC2

2
−→
AB2

(7.1)

∀Lpos[i] ∈ Lpos,
−−−−−→
Lpos[i]Hi ≤ Tseg (7.2)

Figure 7.4.: Segment representing a points list

The FAs move by determining the possible directions to follow such as the SAs do. If
the FA has just one direction to follow, it checks if the segment formed between the
position of its neighbor and its position is a valid segment, and if not, it launches
another NA on its position and disappears. If it has more than one direction to
follow, it also launches a NA and disappears. After each movement, the FA sends a
message to all the FAs to attempt a fusion.

Edge end behavior. If somewhere there is no direction to follow, an EA is launched.
The EA behavior is to check if it is located on a blood vessel edge by analyzing the
green intensity profile on the perpendicular direction to its segment. It just verifies
if the profile is similar to a Gaussian shape such as the blood vessels should be. If
the profile does not fit a Gaussian curve, the EA disappears with its segment. If
the profile fits a Gaussian curve the EA proceeds its behavior. This process is im-
portant to clean the small segments not belonging to the blood vessels, but to some
noise and other background imperfections that still remain after the preprocessing
phase. After verifying that the segment belongs to a vessel, the EA connects itself
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with the closest EA, if the distance between them is lower than a threshold. The
link established between the two agents is a link of speculation, since if another EA
appears later and nearest to one of the EA, the link of speculation is replaced.

7.3.2.2. Agents and behaviors for the blood vessel segmentation

The MAS model implemented for the blood vessel segmentation is also compounded
by four kinds of agents: search agent (SA), following agent (FA), node agent (NA)
and region agent (RA). Despite of having similar names and sometimes also similar
functions, the agents’ behavior of this model is different in many aspects from the
agents’ behavior of the model previously described.

MAS is initialized with a SA in the “operating” state, launched on one of the white
points from Figure 7.2 randomly chosen. This SA has to find edges belonging to
blood vessel regions. It evolves in the environment by following positive gradi-
ent points. When it finds an edge, it initializes a new contour and launches two
NAs belonging to this contour: one in the “active” state and another in the “in-
active” one (Figure 7.5 a). Furthermore, the SA changes its state to “suspended”.
Then the “active” NA has to allow contour extension and closure. Therefore, it
determines the possible directions to follow the contour, creates FA and becomes
“inactive” (Figure 7.5 b). FA follows the detected edge until there is no direction
to follow or until the contour reaches a specific length (Figure 7.5 c). FA launches
then an “inactive” NA on its position and an “active” NA on the perpendicular
direction where it was moving (Figure 7.5 d). Moreover, FA gives to the “active”
NA information about its direction allowing it to launch another FA in the opposite
direction (Figure 7.5 e). When this FA reaches the initially launched “inactive” NA
(Figure 7.5 f) it launches a RA (Figure 7.5 g) which will be responsible for the con-
tour delimited region. RA sends a message to SA to change its state to “operating”
and repeats all the process until all the blood vessels contours are found by MAS.
There so, MAS detects one contour each time avoiding regions intersection at this
phase. Afterward SA sends a message to all RAs to change their state to “filling”.
RA fills all the contours taking into account the image gray levels. Finally, RAs
attempt fusions with each other.

At the end of the process MAS has to reconstruct the vessels by representing them
with a succession of regions initially represented by contours.

Search Behavior SA can be either “operating” or “suspended”. In the “operat-
ing” state, each agent first verifies if the pixel in which it is located verifies these
conditions: (1) not yet visited by another agent; (2) corresponds to vessel pattern.
To verify if the pixel belongs to a vessel pattern, the agent behaves in the same
way as the SA of the model described in the previous section. When verifying the
two conditions it initiates a new contour, launches a NA on its position and a NA
on the parallel line to the one where it was initially located (Figure 7.5 a). The
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Table 7.3.: Summary of the agents’ sensor, behaviors and influences in the MAS
model proposed for the blood vessel segmentation

Agent Sensor’s function Behavior Reactions

Search Agent

- Current position
- State
- Gradient correspondent
to its current position and
neighbors

- Positive gradient points list

(Lp)

Search

behavior

- Remove the explored
point from the list Lp

- Add Node agents

- Send and receive mes-

sages

Node Agent

- Current position
- State
- Contour
- Memorized direction

- Gradient correspondent

to its current position and

neighbors

Node Behavior

- Mark the environment
to say that it has already
explored this area

- Add following agent

and region agent

Following

Agent

- Current position
- Contour
- Gradient correspondent
to its current position and
neighbors

- Explored points list

Following

behavior

- Mark the environment
to say that it has already
explored this area

- Add node agent and re-

gion agent

Region Agent

- Contour
- State

- Gray level correspondent to

its current points and neigh-

bors

Region

behavior

- Send and receive mes-
sages

- Delimit the environ-

ment (image) in re-

gions to reconstructs the

blood vessel structure

two NAs keep the created contour information. Then, the SA changes its state to
“suspended” where it will remain until receiving a message to change again for the
“operating” state. At the beginning of the “operating” state if the agent cannot
verify one of the two conditions it moves to another white point, also randomly
chosen. The initially launched SA stops its behavior and disappears when all the
list points Lp were analyzed. Before dying, it sends a message to all the RA in order
to change its state from “suspended” to “looking”.

Node Behavior NA can be “active” or “inactive”. In the “active” state it deter-
mines the possible directions to follow the contour. To determine these directions,
the agents behave like the SA of the model described in section 7.3.2.1 when it is
doing the same thing. If there is at least one direction to follow and the memorized
direction is null, NA launches FAs in all directions. If the memorized direction is
not null, the direction performing the biggest angle with the memorized direction is
chosen to launch FA. If there is no direction to follow NA checks if its contour has
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.5.: Contour formation graphical representation to which a RA is assigned

already a region agent and if not, launches a RA. At the end of the “active” state
NA becomes “inactive”.

Following Behavior FA initializes its behavior analyzing the possible directions to
follow such as NA does. If there is just one direction to follow, FA adds its position
to its explored points list, to the contour points list and moves to the new position.
If there is more than one direction to follow, or if the length of its explored points
list is bigger than a specific threshold, the agent can act in two ways depending if it
was moving away or to the first NA contour. If it was moving away, it has to close
the contour and therefore, the agent launches a NA on its position and another in
the perpendicular direction to the one which was moving. If it was moving in the
NA direction, it adds its position to the contour points list, verifies if the contour
has already a RA, and if not, it launches one. After that it dies.

Region Behavior RA can be either in “waiting”, “filling” or “fusion” state. When
launched by a FA or by a NA it remains in the “waiting” phase until receives a
message from SA to change its state to “filling”. In this state RA fills the contour
by analyzing the gray level points located between each pair of the contour points.
For each pair of points, the line equation that contains the two points is calculated
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(Figure 7.6 a)-c). Then, the points located between them are determined and for
each of them an evaluation related to its gray level intensity is made. That is, the
point is added to the region if its gray level value is lower than the gray level values
average of the points that are already in the region (Figure 7.6 d). After that, RA
builds a region border pixel positions list and changes its state to “fusion”. At this
state RA attempts a fusion with the neighbor RAs by sending messages to them.
RA considers another RA as neighbor if the distance between at least one of its
border points and one border point of the other RA is smaller or equal to a specific
threshold (D). During fusion process the points located between each border points
pair of both agents, with a distance smaller than D, are evaluated in terms of gray
level value. In that way, the points located between the two regions are considered
to make part of the new region, if their gray level value is smaller than the gray
levels average of region pixels of the demanding fusion RA. After keeping all the
information about the neighbor RA by updating its own region information, RA
kills the neighbor agent and changes its current state to “waiting”.

(a) (b) (c) (d)

Figure 7.6.: RA “filling” state graphical representation. It analysis the pixels
located between each pair of two points belonging to its contour by determining
the line linking these two points a) – c); d) at the end, all the points that are
inside the contour with a gray level value similar to the contour average gray level
value, are added to the region.

7.3.3. Retinal images and the multi-agent platform

The DRIVE database, already referred in section 5.3.3, was used to test the proposed
approach. This dataset is equally divided into two images set, called test set and
training set. For each of the 40 images, database contains a manual segmentation
vasculature map to be used as ground truth. For the test set, a second manual
segmentation vasculature map is also included in the dataset.

The proposed MAS models were implemented with MadKit [123], a generic multi-
agent platform written in Java and built upon the AGR (Agent/Group/Role) orga-
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nizational model (Figure 7.7). That is, MadKit agents play roles in groups and thus
create artificial societies.

Figure 7.7.: AGR model schematic (adapted from [31])

7.4. Results and discussion

The performance of the MAS for blood vessel edge reconstruction or for segmenting
the vessels depends directly on the image processing algorithms used in the prepro-
cessing phase. It also depends on how the system interprets information resulting
from this first phase of the approach. To measure the overall approach performance,
it is important to compare the resulting image with the information detected by the
Kirsch filter. Moreover, the differences between the resulting edge map image and
the ground truth vessel map also present in the DRIVE database should be evalu-
ated. In that way, common measurements namely, sensitivity, specificity, predictive
value and overall accuracy were used for testing the proposed algorithms. Figure 7.8
and Figure 7.9 show the quantitative results obtained with the MAS model in the
DRIVE dataset for the blood vessels segmentation. Figure 7.8 illustrates sensitivity,
specificity and predictive values for all the dataset images. Figure 7.9 represents the
sensitive values for all the test images using two different ground truth vessel maps,
in which some discrepancies can be observed.

The proposed approach results applied to two retinal images are shown in Figure 7.10
and Figure 7.11. These are the images where the MAS model implemented for the
vessel segmentation had the best and the worst performance, respectively. The
corresponding quantitative results are described in Table 7.4. Figures illustrate the
original color image (above left), the Kirsch filter resultant image (above right),
the hand labeled segmentation provided with the database (below left), the edge
detection (below center) and the vessel segmentation (below right) performed by
respective MAS models.

Figure 7.12 illustrates a superimposed image of the hand labeled image with the
hand labeled image after morphological opening and with MAS result. This math-
ematical operator aims to clean the thinnest manually segmented vessels. In this
figure, the white pixels represent the pixels common to the three images; the yellow
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Figure 7.8.: Sensitivity, specificity and predictive values obtained from the 40
images of the DRIVE database with the proposed approach

Table 7.4.: Worst and best quantitative results for the MAS model applied in the
DRIVE dataset

Sensitivity Specificity PPV

Worst result 0.519 0.997 0.968
Best result 0.736 0.997 0.974

and green pixels represent the pixels that belong to blood vessels manually seg-
mented pixels but are not detected by MAS, that is, the false negative pixels; and
the false positive pixels are represented in blue. As it can be seen, the most part
of false positive pixels are located at the manually segmented vessels border and
therefore, they should not be considered as false positive. Actually, manual blood
vessels segmentation of retinal images is a very arduous and difficult task, leading
two people to segment the same image in different ways. This can be observed in
Figure 7.9 where two different hand labeled images for the same color fundus image
resulted in different sensitivity values with the same approach.

By analyzing the Kirsch filter images and the corresponding MAS models results
from Figure 7.10 and Figure 7.11 it can be observed that the MAS rebuild the most
part of the vessels, especially the thicker ones. Some of the thinnest vessels were
also segmented but not all, affecting the sensitivity values. In fact, after removing
the thinnest vessels from the hand labeled image (green pixels of Figure 7.12) the
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Figure 7.9.: Sensitivity values obtained from the 20 images of the DRIVE database
test set, using both hand labeled databases

sensitivity values of the proposed approach increased to values higher than 80%. So,
improvements have to be made in the MAS model to deal with smaller vessels.

Moreover, there are some thickest vessels portions not detected by the MAS model
mostly near the FOV border and the optic disc contour. This last problem may
be related to the preprocessing phase, mainly to Kuwahara filter since this often
produces clearly noticeable artifacts. These artifacts may be due to one of the four
sub regions selection process that becomes unstable if noise is present or when sub
regions have the same variance, since this results in randomly chosen a sub region
[124].

Therefore, MAS model is efficient in segmenting the blood vessels from where the
edges were already detected in the preprocessing phase, and in excluding the detected
pixels that did not belong to vessels (Figure 7.13 arrow a). Furthermore, MAS is able
to close edges that were interrupted edges in the Kirsch resultant image (Figure 7.13
arrow b).

Table 7.5 shows different approaches results in terms of overall accuracy when ap-
plied to the DRIVE dataset. It can be observed that the proposed approach out-
performs at least two traditional methods found in literature. The main advantage
of our method is its capacity of excluding pixels that do not belong to vessels, in-
creasing its accuracy value. The difficulty in dealing with the smaller vessels is a
common problem with the traditional methods found in literature.

Despite of the improvements that have to be done in the MAS model to deal with
smaller vessels, the experiments show that the use of a MAS model at the micro
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Figure 7.10.: Images resulting where the proposed approach had the best perfor-
mance in the DRIVE database. From left to right: original color fundus image and
Kirsch filter resultant image (above); hand labeled image, blood vessel edge de-
tection using MAS approach and blood vessel segmentation using MAS approach
(below).

level could be an effective way to segment structures in complex images as the
retinal images. In fact, through environment perception and local interactions, a
simple agent organization can have as global behavior the detection of most part of
the retinal vasculature.

Table 7.5.: Accuracy of different approaches applied to the DRIVE dataset

Accuracy

Zhang et al (2010) 0.9382
Staal et al. (2004) 0.9441

Proposed approach 0.9443
Mendonça and Campilho (2006) 0.9463

Soares et al. (2006) 0.9466
2nd observer 0.9473

Ricci and Perfetti (2007) 0.9595
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Figure 7.11.: Images resulting where the proposed approach had the worst perfor-
mance in the DRIVE database. From left to right: original color fundus image and
Kirsch filter resulting image (above); hand labeled image, blood vessel edge de-
tection using MAS approach and blood vessel segmentation using MAS approach
(below).

7.5. Conclusion

In this study, a MAS approach is proposed where agents enrich a traditional edge
detector algorithm allowing local processing adaptation and cooperative behaviors.
The system is able to segment the most part of the blood vessels present in the
color fundus images. Despite of some problems in detecting the thinnest vessels, the
proposed approach results show that the use of the MAS model in the micro level
could be an effective way to segment structures in complex images. In fact, for the
DRIVE dataset, the proposed approach achieves an accuracy of 0.9443 and performs
better than at least two traditional methods found in literature. The thinnest vessels
detection problem is common with the methods found in literature. In this case, it
can perhaps be overcome by transferring global preprocessing progressively toward
local algorithms applied and adapted by agents.
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Figure 7.12.: Hand labeled image superimposition with the hand labeled image
after the morphological opening and with MAS result

Figure 7.13.: Expanded version of one section of an image, to verify the agent
capacity to exclude pixels that do not belong to vessels (arrow a) and to close
edges interrupted in the Kirsch image (arrow b). From left to right: ground
truth image; Kirsch resulting image; edge detected image resultant from the MAS
model.
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8. Small dark lesions detection

In this chapter, a multi-agent based approach for the microaneurysms segmentation
in color fundus photographs is presented. This multi-agent model is preceded by a
preprocessing phase to allow the environment construction where agents are situated
and interact. Then, microaneurysms segmentation emerges from agent interaction.
In this study, competitive results compared to more traditional algorithms were
achieved, especially in detecting microaneurysms close to vessels.

8.1. Introduction

The microaneurysm (MA) presence in the retina is often the diabetic retinopathy
first sign and thus its early detection is crucial for blindness prevention. Therefore, it
is of great importance to include their automatic detection into a screening program.

This kind of lesion is commonly described as isolated small round objects with 10
µm to 100 µm in diameter. In practice, they may appear as a conglomeration
of more than one MA or in association with larger vessels. Microaneurysms are
frequently indistinguishable from the dot-hemorrhages in color fundus photographs
where both appear red. Nonetheless, these two kinds of lesion represent the same
clinical implications and therefore, there is usually no need for an automated MA
detector to distinguish between them. The number of microaneurysms is positively
correlated with the severity and the DR progression, at least for the early stages of
the disease [125].

Since microaneurysms can be easily observed in digital color fundus images and their
number have clinical implications, they have been one of the first lesions detected
in the automatic image analysis systems. Despite of the number of interesting
computational approaches proposed in literature to detect small dark lesions, none
of them has shown the required performance for the clinical practices. They generally
refer to global approaches and have difficulty in dealing with low contrast between
red lesions and background, and in detecting the microaneurysms situated close to
the retinal blood vessels. Therefore, a new approach based on a multi-agent system
is proposed in this thesis.

Using MAS for medical image analysis has been revealed as a research field in expan-
sion (see section 3.3). Chapter 7 describes an approach for the blood vessels edge
detection and segmentation. The new approach proposed in this chapter is also com-
posed by a preprocessing step in which some traditional image processing algorithms
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are used to define the environment (image), where autonomous agents are situated
and interact among themselves. Then, from the MAS model the microaneurysms
segmentation emerges as a global behavior.

8.2. Related work

Several approaches have been proposed in literature concerning the microaneurysms
segmentation through fundus image analysis. These approaches are frequently based
on morphological [1, 126], template-matched [127, 128] and supervised learning
methods [2, 129]. The supervised methods are frequently preceded by one of the
two other approaches [1, 126, 128].

Some approaches described in the literature deal with the detection of microa-
neurysms in fluorescein angiographies. In these kind of images, microaneurysms
appear as bright patterns and better contrasted than in the green channel of color
images. However, microaneurysms have some characteristics in common in both
images: they appear small, isolated and of circular shape, which is fundamental
to use morphological approaches. The first algorithm was developed by Laÿ [130]
and then improved by other authors [2, 126, 131]. These approaches utilize the
top-hat transformation to discriminate between circular, non-connected red lesions
and the elongated vasculature. The method consists of morphological opening the
green channel images with a linear structuring element at different orientations to
obtain the vasculature and, then, remove it from the original image. The length
of the structuring element is chosen to be short enough to fit inside curved vessels,
and long enough that it cannot fit inside MAs, so that it detects vessels (and other
large extended features) but not MAs. However, if the length of the structuring
element is increased to allow the larger object detection, the vessel segmentation
deteriorates leading to more spurious candidate objects detected on the vessel. This
approach has been modified and used subsequently by others authors, like Walter et
al. [1] who detected microaneurysms candidates by applying diameter closing and
an automatic threshold scheme.

Niemeijer et al. [2] developed a microaneurysm detection approach that has inspired
several research groups [126, 131]. The general approach is schematically illustrated
in Figure 8.1 and described in following.

First the digital green plane image is shade-corrected to uniform the background
illumination of the retinal images. Normally, shade-correction is achieved by es-
timating the background illumination image by means of a large median or mean
filtering. The background image is either subtracted from or divided by the green
plane image. The next step consists in detecting the vasculature by morphologi-
cal opening the shade-corrected image with a linear structuring element at several
angles to enhance all vessel segments (top-hat transform). The segmented vessels
are then subtracted from the shade-corrected image. The resulting image contains
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Figure 8.1.: Schematic representation of the “standard” approach for the microa-
neurysm detection (adapted from [125])

small dark objects, such as MAs, and small fragments left over from the vessels,
that are then highlighted by applying a matched-filter with a circularly symmetric
2D Gaussian as kernel. Hereafter, the image is thresholded to detect the candidates
MAs, which are used as locations to initiate a region growing process on the shade-
corrected image, to delineate the underlying morphology of the candidate. Finally,
intensity and shape descriptors are determined in the region-grown object and a
classifier is used to ameliorate MA detection. The main drawback of this approach
is that this method typically cannot detect MAs close to vessels.

Zhang et al. [132] presented an approach that differs from the “standard” in the
way the candidates MAs and vessels are detected. In order to detect candidates,
this method applied a non-linear filter with five Gaussian kernels with different
standard deviations to the input retinal images. By keeping the maximal correlation
coefficient for each pixel a maximal correlation response image was obtained, which
was then thresholded with a fixed threshold value to determine the candidates. The
vessels were segmented by an adaptive thresholding technique and then they were
used to reduce the number of candidates. Finally, the region growing process was
applied to determine their precise size and a set of features was extracted for each
of them. Recently, the same group [128] improved their method by including a
supervised classifier at the last stage which was the dictionary learning with sparse
representation.

Sánchez et al. [129] approach began with a normalization process identical to
the “standard” approach. Then, an unsupervised mixture model based cluster-
ing method was used to extract candidates on the normalized image intensities. A
fitted model was obtained by fitting a Gaussian mixture model to the image inten-
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sities. The MAs candidates were segmented by applying a threshold to the fitted
model. After automatically masking out the vasculature, a set of color, shape and
texture features was extracted from the remaining candidates to be used in a logistic
regression, in order to determine likelihoods of being microaneurysm.

Mizutani et al. [133] initialized its approach by applying brightness correction,
gamma correction and contrast enhancement to normalize the intensity and contrast
between images. The MAs candidate extraction was performed using a modified
double ring. The original double ring filter detects regions in the image in which the
average pixel value is lower than the average pixel value in the region surrounding it.
On the other hand, to reduce spurious detections on small capillaries, the modified
filter designed by the authors detects regions where the average pixel value in the
surrounding region is lower by a certain fraction of the number of pixels under the
filter. Hereafter, the original double ring filter with a different parameter setting
was used to detect the vasculature and so to remove false positive candidates that
remained on it. The region growing process was then performed and a set of features
based on color, intensity, shape and contrast was extracted to be used as input of
an artificial neural network.

After normalizing the images like the “standard” approach, Giancardo et al. [134]
selected as MAs candidates the pixels with an intensity value higher than a specific
threshold. Then, on original image windows for which at least a MA candidate
exists, the Radon transform was calculated at various scanning angles. From this
step results a set of features that was classified through PCA and SVM.

Quellec et al. [127] proposed a method to detect microaneurysms based on template
matching in the wavelet domain. In this domain, without other image processing,
it was possible to overcome the problems caused by lighting variations or high-
frequency noise by choosing the working sub-bands. The authors looked for the
wavelet basis that was best able to discriminate lesions from lesion-free areas. The
microaneurysms were modeled with 2D rotation-symmetric generalized Gaussian
functions, and the wavelet basis was designed empirically, by numerical optimization
procedure, using the lifting scheme framework.

Lazar and Hajdu [135] presented an approach where cross-section profiles with mul-
tiple orientations were used to construct a multi-directional height map. In this
map, each pixel contained a set of height values that represented the difference of
the pixel from its surroundings in a particular direction. A score map resulted from
applying a modified multilevel attribute opening step on the height map. The dark
small circular objects had the highest scores in the score map and therefore, the
MAs could be extracted by thresholding.

Antal and Hajdu [136] proposed an ensemble-based framework to select the best
combination between preprocessing methods and MAs candidate extractors already
described in the literature.

Concerning the microaneurysm detection in color fundus images, Niemeijer et al.
[137] created the Retinopathy Online Challenge (ROC) website. The aim is to bring

100



8.3 Materials and methods

together the research community efforts towards the creation of algorithms for the
detection of MAs, by evaluating their performance on a common dataset and with
the same evaluation modality. This permits a fair comparison between algorithms
of different groups. So far, 11 groups have submitted their results on the website.
All the methodologies published in the literature developed by these groups are
described above and results are shown in Table 8.1.

Table 8.1.: Results and methodology categories of ROC approaches

Publication Team name Method category
Final
score

Cree [131] Waikato

Morphology and template
matching for segmentation

and a supervised
classification

0.206

Mizutani et al. [133] Fujita Supervised 0.310

Sánchez et al. [129]
GIB

Valladolid
Supervised 0.322

Zhang et al. [132] OKMedical Template matching 0.357

Zhang et al. [128] OKMedical_II
Template matching and

supervised
0.369

Giancardo et al.
[134]

ISMV
Template matching and

supervised
0.375

Quellec et al. [127] LaTIM Template matching 0.381

Niemeijer et al. [2]
Niemeijer et

al.

Morphology and template
matching for segmentation

and a supervised
classification

0.395

Lazar et al. [135] Lazar et al.
Morphology and template

matching
0.423

Antal and Hajdu
[136]

DRSCREEN Supervised 0.434

8.3. Materials and methods

The proposed approach aims at segmenting the microaneurysms present in fundus
images by means of a MAS model. The information (environment) for the MAS
model results from a preprocessing phase consisting of a group of conventional im-
age processing algorithms. An overall of the proposed approach is illustrated in
Figure 8.2.
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Figure 8.2.: Schematic representation of the proposed approach

8.3.1. Image preprocessing

In this first step, the preprocessing phase from Niemeijer et al. [2] was used. The
so obtained image had no background intensity variation across the image and the
bright structures were eliminated. Since MA exhibits a Gaussian shape, a Gaussian
filter (width=3; σ=1) was then applied to enhance the small dark structures. Finally,
the modified Kirsch filter [28] was employed and edges with two pixel thickness were
obtained (Figure 8.31 center). This enables the MAS model detection process since
microaneurysms presents specific gradient patterns of which some examples can be
observed in Figure 8.3 c).

8.3.2. Multi-agent System Model

The MAS model developed for microaneuryms detection is similar with the MAS
implemented for blood vessel segmentation. In fact, the agents possess the same
reactive architecture and they are situated in an environment that contains the green
plane image in which each pixel contains the intensity gray level, and a Boolean
value defining if the pixel has already been explored by an agent. Furthermore,
when located in the environment, the agents perceive the modified Kirsch gradient.
Agents are of two kinds with different behaviors according to their current state and
perception: explore agents (EA) and region agents (RA). MAS is initialized with an
EA launched on one of the white points from Figure 8.3, randomly chosen. At the
end of the process MAS has to segment all the small and isolated dark structures.
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Figure 8.3.: a) Green plane image; b) Modified Kirsch filter resultant image where
the blue and white pixels represent negative and positive values, respectively; c)
Characteristic gradient pattern of microaneurysms

8.3.2.1. Agents

The agents are reactive and, thus, each of them presents its own sensors, behavior
and influences (reactions) over the environment (see Table 8.2).

The system initializes one EA in the “active” state. This EA has to find specific
gradient patterns corresponding to microaneurysms. It evolves in the environment
by analyzing positive gradient points and its neighbors. When it finds a valid pat-
tern, it launches a RA and becomes “inactive”. The RA is launched at the “explore”
state, in which it follows an edge until there is no direction to follow. Then the RA
changes its state to “waiting” and sends a message to the EA to change its state
to “active”. This process is repeated until all the positive gradient value points are
explored by MAS. Afterward EA sends a message to all RAs to change their state to
“joining”, in which they attempt for fusion processes with the neighbor RAs. Then,
each RA verifies its region contour size and if it is smaller than a threshold (Tc), it
fills the region taking into account the image gray level values. Otherwise, the RA
disappears with its region. Hereafter, each RA performs a region growing process to
allow that the remaining candidates represent the true microaneurysm size. Finally,
RA analyzes its region shape and intensity to validate it as a true lesion.

An overview of the proposed MAS model algorithm is illustrated in Figure 8.4.
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Table 8.2.: Summary of agents sensor, behavior and influences in the proposed
MAS model

Agent Sensors Behavior Reactions

Explore Agent

- Current position
- Gradient correspondent
to its current position and
neighbors

- Positive gradient points list

(Lp)

Explore behavior

- Remove the explored
point from the list Lp

- Add RA

- Send and receive mes-

sages

Region Agent

- Current position
- Its points list
- Gradient correspondent
to its current position and
neighbors

- Gray level intensity corre-

spondent to its current posi-

tion and neighbors

Region behavior

- Add RA

- Send and receive mes-

sages

8.3.2.2. Explore behavior

The explore behavior is composed by two states: “active” or “inactive”. In the “ac-
tive” state, each agent first verifies if the pixel in which it is located verifies these
conditions: (1) not yet visited by another agent; (2) corresponds to microaneurysm
pattern. To verify if the pixel belongs to a microaneurysm pattern, the agent ana-
lyzes the gradient profiles in the neighborhood at four directions (Figure 8.5 a). If
it finds the sequences negative-positive-null-positive-negative or negative-positive-
negative gradient values in at least two perpendicular directions (Figure 8.5 b) and
c), it considers the pixel as a dark structure. When verifying the two conditions it
launches a RA on its position and becomes “inactive”, where it will remain until
receiving a message to change again for the “active” state. At the beginning of the
“active” state if the agent cannot verify one of the two conditions, it moves to an-
other white point also randomly chosen. The EA stops its behavior and disappears
when all the white points were analyzed. Before dying, it sends a message to all the
RA in order to change its state from “waiting” to “joining”.

8.3.2.3. Region behavior

RAs initialize their behavior analyzing the possible directions to follow. To de-
termine these directions, agents look for the white points in their 8-neighboring
having a blue point in the 4-neighboring. This blue point has also to belong to the
8-neighbors of the target pixel. For instance, in Figure 8.5 d), there are just two
directions available. If there is just one direction to follow, RA adds its position to
its point list and moves to the new position. If there is more than one direction to
follow it chooses one direction to move and launches RAs at the other directions.
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Figure 8.4.: Schematic representation of the proposed MAS model

Finally, if there is no direction to follow, RA activates the EA and changes its state
to “waiting” in which it will remain until receives the message from EA.

Thereafter, the region behavior is constituted by four steps. First agents attempt
for a fusion with neighbor RAs by sending messages to them. RA considers another
RA as neighbor if the distance between at least one of its points and one point of
the other RA is smaller or equal to a specific threshold (D). After keeping all the
information about the neighbor RA by updating its own region information, RA
kills the neighbor agent and changes its current state to “filling”. At this state, RA
verifies if its region contour size is smaller than Tc and if it is not, it disappears
with its region. On the other hand, if the contour is smaller than Tc, it fills the
region by analyzing the gray level points located between each pair of the contour
points. For each pair of points, the line equation that contains the two points is
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Figure 8.5.: Graphical representation of the Explored Agent behavior a)-c);
d)possible directions to follow according to Region Agent restrictions

Figure 8.6.: RA “filling” state graphical representation

calculated (Figure 8.6 a)-b). Then, the points located between them are determined
and for each of them an evaluation related to its gray level intensity is made. That
is, the point is added to the region if its gray level value is lower than the gray
level values average of the points that are already in the region (Figure 8.6 c).
Hereafter, RA performs a region growing algorithm based on [2]. This algorithm
calculates the threshold by t = Idarkest−α(Idarkest−Ibg), where Idarkest is the candidate
lowest intensity in the green plane image, Ibg is the corresponding intensity in the
background image and α is set to 0.5 [2]. The growing process stops when there are
no more pixels in the 8-neighborhood having intensity lower than the threshold or
when the region size is bigger than a threshold (Amax).

Finally, RA validates its region as a true lesion by means of shape and intensity
based features analysis. For region shape analysis, the RA determines elongation,
since some detected regions belong to thin blood vessel fragments and should have
higher elongation values. Since MAs are round local minimums they can be repre-
sented as an inverted 2D Gaussian shape. Therefore, for the region intensity analysis
a set of cross-sectional intensity profiles is obtained from the inverted green channel
(Figure 8.7). In determining these profiles a window around the region is consid-
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ered. Then, the region is dilated for being used as a mask on the inverted green
plane, where scanning lines 15º rotated are applied. From these 12 intensity profiles,
the Gaussian fitting parameters (the amplitude of the peak of the profile - a; the
position of the peak - b; the width of the Gaussian profile - c) (Figure 8.7 below)
are determined and analyzed (Table 8.3) for all regions of several images. Analyzing
Table 8.3, it is possible to verify that parameter c allows a better discrimination be-
tween small red lesions and other dark structures. Therefore, the difference between
the maximum and the minimum parameter c values from the 12 profiles is kept as
an intensity-based feature (c_range).

The features values used to evaluate the MAS model final output were elongation ∈
{1 : 0.2 : 4} and crange ∈ {0 : 1 : 20} .

Figure 8.7.: From left to right: window of the green plane image centered at a MA;
window of the binary candidates image with a MA candidate; the candidate of the
previous image after a dilation; scan lines to be performed on the inverted green
plane with the aid of the mask from previous image; MA intensity profiles (dotted
blue line) and respective Gaussian fitting function (red line) for orientations 0, 90
and 135.

8.3.3. Retinal images and system performance evaluation

A set of images online available by Quellec et al. [127], called LaTIM (Laboratoire
de Traitement de l’Information Médicale) dataset in this thesis, was used for the
performance evaluation. This dataset consist of 36 images with 2240 × 1488 pixels
and stored in tiff file format. Moreover, the dataset also contains a text file for each

107



Chapter 8 Small dark lesions detection

Table 8.3.: Gaussian fitting parameters (a, b and c)

Small red lesion Other
a b c a b c

Minimum 0.676 2.730 7.50 0.538 2.740 5.560
Maximum 0.829 5.209 16.553 0.817 9.102 185.262
Mean 0.742 3.856 11.147 0.700 4.482 17.854
Standard deviation 0.038 0.479 1.856 0.053 0.904 9.567

image, with small red lesions manually annotated by a single diabetic retinopathy
expert.

Another publicly available database used in this study was provided in the ROC
competition [137]. This database is composed of 100 images, equally divided into a
training and a test set. The images were acquired by three different cameras and of
different resolutions and sizes, ranging from 768×576 to 1389×1383. All images are
stored in JPEG format and compression was set in the camera. All microaneurysms
and other irrelevant lesions from the 100 images were annotated by four retinal
experts. The irrelevant lesions are objects that despite of not being microaneurysms,
they may be identified as such by an automated program. For instance, hemorrhages
and pigment spots are similar in appearance to MAs and, thus, they should not be
considered as false positives. For the training set, the lesions locations annotated
by the four experts were combined by a logical OR. For the test set, the reference
standard was obtained in a different way. The annotations of one randomly chosen
expert were kept to be used as a human observer performance. The annotated
lesions by the other three experts were combined for the final reference standard.
“Microaneurysm” in the final reference standard is the object for which at least two
experts assigned this label. The other lesions identified by only one specialist were
assigned as “irrelevant”.

For both datasets, the performance of the proposed approach was evaluated in terms
of the free-response receiver operating characteristic (FROC) curve, where per lesion
sensitivity values are plotted against the average number of false positives per image.
Sensitivity represents the proportion of MA correctly detected by the algorithm,
while FP is the number of non-MA identified as MA. For the ROC dataset and to
facilitate the comparison with the other methods already submitted on the challenge
website, the FROC curve was summarized in several quantitative points. In that
way, sensitivity values for the false positive per image rates values of (1/8), (1/4),
(1/2), 1, 2, 4, and 8 were achieved and averaged to get a final score. Moreover,
only the results obtained with test set and provided by the ROC organizers are
demonstrated in next section.
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8.4. Results and Discussion

For becoming easier the algorithm parameterization, the size of all images from both
datasets were normalized without losing the relevant information to this study. The
LaTIM images were resized to 1120 × 744 pixels and the ROC images to 836 × 835
pixels. The algorithm parameters were chosen according to the image size and the
typical dimension of MAs in fundus images. In that way, Tc=40, D=2 and Amax=40
were the values used when applying the proposed approach to both datasets.

The MAS model performance depends on the preprocessing step and how the agents
interpret the information provided from this first phase. In that way, it is important
to compare the gradient image resulting from the preprocessing step with the binary
image resulting from the MAS model. Figure 8.8 illustrates an original color image
with manually segmented microaneurysms and the respective, image resultant from
the preprocessing phase and binary image provided by the MAS model before the
local feature analysis. From this figure, it can be noticed that the MAS model is able
to detect small dark structures and excludes most of the edge pixels belonging to
blood vessels and some artifacts. In fact, all the four microaneurysms were correctly
segmented and the remaining false positives elongated structures would be easily
removed with the local feature analysis step.

(a) (b) (c)

Figure 8.8.: a) Manually annotated MA superimposed with the original image; b)
image resulting from the preprocessing phase; c) segmentation performed by the
MAS model before local feature extraction and analysis

Figure 8.9 illustrates the results for an image before and after the MAS model feature
analysis step made by the Region Agent. The final image presents a sensitivity of 1
and 4 FP, which represents a very good performance considering only two features of
the objects detected by the MAS. Therefore, it seems that the inclusion of an agent-
based learning classifier at last stage should improve the algorithm performance.

The segmentation performance obtained with the MAS model was compared with
another approach schematically illustrated in Figure 8.10 (bold). This one consists
of the preprocessing and segmentation phases of the “standard” approach referred in
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Figure 8.9.: Images resulting from the proposed approach. From upper to below
and from left to right: green plane image; binary image with candidates detected
by the MAS model before feature analysis; binary image resulting from local fea-
ture analysis superimposed with green plane image; binary image with manually
annotated MA superimposed with green plane image
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section 8.2. That is, only the candidates detection method was considered because
the proposed approach is unsupervised and, in that way, a fair comparison is made.
The comparative results are illustrated in Figure 8.11, where the curve for the “stan-
dard” approach was obtained by varying the threshold value (t ∈ {3 : 1 : 12}). From
these quantitative results, it can be observed that our approach clearly outperforms
the “standard” approach. A qualitative analysis of images resulting from the two
approaches reveals that our approach has as advantage the preservation of microa-
neurysms close to vessels (Figure 8.12). This is very important for clinical practices
since this kind of lesions appear close to vessels very often.

Figure 8.10.: Schematic representation of a classical approach used for microa-
neurysms segmentation

Figure 8.13 and Table 8.4 demonstrate the FROC curves and the ranked quantita-
tive results, respectively, of the ROC methods already described in section 8.2. The
final score of the proposed approach is 0.240 corresponding to the tenth place of the
competition. However, a detailed analysis of the proposed approach FROC curve
and of Table 8.4 shows encouraging results since for an average number of FP of 8,
sensitivity achieves a value higher than 0.5. This is a good performance compared
with other methods described in literature. In fact, if the 8 FP row of Table 8.4 is
analyzed to compare the approaches, the proposed method corresponds to the sixth
better sensitivity value and it rises to the third place if only non supervised ap-
proaches are considered. The non supervised approaches that showed better results
belong to LaTIM and Lazar et al. groups.
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Figure 8.11.: FROC curves obtained with the proposed and “standard” approaches
applied to the LaTIM dataset

8.5. Conclusion

In this chapter a small red lesions segmentation algorithm based on a MAS ap-
proach is proposed. Through agent local interaction and cooperation it was possible
to improve conventional algorithms results, especially in detecting microaneurysms
close to vessels. The inclusion of a validation step through local feature analysis
allowed the reduction of the average number of FP and encourages the inclusion
of some agent learning capacity for the algorithm improvement. Results show that
the proposed approach outperforms the “standard” candidates detection approach
found in literature. Moreover, considering the ROC challenge a third place can be
reached if only non-supervised approaches and 8 FP are taking into account.

The proposed approach overall results show that the use of a MAS model in the micro
level could be an effective way to segment red lesions in fundus images, and overcome
some common problems found in literature, such as the detection of microaneurysm
close to vessels.
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Figure 8.12.: Comparative results related with the detection of microaneurysms
close to blood vessels. a) green plane image; b) MAS model result; c) “standard”
approach result.

Table 8.4.: Sensitivities of different approaches at various false positive points for
the ROC test dataset

Author 1/8 1/4 1/2 1 2 4 8 Final score

Waikato 0.055 0.111 0.184 0.213 0.251 0.3 0.329 0.206

Our approach 0.053 0.083 0.135 0.187 0.276 0.407 0.540 0.240

Fujita 0.181 0.224 0.259 0.289 0.347 0.402 0.466 0.310

GIB Valladolid 0.19 0.216 0.254 0.3 0.364 0.411 0.519 0.322

OKMedical 0.198 0.265 0.315 0.356 0.394 0.466 0.501 0.357

OKMedical_II 0.175 0.242 0.297 0.370 0.437 0.493 0.569 0.369

ISMV 0.217 0.270 0.366 0.407 0.440 0.459 0.468 0.375

LaTIM 0.166 0.23 0.318 0.385 0.434 0.534 0.598 0.381

Niemeijer et al. 0.243 0.297 0.336 0.397 0.454 0.498 0.542 0.395

Lazar et al. 0.251 0.312 0.350 0.417 0.472 0.542 0.615 0.423

DRSCREEN 0.173 0.275 0.380 0.444 0.526 0.599 0.643 0.434
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Figure 8.13.: FROC curves of the ROC methods
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The digital nature of color fundus images and the need of computational tools to
be used in screening programs for the early diabetic retinopathy diagnosis have
attracted the attention of several research groups. In fact, several approaches re-
ported in literature for aiding in the automatic DR diagnosis are referred throughout
this thesis. These methodologies are frequently based on image processing, pattern
recognition and machine learning algorithms. Despite of the wide literature for
the DR diagnosis through fundus image analysis, none of the algorithms proposed
demonstrate the performance needed for clinical practices. The problems of the
classic image processing algorithms are that they are limited to macro level results
and cannot take into account the local characteristics of a complex image such as
the digital color fundus photograph, mainly when this is pathological. Using global
approaches as the traditional algorithms, leads to rigid systems not able to adapt
and generalize to unknown situations. This is the reason why, in the last years,
researchers have been working in multi-agent systems applied to digital image pro-
cessing (section 3.3). In fact, each agent can locally process image information and
deliberate according to its perceptions from the environment and agents surrounding
it.

This thesis focuses on the development of new tools based on multi-agent systems,
to assist the diabetic retinopathy diagnosis. Two kinds of systems were investigated
and applied to digital color fundus photographs: ant colony system and multi-
agent system composed of reactive agents with interaction mechanisms between the
agents. It is possible to refer ACO algorithm as an agent-based algorithm since it is
constituted by a number of agents with memory moving on the image (environment)
and that communicates indirectly through the environment [102]. Moreover, through
self-organizing dynamics driven by local interactions and communications between
ant-like agents, a complex global behavior emerges, which, in this case, consist in
the edges enhancement.

In that way, this thesis demonstrates agent-based approaches for the segmentation
of the fundus images major features. That is, chapter 5 describes an ACO based
approach that effectively detects the OD in fundus images even in pathological or
with great variability images. Also an ACO based approach is referred in chapter 6
for the bright lesions segmentation. MAS models were created for the blood vessels
segmentation (chapter 7) and for small dark lesions segmentation (chapter 8). The
results of the proposed approaches are compared with other results found in the
literature and, though they are not always the best, they are very promising. For
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instance, the OD detection results achieved with the DRIVE dataset are good as
or better than the others described in the literature; the blood vessel segmentation
method presents an accuracy of 0.9443 outperforming at least two traditional meth-
ods found in literature; the dark lesions segmentation approach achieves a third
place in the ROC competition [137] if 8 FP and only non supervised approaches
are considered; the bright lesions segmentation approach performs better than an-
other recent approach found in the literature [100], but a comparison with other
approaches is not possible due to the use of particular datasets.

Therefore, the main scientific contribution of this thesis is to prove that multi-
agent systems based approaches can be efficient in segmenting structures in complex
images. The results show that these kind of approaches improved the traditional
algorithms results. Actually, MAS models implemented in this work are not an
image processing technique on their own, but they are used as tools to improve the
traditional results at the micro level. Such an approach overcomes the classic image
processing algorithms that are limited to macro level results and not considers the
local characteristics of the images. Hence, it could be a fundamental tool responsible
for a very efficient system development to be used in screening programs concerning
diabetic retinopathy diagnosis.

9.1. Future work

A relevant point that has to be ameliorated for the improvement and comparison
of DR diagnosis approaches is the creation of a more general publicly available
database. This database has to be large and representative of the diabetic population
and have to include the ground truth information that should be done by a group of
ophthalmologists, with further statistical combination between their segmentation.
Moreover, a uniformization of the quantitative results evaluation is fundamental for
a fair comparison between different approaches. The Retinopathy Online Challenge
(ROC) is a good example of such database, where interested research groups submit
the results for being evaluated in the same way. Though, many research groups have
already joined the challenge and submit their results (see section 3.3), none of these
demonstrate an algorithm that is recommendable for clinical practice. As a result,
this kind of challenge could be a way to achieve the solution, but there is work to
do yet. In addition, the ROC only concerns the detection of red lesions and there
is a need for the creation of other programs, like for the bright lesions detection or
for the both lesions detection simultaneously.

As future work for this study, the integration of the several proposed approaches
described throughout this thesis into a complete automatic system for the diabetic
retinopathy diagnosis should be the first step. Furthermore, not all the possibilities
of MAS discussed in chapter 3 were used in the proposed approaches. The use
of an improved agent society version to make use of all its advantages, with some
knowledge a priori about retina properties, complemented with the use of some
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other traditional image processing algorithms, may have the potential to develop
a system to detect and differentiate all the anatomic and pathological structures
of the fundus images, including fovea and the other dark lesions (neovessels and
hemorrhages) that were not considered in this study. For instance, the use of some
agent learning capacity as well as cognitive or even hybrid agents might help in
creating such a system.

Afterward, an exhaustive clinical evaluation of this system has to be done in order
to achieve the medical community acceptance of such automatic system. This will
permit to better identify the system drawbacks and to improve or propose solutions.
When implemented in a clinical environment, the automatic systems should deal
with the acquisition process of the fundus image to facilitate the image analysis
next steps. For instance, the inclusion of an algorithm to evaluate if the image
has enough quality for being analyzed by the automatic system can improve the
final result. Moreover, knowing a priori if the image is fovea centered or optic disc
centered and if the image corresponds to the right or left eye, can limit the search
area for both structures and, consequently, the OD and fovea detection would be
easier.

At this point, it is important to remember that the purpose of the computer system
to diagnose the diabetic retinopathy is to fill the lack of ophthalmologists and may
not totally replace the human tasks. In fact, the acquisition process continues to
need a technician, who does not have to be a specialist but someone who can interact
with the system.
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A.1. Overview

Filters analyzes the value of every pixel in an image. For each one, the new value is
calculated according to the pixel values in a local neighborhood, that is a window
w centered on that pixel.

The filters used in this study have two principal functions: reduce noise by smoothing
or enhance edges.

Filters can be linear if the output values are linear combinations of the pixels in the
original images, or nonlinear, otherwise. The linear filters are fast to compute, but,
since noise and edges are high-frequency components of images, they are unable to
smooth without simultaneously blurring edges. On the other hand, nonlinear filters
can reduce noise while preserving edges, but they can be slow to compute.

A.2. Smoothing

For this work, one linear and two nonlinear smoothing filters were considered ac-
cording to the needs. They are described in following.

A.2.1. Gaussian filter

Gaussian filter is a linear filter that uses a 2D convolution operator to ’blur’ images
and remove noise and detail. Gaussian smoothing is also frequently used to enhance
image structures at different scales. The kernel used to convolve the image is a
Gaussian function. In one dimension the Gaussian function is

G(x, y) =
1√

2πσ2
e− x2

2σ2

In two dimensions, it is the product of two such Gaussians, one in each dimension:

G(x, y) =
1

2πσ2
e− x2+y2

2σ2
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where x is the distance from the origin in the horizontal axis, y is the distance
from the origin in the vertical axis, and σ is the standard deviation of the Gaussian
distribution. The distribution is shown in Figure A.1.

Figure A.1.: 2-D Gaussian distribution with σ = 1

A discrete approximation of this distribution is used to build a convolution matrix
which is applied to the original image. The new value of each pixel corresponds to a
weighted average of that pixel’s neighborhood. The original pixel value contains the
heaviest weight (having the highest Gaussian value) and neighboring pixels contain
smaller weights as their distance to the original pixel increases. An example of such
kernel is illustrated in Figure A.2.

Figure A.2.: Matrix of discrete approximation to Gaussian function with σ=1
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A.2.2. Median filter

Median filter is a nonlinear digital filtering method, frequently used to remove noise
with Laplacian distribution. This filter considers each pixel of the image in turn
and replaces it by the median of all pixels in the neighborhood:

y(i, j) = median {x[i, j], (i, j) ∈ w}

A.2.3. Kuwahara filter

The Kuwahara filter is a nonlinear filter that is able to apply smoothing on the
images while preserving the edges. The general idea behind this filter is to divide
the kernel filter into four rectangular sub regions with one pixel overlap (Figure A.3).
The filter response is then defined by the sub region mean with minimum variance.
That is, suppose that I(x,y) is a grayscale image and that a square window of size
2a+1 centered around a point (x,y) in the image is considered. This square is divided
into four smaller square regions Qi=1,...,4 defined as:

Figure A.3.: The Kuwahara filter considers 4 square subregions a,b,c,d with the
pixels located on the central row and column belonging to more than one subre-
gion.

Qi(x, y) =



























[x, x + a] × [y, y + a] if i = 1

[x − a, x] × [y, y + a] if i = 2

[x − a, x] × [y − a, y] if i = 3

[x, x + a] × [y − a, y] if i = 4

where × is the Cartesian product. The mean mi and standard deviation σi of the
four regions centered around the pixel (x,y) are determined and used to calculate
the value of the central pixel. Thus, the Kuwahara filter output Φ(x, y) for any
point (x,y) is then determined by
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Φ(x, y) =



























m1 if σ1 = min(σi)

m2 if σ2 = min(σi)

m3 if σ3 = min(σi)

m4 if σ4 = min(σi)

That is, the central pixel takes the mean value of the most homogeneous subregion.
By taking into account the homogeneity of the regions, the Kuwahara filter ensures
the edges preservation.

A.3. Edge detection

An edge corresponds to a high grayscale variation. Therefore, edge filters should have
a stronger output at a location if the pixels in neighborhood reveals a systematic
pattern of changes in value. The edge enhancement filters also emphasizes noise
in images. That is why they should be applied with a preceding filter to smooth
images.

In this work scope only the nonlinear Kirsch filter is considered.

A.3.1. Kirsch filter

The multi-directional Kirsch filter belongs to the template matching filters in which
the filter output is the maximum response from a set of linear operators which are
sensitive to edges at different orientations:

g(i, j) = maxz=1,...,8

1
∑

k=−1

1
∑

l=−1

w(z)
kl f(i + k, j + l)

The Kirsch filter contains eight operators (weights matrix) corresponding each to a
specific direction. They are determined by rotating of 45º the first operator w0.

w0 = 1
15







5 5 5
−3 0 −3
−3 −3 −3







A.3.2. Improved Kirsch filter

Despite of being a good derivative operator and performing better than other tra-
ditional edge detectors for the diagonals detection, the Kirsch filter does not permit
the gradient’s direction determination. Therefore, to solve this problem, Mahdjoub
[28] proposed to change the based-operator to:
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w0 =







1/3 1/3 1/3
−1/6 −1/6 −1/6
−1/6 −1/6 −1/6







This improved version of the Kirsch filter enables to have a detected contour with
two pixels of thickness. The external contour contains a positive or negative value
whereas the internal contour have an opposed value. This enables to detect the
contour with precision, between these two contours.
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