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Abstract

The present study deals with the extension of the exact and approximate models of the Boltzmann equation to a gas
mixture of four constituents undergoing a reversible bimolecular reaction, and with its application to wave propagation
problems. The paper intends to highlight how such Boltzmann type models, on the basis of a shared kinetic framework,
can be adopted as the starting point for a consistent derivation of the reactive hydrodynamic equations, at both the Euler
and Navier Stokes limit. At this scope, a proper mathematical procedure is applied to obtain an approximate solution
to the model equations, which is necessary in order to derive the closed system of the governing equations in the above
said hydrodynamic limits. Resorting to this unified kinetic approach which is presented in detail, one can recognize how
the dynamics of rather different wave problems well known in literature, as the steady detonation wave and its linear
stability, the sound wave propagation and the light scattering phenomenon, match a satisfactory description with care for
the chemical mechanism at the microscopic scale. The knowledge of the chemical process at this level permits to evaluate
the influence of the chemical reaction on the fundamental aspects of the reacting gas system, reinforcing the proposed
kinetic approach. Accordingly, some propagation wave problems, recently studied by the authors in this context, are
in turn here reviewed at the end of focusing how their mathematical formulation and solution depend on the proposed
hydrodynamic closure procedure.

1. Introduction

Physical processes where gas phase chemical reac-
tions occur are described at various levels in litera-
ture, as documented in the books [1–3]. The investiga-
tion of chemically reacting flows is in fact fundamental
in order to enlarge the knowledge of significant fields
ranging from plasma chemistry to atmosphere physics
at high altitudes, from ionization processes accompa-
nying the reentry of hypersonic vehicles to chemical
technology, and several others.
In particular, the kinetic study of non-equilibrium

effects, and their influence on the main aspects of re-
active gas systems, constitute the object of a large
scientific production concerned with the chemical ki-
netics Boltzmann equation (BE). A chemical reaction
occurring in a gas causes a perturbation of the local
equilibrium, disturbing the molecular velocity distri-
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bution from its Maxwellian form and the reaction rate
from its equilibrium value, whereas elastic collisions
contribute to restore the equilibrium. These devia-
tions appear to be more relevant at higher atmosphere
altitudes where the elastic collisions are not sufficient
to sustain the equilibrium of the gas flow, according
to the interpretation given by Shizgal and Chikhaoui
in Ref. [4]. A departure from the Maxwellian veloc-
ity distribution, due to the proceeding of the reaction
itself, is in general responsible of the reaction rate de-
crease and may also induce qualitative changes of the
system properties. The non-equilibrium effects arising
in a dilute gas system whose constituents undergo a
bimolecular chemical reaction, were recognized in the
pioneering study by Prigogine and co-workers [5,6] for
the simple reaction A1 + A1 → A2 + A3. They first
generalized the Chapman-Enskog solution of the BE to
the case of reacting gases with slow chemical reactions,
for which the chemical relaxation time is longer than
the mechanical one. They also showed that the rate
coefficient decreases from early stages of the reaction

109

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634915?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


110 Gilberto M. Kremer, Miriam Pandolfi Bianchi, Ana Jacinta Soares

for which the role of products can be neglected.
The most relevant model which describes the evolu-

tion of a rarefied gas is the integro-differential BE, as
widely discussed in the well known book by C. Cercig-
nani, see Ref [7]. The integral form of the collision op-
erator represents a mathematical complexity for both
theoretical studies and numerical simulations. On the
other hand, the Bhatnagar Gross and Krook (BGK)-
type models, replacing the integral operator by a re-
laxation linear term which retains the main properties
of the exact BE operator, can be more easily handled,
see for example Ref. [3] and related bibliography for
further details.
The present study deals with the extension of both

exact BE and approximate BGK modelling to a gas
mixture of four constituents undergoing a reversible
bimolecular reaction.
The topics considered in this work concern the

dynamics of three different wave propagation prob-
lems for a chemically reacting gas mixture, as the
steady detonation wave and its linear stability, the
sound wave propagation, and the light scattering phe-
nomenon. Such problems have been modeled sepa-
rately in some recent papers by the authors [8–10],
and some pertinent results will be here resumed and
revised according to the following aims. A first objec-
tive consists in demonstrating how it is possible to de-
duce a macroscopic picture in the hydrodynamic limit,
starting from a kinetic description at the Boltzmann
level. A further goal is to incorporate the dynamics
of the above said wave problems inside a unified ki-
netic approach for which the starting point can be ei-
ther the exact BE modelling, or the approximate BGK
modelling. More in detail, the steady detonation and
its linear stability are investigated when transport ef-
fects are negligible, at the Euler hydrodynamic limit
of the reactive exact BE model. Conversely, the sound
wave propagation and the light scattering phenomenon
are studied when transport effects are relevant, at the
Navier-Stokes hydrodynamic limit of the reactive ap-
proximate BGK-type model.
The paper is organized as follows. The fundamental

mathematical features of the exact and approximate
modellings are presented in Section 2.
The hydrodynamic closure procedure is treated in

Section 3. More in detail, in Subsection 3.1, the re-
active exact BE modelling is adopted to derive the
reactive Euler equations in view of the steady deto-
nation wave problem and its linear stability of Sec-
tion 4. In Subsections 3.2 and 3.3 the reactive ap-
proximate BGK modelling is adopted to deduce the
reactive Navier-Stokes equations and their transport
properties, in view of both sound wave propagation of
Section 5 and light scattering problem of Section 6.
In Section 7, final remarks and possible perspectives

are presented.

2. Kinetic modelling

The main aspects of the exact BE and approximate
BGK kinetic modellings, at microscopic level, are here
briefly recalled in order to state the hydrodynamic pic-
ture, at the macroscopic level, which constitutes the
common basis for the wave problems of Sections 4, 5
and 6.
The present modellings refer to a gas mixture of

four constituents with a reversible reaction of type
A1+A2⇌ A3+A4. For each constituent Aα, α =
1, 2, 3, 4, let mα denote the molecular mass, with
m1 +m2 = m3 +m4, let εα be the formation energy
of a molecule and fα(t,x, cα) the one-particle velocity
distribution function.
At the microscopic scale, in the phase space, the

evolution of the mixture is described by the kinetic
equations

∂fα
∂t

+ cαi
∂fα
∂xi

=
4∑

β=1

QE
αβ +QR

α , (1)

where QE
αβ and QR

α are elastic and reactive collision
operators.
When the exact BE modelling is assumed, their ex-

plicit form is of integral type and it is given by

QE
αβ =

∫ (
f ′αf

′
β − fαfβ

)
gβασβαdΩβαdcβ (2)

QR
1 =

∫ [
f3f4

(
m1m2

m3m4

)3

− f1f2

]
σ⋆
12g21dΩdc2 (3)

where gβα = |cβ − cα| is a relative velocity, dΩβα and
dΩ are elements of solid angles characterizing the col-
lision processes, σβα is the differential elastic cross sec-
tion and σ∗

12 the reactive cross section for the forward
reaction. Further reactive operators are here omitted
being quite similar. For such modelling, the thermo-
dynamical equilibrium state is assured when the con-
stituent distribution functions fα are the Maxwellians

fMα =nα

( mα

2πkBT

)3
2

exp
(
− mα(c

α
i − vi)

2

2kBT

)
, (4)

where nα satisfy the chemical equilibrium condition
given by the mass action law in the form

n3n4
n1n2

=
(m3m4

m1m2

)3/2
exp

(
− ∆ε

kBT

)
. (5)

Above, kB is the Bolzmann constant, ∆ε = ε3 + ε4 −
ε1 − ε2 the binding energy difference, nα the consti-
tuent number density, v the mean velocity and T the
temperature of the whole mixture. When nα are not
correlated by the mass action law (5), the Maxwellians
(4) define the mechanical equilibrium, only.
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When the approximate BGK modelling is consid-
ered, the explicit form of elastic and reactive collision
operators is homogeneous of degree one, namely

QE
αβ =

4∑
β=1

ζEαβ(f
E
αβ−fα), QR

α = ζRαγ(f
R
αγ−fα) (6)

where (α, γ) = (1, 2), (2, 1), (3, 4), (4, 3), ζEαβ , ζ
R
αγ are

elastic and reactive collision frequencies. Moreover,
fEαβ and fRαγ are reference Gaussian distributions ac-
counting for mixture effects and chemical effects, re-
spectively. Further details on the collision operators
are well known in literature, see for example the books
[3, 7]. The considered approximate BGK collision op-
erators have been derived in paper [9] by imposing
that the production terms for mass, momentum and
total energy are the same in BE and BGK models.
Consequently, both modellings share the same conser-
vation laws of mass, momentum and total energy of
the mixture. In addition, the mechanical equilibrium
for the approximate model is defined in terms of the
Maxwellians (4), whereas the thermodynamical equi-
librium is characterized by the Maxwellians (4) with
the number densities nα satisfying the mass action law
(5). More specifically, the approximate model for the
reactive gas flow is a relaxation model in which each
constituent distribution function relaxes towards a ref-
erence Gaussian distribution, namely towards a devi-
ation of the Maxwellian given by (4).
Another BGK modelling for a quaternary mixture

with bimolecular reaction is proposed in Ref. [11],
where a single BGK collision operator is considered
for each α-constituent, including all elastic and reac-
tive collisions involving the α-constituent.
The macroscopic picture, which is common to the

exact modelling (2), (3) and BGK modelling (6), rel-
evant for the wave propagation problems considered
here, is provided by the hydrodynamic system

∂nα

∂t
+∇·(nαuα) = τα, α = 1, . . . , 4, (7)

∂

∂t
(ϱv)+∇·(ϱv ⊗ v + P) = 0, (8)

∂

∂t

(3
2
nkBT+

4∑
α=1

nαεα+
1

2
ϱv2

)
+∇·

[
q+Pv

+
(3
2
nkBT+

4∑
α=1

nαεα+
1

2
ϱv2

)
v
]
=0. (9)

In the above system, the main independent macro-
scopic fields are the constituent number densities nα,
mean velocity v and temperature T of the whole mix-
ture, with ϱ =

∑4
α=1mαnα being the mixture mass

density and n =
∑4

α=1 nα the mixture number density.
Moreover τα and uα are the constituent reaction rate
and diffusion velocity, P and q are the mixture pressure

tensor and heat flux vector, whose kinetic definitions
are

τα =

∫
R3

QR
α (fα) dcα, (10)

uαi =
1

ϱα

∫
R3

mαξ
α
i fα dcα, (11)

Pij=
4∑

α=1

∫
R3

mαξ
α
i ξ

α
j fαdcα, (12)

qi=

4∑
α=1

(∫
R3

1

2
mαξ

2
αξ

α
i fαdcα + nαεαu

α
i

)
, (13)

where ξα = cα − v is the peculiar velocity of the α-
constituent. The presence of the constitutive quanti-
ties τα, uα, P and q in Eqs. (7-9) renders the hydrody-
namic system non-closed, so that a closure procedure
must be applied. At this end, the knowledge of fα,
which is the solution to the kinetic equations, is pre-
liminarily required at a fixed order of approximation,
as explained in the next section.

3. Hydrodynamic closures

The closure of the hydrodynamic system (7-9) is
achieved once τα and the further fields uα, P and q
are expressed in dependence on the main macroscopic
fields, through their definitions.

The Chapman-Enskog methodology is used here for
a gas flow in a chemical regime close to equilibrium for
which the elastic and reactive frequencies are of the
same order (fast reaction regime). An approximate
solution of the kinetic Eqs. (1) is determined as an
expansion around the Maxwellian (4), of the form

f̃α=f
M
α [1 + ϕα] , (14)

where ϕα represents the deviation from the mechanical
equilibrium and turns out to be explicitly depending
on the main macroscopic fields ϱα, v and T . Thus the
approximation f̃α in turn depends on such main fields
and is then introduced in the kinetic definitions (10-
13). Such dependence is strictly related to the choice
of the kinetic modelling, which can be either the exact
BE or the approximate BGK equations, together with
pertinent assumptions of elastic and reactive cross sec-
tions. Consequently, the structure of the elastic and
reactive collision operators QE

αβ and QR
αβ is specified.

At each level of the Chapman-Enskog procedure,
that is, when either f̃α = fMα or f̃α = fMα [1 + ϕα],
the constitutive laws for τα, uα, P and q result from
the actual computation of the integrals in definitions
(10-13), once fα is replaced by its corresponding ap-

proximation f̃α.
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3.1. Reactive Euler equations
At the first-order of the Chapman-Enskog method,

the approximate solution f̃α is the Maxwellian fMα
given by (4), which includes the non-equilibrium ef-
fects induced by the chemical reaction only, since the
number densities nα are not constrained by the mass
action law (5). The corresponding constitutive laws
are the reaction rate law

τα =

∫
R3

QR
α (f

M
α ) dcα (15)

with conditions

τ1 = τ2 = −τ3 = −τ4, (16)

which assure the correct chemical exchanges predicted
by the reaction, and the further laws for uα, P and q

uα = 0, P = pI, q = 0, (17)

where I represents the identity matrix and p the mix-
ture pressure, with p = nkBT .
The hydrodynamic system closed at this level con-

sists in Eqs. (7-9) together with the constitutive laws
(15-17). The resulting system defines the reactive Eu-
ler equations which are appropriate when the trans-
port effects are absent. Such system is the mathe-
matical tool for the kinetic description of the steady
detonation wave and its linear stability in Section 4.

3.2. Reactive Navier-Stokes equations
At the second-order of the expansion procedure, the

approximate solution f̃α in the form (14) is character-
ized in terms of the deviation ϕα containing the ef-
fects of the transport fluxes. The corresponding cons-
titutive laws are then the reaction rate law

τα =

∫
R3

QR
α (f

M
α [1 + ϕα]) dcα (18)

and the generalized Fick, Navier-Stokes and Fourier
laws, which are respectively given by

uαi =
1

ϱα

∫
R3

mαξ
α
i f

M
α ϕα dcα, (19)

Pij=p δij +
4∑

α=1

∫
R3

mαξ
α
i ξ

α
j f

M
α ϕαdcα, (20)

qi =
4∑

α=1

(∫
R3

1

2
mαξ

2
αξ

α
i f

M
α ϕαdcα

+ εα

∫
R3

ξαi f
M
α [1 + ϕα]dcα

)
. (21)

The hydrodynamic system closed at this level con-
sists then in Eqs. (7-9) together with the constitu-
tive laws (18-21). The resulting system defines the

reactive Navier-Stokes equations, which is appropri-
ate when the transport effects are taken into account.
Note that Eq. (20) expresses the constitutive law of a
Newtonian fluid which, in kinetic theory, is also called
the Navier-Stokes law [7, 12]. When the kinetic mod-
elling of the collisional dynamics is chosen on the basis
of the selected collision operators, the deviation ϕα can
be explicitly determined and the constitutive laws (19-
21) permit to detail the transport picture through the
actual computation of the transport coefficients.

3.3. Transport properties
The transport picture is here represented starting

from the kinetic modelling of Section 2 adopting the
BGK collision operators, hard-spheres elastic cross
sections and Present’s reactive cross sections. There-
fore, the generalized Fick, Navier-Stokes and Fourier
laws are deduced from the constitutive Eqs. (18-21) in
the form

dαi = −
4∑

β=1

xeqα x
eq
β

Dαβ

(
uαi − uβi

)
, (22)

Pij = pδij − µ

(
∂vi
∂xj

+
∂vj
∂xi

− 2

3

∂vr
∂xr

δij

)
, (23)

qi = −λ ∂T
∂xi

+
4∑

α=1

(
5

2
kBT + εα

)
neqα u

α
i , (24)

where xeqα = neqα /n
eq denote equilibrium molar frac-

tions, dαi the constituent diffusion forces and Dαβ , µ
and λ are the diffusion, shear viscosity and thermal
conductivity coefficients. They turn out to be known
functions of T , nα and both elastic and reactive colli-
sion frequencies ζEαγ and ζRαγ , through the expressions

1

Dαγ
=

1

Dγα
=

mαγ

kBTx
eq
γ

[
ζEαγ +

2

3
ζRαγ

(
ϵ⋆σ +

1

2

)]
,(25)

1

Dαδ
=

1

Dδα
=

mαδ

kBTx
eq
δ

[
ζEαδ + ζRαγ

mα +mδ

mα +mγ

]
, (26)

µ =
4∑

α=1

neqα kBT

ζRαγ +
∑4

β=1 ζ
E
αβ

, (27)

λ =
5

2

4∑
α=1

neqα k
2
BT/mα

ζRαγ +
∑4

β=1 ζ
E
αβ

, (28)

where (α, γ) are defined as in Eq.(6), δ ̸= γ for each
fixed α, and ϵ⋆σ = ϵσ/kBT is the activation energy in
units of kBT . Moreover, σ takes the values 1 and −1
for the reactants (α=1, 2) and products (α=3, 4) of
the reaction, ϵ⋆1 denotes the forward activation energy,
whereas ϵ⋆−1 the backward activation energy.
The behaviour of the transport coefficients for the el-

ementary reaction H2+ Cl⇌ HCl+H of the Hydrogen-
Chlorine system is investigated for one mole only of an
ideal gas mixture, for which the total number density
is n = 2.6 × 1025 molecules/m3 and the equilibrium
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Figure 1. Diffusion coefficients Dαβ (m2/s) as func-
tion of T (K). Dashed line: inert mixture; solid line:
reactive mixture.
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Figure 2. Prandtl number as function of T (K).
Dashed line: inert mixture; solid line: reactive mix-
ture.

molar fractions are such that xeq1 = xeq2 and xeq3 = xeq4 .
The influence of the chemical reaction on the trans-
port picture is appreciated comparing the results for
the reactive mixture with those obtained in absence of
chemical reaction. Figure 1 shows the behaviour of
three diffusion coefficients Dαβ in dependence on the
mixture temperature T for the reactive mixture (solid
line) and for the inert one (dashed line). The picture il-
lustrates an increasing behaviour with T which is more
pronounced for the inert mixture. The behaviour of
the other diffusion coefficients, as well as that of vis-
cosity and thermal conductivity, is quite similar and,
for brevity, is not reported here.
Moreover the Prandtl number of the considered mix-

ture, whose kinetic definition is given by

Pr=
5µ

2λ

[
4kB(n

eq
1 +neq2 +neq3 +neq4 )

m1n
eq
1 +m2n

eq
2 +m3n

eq
3 +m4n

eq
4

]
, (29)

is represented in Fig. 2. The results show a decreasing
behaviour of Pr with T , as expected, and an accept-
able range of values of Pr, lying inside the difference
between the BGK approximation and the exact BE
evaluation for the Prandtl number of a single gas.

4. Steady detonation waves: propagation and
stability

In this section the kinetic modelling of Section 2
with hydrodynamic closure at the Euler level, as spec-
ified in Subsection 3.1, is applied to study the dynam-
ics of a planar detonation wave and its linear stabil-
ity. The wave propagates in an explosive gas mix-
ture, in a flow regime for which mechanical equilib-
rium and strong chemical disequilibrium hold, and dif-
fusion, shear viscosity and heat flux are absent. The
formulation of the detonation problem is founded on
to the well-known Zeldovich, Von Neumann and Do-
ering (ZND) model, see Ref. [13], specialized to one
space dimension. The structure of the planar steady
detonation wave is represented in Fig. 3. A non-
reactive shock wave propagates with constant velocity
D in a quiescient gas mixture. Such wave is sustained
by the energy release of an exothermic chemical re-
action which occurs in the reaction zone attached to
the shock. At last, the following flow can be either a
constant flow (overdriven detonation) or a rarefaction
followed by a constant flow (unsupported detonation).
The initial state, ahead of the shock, is denoted by I
and represents the unreacted gas mixture. The von
Neumann state N , just ahead of the shock, represents
the still unreacted mixture with very hight pressure.
Behind the shock front, the intermediates states of par-
tial chemical reaction, are represented by R, whereas
the final state of chemical equilibrium is denoted by S.
The kinetic modelling is based on the exact BE colli-
sion operators, and on a particular choice of reactive
cross sections with threshold energy, which satisfy the
micro-reversibility principle and extends the Present
model, see Ref. [3].

Therefore, the hydrodynamic system is obtained re-
ducing to one space dimension Eqs. (7-9), constitutive
laws (17) and rate law (15) expressed in the form

τα=
[
−n1n2

(m3m4

m1m2

)3/2
exp

(
− ∆ε

kBT

)
+n3n4

]
Sα, (30)

where Sα is a suitable weight function depending on
temperature and threshold velocity, whose expression
is specified in Ref. [14].

The governing equations of the explosive mixture
directly follow from the one-dimensional reactive Euler
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Figure 3. ZND structure of the detonation wave.

equations, referred to the steady frame attached to the
shock. Thus the governing equations assume the form

(v −D)
dn1
dx

+ n1
dv

dx
= τ1, (31)

(v −D)
d

dx
(n1 + n3) + (n1 + n3)

dv

dx
=0, (32)

(v −D)
d

dx
(n1 + n4) + (n1 + n4)

dv

dx
=0, (33)

(v −D)
d

dx
(n2 + n3) + (n2 + n3)

dv

dx
= 0, (34)

(v −D)
dv

dx
+

1

ϱ

dp

dx
= 0, (35)

(v −D)
d

dx

(3
2
nkBT+

4∑
α=1

nαεα+
1

2
ϱv2

)
(36)

+
(3
2
nkBT+

4∑
α=1

nαεα+
1

2
ϱv2

)dv
dx

+
d(pv)

dx
= 0.

The rate equation (31) defines the progress of the
chemical reaction, since it describes the space evo-
lution of the number density of the constituent A1.
Moreover Eqs. (32-36) represent the conservation laws
of partial number densities, as well as momentum and
total energy of the whole mixture. The integration
of these equations between the initial state, ahead of
the shock, and any state in the reaction zone, namely
the von Neumann N , the intermediate state R and
the final state S, leads to the Rankine-Hugoniot (RH)
conditions which, as known, connect the fluxes of the
main fields between the initial quiescent mixture and
the explosive mixture in the reaction zone.
The system formed by the rate equation (31) to-

gether with the algebraic RH conditions must be
solved with suitable initial conditions and input pa-
rameters in order to characterize the main fields
nα, v, T at the von Neuman, intermediate and final
states, for an overdriven detonation. The knowledge

of such fields specifies the structure of the detonation
wave, including the wave thickness corresponding to
the spatial distance between the von Neuman and final
states. Numerical simulations have been performed,
according to Ref. [15], for an elementary reaction of
the explosive hydrogen-oxygen chain, H2O + H ⇌
OH + H2. In particular, the behaviour of the mix-
ture number density n is represented in Fig. 4 versus
the wave thickness. The input data for the initial state
are represented in Table 1, and the values for binding
energy difference, detonation wave velocity and Mach
number are

∆ε = 63311 Jmol−1, D= 3500ms−1, M=1.6888.

Table 1
Constituent number densities nα (mol l−1), number
density n (mol l−1), temperature T (K), and mean ve-
locity v (ms−1) of the mixture, evaluated at the Von
Neumann state (N) and final state (S), for given ini-
tial state (I).

State S State N State I

n1 0.30112 0.10590 0.03000
n2 0.27563 0.07060 0.02000
n3 0.03014 0.35300 0.10000
n4 0.28496 0.70601 0.20000

n 0.89185 1.23551 0.35000
T 2363.16 2357.89 298.15
v 2126.46 2508.51 0

-0.006 x 0

nu
m

be
r

de
ns

ity
n

1,23-

0,90-

0,98-

1.07-

1.15-

Figure 4. Detonation wave profile of number density
n versus the wave thickness, for Mach number M =
1.6888 and detonation velocity D = 3500ms−1.

The linear stability of the steady detonation wave con-
stitutes a relevant problem, classically treated in a
wide literature of the last decades. The reader can
be addressed, for instance, to Ref. [16] and related
bibliography. This problem can also be investigated
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starting from the mathematical modelling presented
in its general form in Sections 2 and 3.
The stability is studied analysing the response of

the steady solution to small rear boundary perturba-
tions which induce a distortion ψ(t) in the position of
the planar shock wave. Consequently, such distortion
affects the steady wave solution and results in the per-
turbation of the main fields in the reaction zone. The
knowledge of the evolution of the main field perturba-
tions is the goal for the solution to the stability prob-
lem. The decay in time of all field perturbations cor-
responds to a stable behaviour; conversely, a growth
in time of at least one field perturbation implies an
unstable solution.
The stability problem, referred to the detonation

wave solution characterized in this section, first re-
quires the linearization of the one dimensional reactive
Euler equations and RH conditions. Normal mode ex-
pansions with exponential time dependent perturba-
tions, around the steady detonation solution, are con-
sidered for the main fields, in the form

z(x, t)=z∗(x) + exp(at)z(x), (37)

ψ(t) =ψ exp(at), a, ψ ∈ C, a=α+ iβ.

Above, z(x, t) represents the vector of the perturbed
main fields, z∗(x) the steady detonation solution, z(x)
the unknown space disturbances, ψ the complex ampli-
tude of the shock distortion, α and β the perturbation
growth rate and frequency. Inserting the above ex-
pansions (37) into the one dimensional reactive Euler
equations, the stability equations turn out as a system
of linear ODE’s formulated in terms of the eigenfunc-
tions z(x) and eigenvalues a=α + iβ. Consequently,
the sign of the real part of the eigenvalue, say α, deter-
mines the stability behaviour of the steady solution.
The RH conditions, linearized as well, provide the

initial conditions for the stability problem. Since this
system involves the unknown eigenvalue a, a further
equation is required to assure the determinacy of the
stability problem. This closure condition has been de-
rived in paper [17] and results to be the dispersion re-
lation of the normal modes. It expresses the physical
meaning that the reaction zone is acoustically isolated
from the rear boundary.
The system formed by the stability equations, to-

gether with the RH conditions and dispersion relation,
furnishes the stability solution, namely the space dis-
turbances of the main fields, the growth rate α and
time frequency β of the oscillations.
Numerical simulations are performed in agree-

ment with the results of paper [8], for the explo-
sive hydrogen-oxygen mixture. The influence of
the disturbances exp(at) z(x) on the steady solution
z∗(x) can be evaluated by means of the behaviour of
Re[exp(at)z(x)]. In particular such influence on the
mass density ϱ∗ of the mixture, say ϱ for simplicity, is

Figure 5. Instability behaviour of the mass density
perturbation versus time at different states, for growth
rate α = 0.01 and disturbance frequency β = 0.01.

Figure 6. Stability behaviour of the mass density per-
turbation versus time at different states, for growth
rate α = −0.01 and disturbance frequency β = 0.01.

represented by

ϱ =
4∑

i=1

eαt
(
cosβtRezi(x)− sinβt Imzi(x)

)
.

Figure 5 shows the time behaviour of ϱ for a posi-
tive value of the growth rate, that is for α = 0.01, and
frequency β = 0.01. The picture indicates a typical in-
stability behaviour of the steady solution. The curves
are drawn for the von Neuman (x = xV N ), interme-
diate (x= xI), and final state (x= xF ), respectively.
Analogously, Fig. 6 shows the time behaviour of ϱ for
α = −0.01, and thus indicates a typical stability be-
haviour of the steady solution.
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5. Sound wave propagation

In this section, the propagation of sound waves in
a reactive mixture where the transport effects are
relevant is studied at the Navier-Stokes, Fourier and
Fick level, according to Subsections 3.2 and 3.3. The
kinetic modelling is based on the approximate BGK
collision operators, and Present’s reactive cross sec-
tions. The hydrodynamic system is formed by Eqs. (7-
9) reduced to one space dimension and closed with
the constitutive laws (22-24) and rate law in the form

τα = ναnαnγk
(0)
σ

A
kBT

, (38)

where k
(0)
σ is the first approximation to the forward

(σ = 1) and backward (σ = −1) rate constants, A is
the affinity of the forward chemical reaction, and γ=
2, 1, 4, 3 for α=1, 2, 3, 4, respectively.
The kinetic dynamics of longitudinal sound waves is

studied assuming that planar harmonic waves of small
amplitude propagate along the x-direction in the re-
active mixture at equilibrium state characterized by

n
(eq)
α , T0 and vanishing velocity. The closed system

of hydrodynamic equations is then linearized around
the equilibrium state assuming harmonic sound wave
expansions of the form

ñα = n(eq)α + nα exp[ı(κx− ωt)],

ṽ = v exp[ı(κx− ωt)], (39)

T̃ = T0 + T exp[ı(κx− ωt)].

Above, nα, v, T represent complex amplitudes of the
sound waves, and κ, ω are the complex wave num-
ber and real angular frequency, respectively. The lin-
earization through expansions (39) leads to the disper-
sion relation of the wave solutions, which can be solved
in order to express the wave frequency κ in depen-
dence on ω. The dispersion and the attenuation of the
sound waves are represented through the wave phase
velocity vph = ω/Reκ and the attenuation coefficient
α = Imκ. Numerical simulations are performed for
two mixtures of the Hydrogen-Chlorine system, where
the elementary reaction H2+Cl ⇌ HCl+H takes place.
The first, case (a), with equilibrium molar fractions
xeq1 = 0.1, xeq2 = 0.618, xeq3 = 0.082, xeq4 = 0.2, and
the second, case (b), with xeq1 = 0.2, xeq2 = 0.424,
xeq3 = 0.076, xeq4 = 0.3. The simulations have been
performed for T0=1500K and ∆ε=3.98 kJmol−1.
Figures 7 and 8 illustrate the trend of v0/vph and

αv0/ω versus ω (GHz), for the so called first sound
wave propagating in the positive x-direction. In par-
ticular, v0 is the computed sound velocity of the cor-
responding non reactive Eulerian mixture. More in
detail, both pictures refer to the first mixture, case
(a), in presence of the chemical reaction (dot line) and
in its absence (solid line), as well as to the second
mixture, case (b), in presence of the chemical reaction

(dot-dashed line) and in its absence (dashed line).
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Figure 7. Phase velocity for two mixtures of the H2-Cl
system, cases (a) and (b), versus the angular frequency
ω (GHz).
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Figure 8. Attenuation coefficient for two mixtures of
the H2-Cl system, cases (a) and (b), versus the angular
frequency ω (GHz).

These figures evidence that the phase velocity and at-
tenuation coefficient are smaller for the reactive mix-
tures than for the corresponding inert ones and that
the influence of the chemical reaction becomes negligi-
ble at lower frequencies. This behaviour is consistent
with the results of Subsection 3.3 on the transport
properties and is justified by the fact that the trans-
port coefficients are smaller for reactive mixtures than
for the corresponding inert ones. Moreover the results
are in agreement with those obtained in paper [9] for
the same reactive system but with different concentra-
tions.

6. Light scattering spectra

In this section, the wave propagation of the light
scattered by a reactive mixture where the transport
effects are relevant, is studied starting from the hy-
drodynamic closure at the Navier-Stokes, Fourier and
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Fick level, derived in Subsections 3.2 and 3.3. This
study aims to describe the response of the reactive
mixture in thermodynamical equilibrium to the inci-
dent light field. More specifically, the incident light
induces small deviations on the basic fields from the
equilibrium values, according to the expansions

nα = neqα + ñα, vi = ṽi, T = T0 + T̃ , (40)

around constant number densities and mixture tem-
perature of an equilibrium state with vanishing mean
velocity. The evolution of such deviations obeys to the
linearized equations, derived from the hydrodynamic
system closed at the Navier-Stokes, Fourier and Fick
level. The role of these deviations, and in particular
that of the constituent number densities, will result
evident in the sequel. In this paper, the kinetic ap-
proach to the light scattering problem is considered in
the spirit of the previous applications of Section 4 and
Section 5, and can be made more comprehensible if
some brief preliminaries are provided, with reference
to the book [18] by Berne and Pecora.
When a monochromatic linearly polarized plane

light wave impinges upon a gas mixture, the inter-
action of the light field with the gas determines the
deviations of the light itself, caused by the dielectric
constant fluctuations. It is possible to evaluate the in-
tensity of the light scattered by the mixture in terms
of the constituent number density perturbations ñα,
introduced in expansions (40.)
The mathematical tool to be used for the descrip-

tion of the light scattering spectra is the so called dy-
namic structure factor S(q, ω), q being the change in
the wave vector and ω the shift in the angular fre-
quency of the scattered light. This factor is classically
defined in terms of the auto correlation of the Laplace-
Fourier transform of the dielectric constant fluctua-
tions, namely

S(q, ω) = Re
[
⟨δϵ(q, iω)δϵ(q, 0)⟩

]
. (41)

It is possible now to express S(q, ω) in dependen-
ce on the constituent number density perturbations
ñα(q, iω), in place of the dielectric constant fluctua-
tions δϵ(q, iω), first resorting to the Clausius-Mossotti
equation, see Ref. [19], and then invoking the Onsager
reciprocity regression hypothesis, see Ref. [20]. Thus,
the final expression of S(q, ω) results to be

S(q, ω)=
4∑

α,γ=1

aαaγRe
[
⟨ñα(q, iω) ñγ(q, 0)⟩

]
. (42)

where aα denotes the constituent polarizability. The
presence of ñα(q, iω) in Eq. (42) indicates that S(q, ω)
can be characterized in the kinetic frame, starting from
the hydrodynamic Eqs. (7-9) closed with the constitu-
tive laws (22-24) and rate law (38). More specifically,
the hydrodynamic system and the closure conditions
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Figure 9. Case (a). Dynamic structure factor versus
the reduced angular frequency, for different values of
the uniformity parameter y. Reactive mixture (solid
line) and inert mixture (dashed line).

must be first linearized according to expansions (40)
and successively Laplace-Fourier transformed.

Some numerical simulations in order to evaluate the
dynamic structure factor are performed in agreement
to Ref. [10], for two different mixtures of the Hydrogen-
Chlorine system, where the chemical reaction H2+Cl
⇌ HCl+H occurs. Also in this application the influ-
ence of the chemical reaction can be evaluated. Thus
the behaviour of S(q, ω) referred to the reactive mix-
ture is compared with the behaviour of S(q, ω) referred
to the corresponding inert mixture.

The light scattering spectrum, evidencing the Ray-
leigh and Brillouin peaks, is represented in Figs. 9 and
10 as function of the reduced angular frequency ω/(cq),
for different values of the uniformity parameter y. This
parameter is defined as y = 1/(qτc), that is the ratio
between the wavelength 1/q of the incident light and
the effective mean free path τc, τ being an effective
relaxation time, and c the adiabatic sound speed. The
range of y assures that the hydrodynamic equations
can be used to describe S(q, ω) for the given mixture.

Two mixtures are analyzed with different equilib-
rium constituent concentrations and same equilibrium
temperature T0 = 1500K, namely case (a) xeq1 = xeq2 =
0.33, xeq3 = xeq4 = 0.17 and case (b) xeq1 = 0.1,
xeq2 = 0.618, xeq3 = 0.082, xeq4 = 0.2. The simulations
are performed for y = 7, y = 10 and y = 15.

In both cases, for increasing y, the intensity of the
peaks grows and they become narrower. As known
in literature, see for example book [18], the typical
Rayleigh and Brillouin triplet consists of a central
Rayleigh peak and two side Brillouin peaks symmetri-
cally shifted around the origin. They are are perfectly
evident in Figs. 9 and 10. On the other hand, the
Rayleigh and Brillouin peaks are less sharp in case (b)
than in case (a). This is due to the fact that the partial
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Figure 10. Case (b). Dynamic structure factor versus
the reduced angular frequency, for different values of
the uniformity parameter y. Reactive mixture (solid
line) and inert mixture (dashed line).

uniformity parameters and the partial polarizabilities
must be considered.

7. Conclusions

In this paper, the common features of the kinetic ap-
proach, based on either the exact or the approximate
extended models of the Boltzmann equation, are high-
lighted and reworked to formulate and solve different
wave problems for reactive gas mixtures. The steady
detonation wave and its linear stability, the sound
wave propagation and the light scattering, which have
been previously treated by the authors in Refs. [8], [9]
and [10], are here revisited as pertinent fluidynamical
applications of the proposed kinetic methodology.
In view of a unified macroscopic description in the

hydrodynamic limit for the considered reactive flow,
and in particular for the dynamics of its wave propa-
gation in the various cases, the paper shows that the
analytical closure of the nonlinear system of the field
hydrodynamic equations always plays a shared central
role. The expected final results of each application
confirm an appreciable agreement with the ones known
in classical literature. Furthermore, the last applica-
tion in the present paper, namely the light scattering
problem, even though it could seem to be far away
from the previous wave propagation problems, in par-
ticular due to its rather strong physical and mathe-
matical complexity, is presented and investigated in
such a way that its dependence on the kinetic closure
procedure appears to be completely justified.
The following improvements and extensions, how-

ever, can be considered.
The study of the steady detonation wave and its lin-

ear stability could include the heat of reaction and the
dissipative contribution due to an endothermic reac-

tion, as well as the transport effects. In addition, this
analysis could be extended to the bi-dimensional case.
The dynamics of acoustic waves and light scatter-

ing could be investigated starting from the exact BE
rather than resorting to the approximate BGK equa-
tion in order to include further transport effects in
wave propagation. Thus, a more detailed description
of the transport picture, which would include ther-
mal diffusion and diffusion-thermal effects, may also
be developed, in spite of the much more complicate
computations.
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