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ABSTRACT 

Clinical decision making often involves making decisions in situations of uncertainty. Clinical Decision Support Systems 

are tools devised to help in such moments, but the information may not be available during the decision process. Be it 

because of communication failure or errors in data input, the truth is that it would be beneficial to present the most likely 

clinical scenarios to a physician, given the incompleteness of the information. Speculative Computation offers a way to 

structure such a scenario generation process. This work presents a framework for clinical decision support with 

disjunctive constraint processing that acts as an interface with computer-interpretable versions of Clinical Practice 

Guidelines. Being a reasoning process based on defaults, it has to rely on a default generation process. For that we 

propose Bayesian Networks. The interaction between the different components of the system resulted in a process 

capable of generating clinical scenarios.  
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1. INTRODUCTION 

In clinical decision making, there may be situations in which uncertainty is present because of missing key 

patient information such as demographics, episodic and clinical diagnosis detail. In Clinical Decision Support 

Systems (CDSSs), the above-mentioned concerns can translate into a poor data input into the Electronic 

Health Record (EHR) system or a communication failure between the EHR system and the CDSS, making 

impossible the timely retrieval of the information for the decision (Sittig et al. 2008). The inability of CDSSs 

to deal with uncertainty calls forth the need to create new clinical decision support functionalities such as 

reasoning mechanisms with predictive capabilities. The objective of these prediction operations is to produce 

scenarios for a physician. Moreover, such mechanisms would enable the physician to take pre-emptive 

measures, in the event that the default reasoning suggests the clinical process is following an undesirable 

direction.  The work presented herein describes the application of a framework for Speculative Computation 

(Satoh et al. 2003; Ceberio et al. 2006)  to the generation of clinical scenarios, using default constraints. It 

acts as an interface to machine-readable versions of Clinical Practice Guidelines (CPGs). The foundations for 

Speculative Computation are provided by Logic Programming, and constraint processing is used in order 

handle different types of rules and answers manipulated in the procedures. The paper is organized as follows. 

Section 2 provides a brief description of related work. Section 3 contains a summary of the CompGuide 

model for CPGs and a description of the case study used to demonstrate the application of Speculative 

Computation. The definition of the framework is provided in section 4, along with an execution example.  

Finally, section 5 contains some conclusions about the work so far and future directions. 

2. RELATED WORK 
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Computer-Interpretable guidelines (CIGs) are machine-readable versions of CPGs for CDSSs. The 

representation of CPGs in the form of networks of tasks is, arguably, the most followed paradigm in CIG 

design.  Good examples of this are the models Asbru, PROforma, GLIF3, and SAGE (Peleg 2013). Each one 

of these models has an associated execution engine that interprets guideline algorithms and runs them against 

patient information in EHRs. The systems in which these execution engines are included typically follow the 

architecture presented in Fig. 1. Most of the existing examples provide straightforward reasoning only when 

all the necessary information for the verification of conditions is gathered. There is no treatment of 

incomplete information for cases in which they are unable to retrieve the information from the patient health 

record.There are different techniques for handling uncertainty stemming from classical logic and probability 

theory. The most notable variations of classical logic developed to address this problem include Default 

Reasoning, Multivalued Logic and Autoepistemic Logic (Sheridan 1991). Despite their theoretical 

soundness, they have not been applied much to the medical field. On the other hand, numerical techniques 

such as Bayesian Probabilities, Certainty Factors, Dempster-Shafer Theory, and Fuzzy Logic  (Sheridan 

1991) have examples, though not very expressive, of applications in the field (Straszecka 2006). As stated, 

the type of uncertainty addressed in this work is related with missing information at guideline execution by 

the CIG engine. Here, guidelines provide solid rules to make inference and guide the process.  

3. COMPUTER-INTERPRETABLE GUIDELINES: STAGING OF COLON 

CANCER 

The CompGuide project for CIGs (please consult (Oliveira et al. 2014) for more details) includes a task 

network model represented in Ontology Web Language (OWL). In the model, the procedures of guidelines 

are encoded as instances of the following four primitive classes: Plans, Actions, Questions, and Decisions. To 

show how Speculative Computation is used, we will resort to a simple example. It was extracted from the 

Clinical Practice Guideline in Oncology for Colon Cancer from the National Comprehensive Cancer 

Network (Benson et al. 2013). The treatment of colon cancer was chosen as the domain, and staging will be 

the basis for the example. Colon cancer staging is an assessment of the cancer’s pathological stage. This 

information is expressed in terms of three parameters of the TNM classification system (Benson et al. 2013). 

These parameters are: primary tumor (T), which indicates the morphology and degree of tumor invasion; 

regional lymph nodes (N), a parameter used for expressing the number of metastases in lymph nodes; and 

distant metastasis (M), which are the metastases found in other organs or sites. Staging is the step that 

determines which kind of adjuvant therapy the patient needs, which may include different types of 

chemotherapy regimens. Table 1 shows the process of choosing the most adequate adjuvant therapy in the 

form of different tasks according to the CompGuide ontology. There may be situations in which the 

CompGuide engine is unable to retrieve the information from the patient's EHR, or the information is not in 

the EHR yet.  As such, the case-study is based on the following assumptions: (1) the execution engine  will 

recommend the next task in the clinical workflow; (2) the transition from one task to another is only possible 

if the first is connected to the latter through the hasAlternativeTask property; (3) to move to one of the 

alternative tasks, the trigger conditions  of such task must be met; (4) the information necessary to verify the 

trigger conditions will be acquired from an external information source, the EHR, here referred to as pis, but 

may not be available; and (6) the system has a set of default constraints about the information of the patient's 

state. 

Figure 1. The conceptual structure of the CompGuide CDSS and the interaction between its basic components: 

knowledge base, patient information source, and CIG engine. 



 

4. SPECULATIVE COMPUTATION WITH DISJUNCTIVE CONSTRAINT 

PROCESSING 

Speculative Computation (Satoh et al. 2003; Ceberio et al. 2006) is a dynamically revisable computation. 

Using a set of default constraints for the missing information, a tentative computation is made. This 

computation produces the most likely clinical scenarios for a physician. Clinical parameters either take the 

form of nominal variables, with multiple categories, or numerical variables. This means that it is necessary to 

express and process conditions in terms of set constraints, and equality and inequality constraints. 

4.1 Generation of Default Constraints 

The process for extracting defaults has to be data-driven in order to generate default constraints capable of 

producing the most likely scenarios through Speculative Computation. In this way, the objective is to use 

data from past executions of guidelines stored in the CDSS.  Following the example provided in section 3.2, 

we used a data set containing information about the TNM parameters of 518 patients who underwent colon 

cancer treatment at the hospital of Braga and followed the above-mentioned guideline. The generation of 

defaults also has to account for the existence of dependences between the parameters whose values we want 

to know. Bayesian Networks (BNs) model the statistical dependences and independences between variables 

and provide a probability distribution for them (in this case P(T,N,M)). As such, they fit the requirements 

demanded by the problem at hand. The process works as follows. The execution engine analyses the task 

selection moments in a guideline represented in CompGuide and for each one it builds two BNs based on a 

reference data set for that particular situation. The BNs are constructed with two different algorithms 

standing for two different forms of score-based network learning. The Hill-Climbing algorithm is used for 

score-based learning; and the Max-Min Hill-Climbing algorithm is used as a hybrid algorithm (including 

score-based and constraint-based learning) (Scutari 2010). The Akaike Information Criterion (AIC) is used in 

the process to measure the relative quality of the learned networks. The results of the process can be seen in 

Table 2. Based on the AIC, the best network is chosen. In this case the choice falls upon network 1. The 

defaults are obtained through a Maximum a Posteriori Probability (MAP) (Korb & Nicholson 2003) query 

which provides the most likely setting for the variables in the network, based on their conditional 

dependences. The MAP query is set with Hill-Climbing as the search method and the the Maximum 

Likelihood (ML) estimation is defined for the initialization. This whole process is automated and integrated 

in the execution engine. The code in Java runs an R instance through the Java/R Interface (JRI) API 

(available at http://rforge.net/JRI/) in order to use the learning capabilities of the bnlearn package for R. The 

networks and respective scores are passed on to the Java code which, in turn, handles the choice of the 

network and the MAP query using the inference library API of the SamIam project (available at 

\url{http://reasoning.cs.ucla.edu/samiam/). The values for the variables are then stored for when they are 

needed at guideline execution. Network 1 has a structure with serial arcs which shows that T and M are 

conditionally independent given N. This means that instantiating N will block the flow of probabilities from 

T to M, thus making these two clinical parameters independent. The result of the MAP query on network 1 

reveals that the most likely setting is: T=t3, N=n2, and M=m1. The corresponding probability is P(MAP|e)≈ 

0.4399. 

4.2 Framework and Definitions 

During guideline execution, the execution engine runs a Prolog instance through the JPL API of SWI and 

maps the trigger conditions and the information of task alternatives to predicates, along with the default 

values obtained from the default generation process. Based on the work of (Satoh et al. 2003), a Framework 

of Speculative Computation in Clinical Decision Support Systems with disjunctive constraint processing 

SFCDSS is defined in terms of the following tuple ⟨Σ,ℇ,∆,P⟩ where: Σ is a finite set of constants, an element in 

Σ is a system component identifier; ℇ is a set of predicates called external predicates, when Q is an  atom 



with an external predicate and S is the identifier of a remote information source, Q@S is called an askable 

atom; ∆ is the default answer set and consists in a set of default rules called default rules w.r.t. (w.r.t. is used 

as an abbreviation of with respect to) Q@S, of the following form: Q@S←C||, where Q@S is an askable 

atom and C is a set of constraints called default constraints for Q@S, a default rule w.r.t. Q@S is denoted as 

σ(Q@S); and P is a constraint logic program of the form: H←C||B1,B2,…,Bn., where H is a positive ordinary 

literal called a head of rule R, denoted as head(R), C is a set of constraints called body constraints of R, 

denoted as const(R), with the possibility of const(R)=∅, and each B1,B2,…,Bn is an ordinary literal, or an 

askable literal referred to as body of R, denoted as body(R), with the possibility of body(R)=∅. 

Table 1. The clinical parameters of the TNM classification in the form of trigger conditions along with the representation 

of the assessment procedure in the CompGuide ontology. 

The representation of the case-study in the framework is provided below. The predicate nt(a,b) means that 

b is the task that follows a and is used in the initial query. alt(a,b) indicates that b is an alternative task linked 

to a. tcv(b) means that the trigger conditions for task b are validated. The default constraints for the clinical 

parameters in ∆. The remaining abbreviations are in accordance with the description of the case-study: 
 Σ={pis};  

 ℇ={t,n,m}; 

 ∆ is the following set of rules: 

t(T)@pis←T ∈{t3}||. 

n(N)@pis←N ∈{n2}. 

m(M)@pis←M ∈ {m1}||. 

 P is the following set of rules: 

nt(X,F)← ||alt(X,F),tcv(F). 

tcv(F)←F∈{action1},T ∈ {tis,t0}||t(T)@pis. 

tcv(F)←F∈{action1},T ∈ {t1,t2},N ∈ {n0},M∈ {m0}||t(T)@pis,n(N)@pis,m(M)@pis. 

tcv(F)←F∈{action2},T ∈ {t3},N ∈ {n0},M ∈ {m0}||t(T)@pis,n(N)@pis,m(M)@pis. 

tcv(F)←F∈{action3},T ∈ {t4},N ∈ {n0},M ∈ {m0}||t(T)@pis,n(N)@pis,m(M)@pis. 

tcv(F)←F∈{action4},T ∈ {t1,t2,t3,t4},N ∈ {n1,n2}∈ {m0}||t(T)@pis,n(N)@pis,m(M)@pis. 

tcv(F)←F∈{action5},T ∈ {t1,t2,t3,t4},N ∈ {n0,n1,n2},∈ {m1}||t(T)@pis,n(N)@pis,m(M)@pis. 

alt(question1,F)←F∈{action1}||. 

alt(question1,F)←F∈{action2}||. 

alt(question1,F)←F∈{action3}||. 

alt(question1,F)←F∈{action4}||. 

alt(question1,F)←F∈{action5}||. 

Regarding the execution of the framework, a non askable atom in a goal is reduced into subgoals 

according to the rules above. The execution engine sends a query to the information sources and waits for the 

answers. Upon the return of the answer constraints, they are added to the current constraints and the 

execution is resumed, ending only when the empty goal is found. The following definitions provide a more 

detailed characterization of the framework and its inner workings. A goal has the form of ←C||B1,…,Bn 

where: C is a set of constraints and each of B1,…,Bn is either an atom or an askable atom. A reply set for ℇ is 

a set of rules of the form Q@S←C||, where Q@S is an askable atom, each argument of Q is a variable and C 

is a set of constraints over those variables. A reduction of a goal ←C||B1,…,Bn w.r.t. a constraint logic 



program P, a reply set R and a subgoal Bi is a goal ←C||B' such that: there is a rule R in P∪R so that 

C˄{Bi=head(R)}˄const(R)  is consistent and {Bi=head(R)} is a conjunction of constraints equaling the 

arguments of Bi and head(R); C’=C˄{Bi=head(R)}˄const(R); and B’={B1,…B(i-1),B(i+1),…,Bn}∪body(R). A 

derivation of a goal ←C||B1,…,Bn w.r.t. to a speculative computation constraint framework  ⟨Σ,ℇ,∆,P⟩ and a 

reply set R is a chain of reductions ←C||B1,…,Bn,…,←C’’||∅  w.r.t. P and R where ∅ denotes an empty goal. 

C’ is called an answer constraint w.r.t. the goal, the framework and the reply set. 

The execution of the framework happens in two phases: process reduction phase and fact arrival phase. 

The first is the normal execution of a program by the Speculative Computation module in the execution 

engine, whereas the latter is an interruption phase when an answer arrives from an information source. 

Whenever a choice point in the computation is reached, a new process is generated. Hence, each process 

represents an alternative way of computation, an alternative scenario. In process reduction, an active process 

set is reduced into a new process set. The computation starts with default constraints until the real answers 

arrive. If there is a constraint inconsistent with the default, the respective process is suspended. If there is 

consistency, the process remains active. When an answer arrives, if it entails the default, the process is 

further reduced. Otherwise, it is suspended. In the same way, suspended processes may be resumed if their 

constraints are entailed by the answers. The following definitions provide more detail about the 

characteristics of processes. A process is a tuple ⟨←C||GS,OD⟩ in which: ←C|| is a set of constraints, GS is a 

set of literals to be proved, called a goal set, and expresses the current status of an alternative computation; 

OD is a set of askable atoms, called outside defaults, and represents the assumed information about the 

outside world. An active process is a tuple ⟨←C||GS,OD⟩. A suspended process is a tuple ⟨SG,←C||GS,OD⟩, 
where SG is an askable atom called a suspended atom. A current belief state CBS is a set of rules of the form 

Q@S←C||. It contains the system's belief of the current status of the outside world. At the beginning of the 

computation, the CBS assumes the constraints in the default answer set ∆. Let ⟨←C||GS,OD⟩ be a process 

and CBS be a current belief state. A process is active with respect to CBS if C⊆CBS. A process is suspended 

with respect to CBS otherwise. APS is a set of active processes. SPS is a set of suspended processes. Already 

asked questions AAQ is a set of askable atoms. AAQ is used to avoid asking redundant questions to 

information sources. Finally, returned facts RF are a set of rules of the form: Q@S←C|| where Q@S is an 

askable atom and C is a set of constraints. It represents the answers from the information sources. 

Table 2. Results of the BN learning process for the extraction of defaults. 

 

 

 

 

 

 

 

4.3 Process Reduction Phase 

During the process reduction phase, changes occur in the process set. In the following description of this 

phase, changed APS, SPS, AAQ, CBS and RF are represented as NewAPS, NewSPS, NewAAQ, NewCBS and 

NewRF. The steps for process reduction are: 

 Initial Step: Let GS be an initial goal set. ⟨←C||GS,∅⟩ is given to the proof procedure. That is, 

APS={⟨←C||GS,∅,⟩}. Let SPS=AAQ=RF=∅ and CBS=∆. 

 Iteration Step: Do the following: 

Case 1: If there is an active process ⟨←C||∅,OD⟩ with respect to CBS in APS, then output constraints C  

and return outside defaults OD. 

Case 2: Select an active process ⟨←C||GS,OD⟩ from APS with respect to CBS and select an atom L in 

GS. Let APS’=APS-{⟨←C||GS,OD⟩} and GS’=GS-{L}. For the selected atom L, do the following: 

Case 2.1: If L is a non-askable atom NewPS=APS’∪{⟨←(C˄{Bi=head(R)}˄const(R)  || 

(body(R)∪GS’),OD⟩ | C ˄ {Bi=head(R)}˄const(R) is consistent}. 



Case 2.2: If L is an askable atom, Q@S, then 

o if L∉AAQ, then send the question Q to the system component S and NewAAQ=AAQ∪{L}. 

o if L∈OD, then NewAPS=APS’∪{⟨←C||GS’,OD⟩}. 

o else if (L←Cr ||) ∈ RF, then if C ˄ Cr is consistent then NewAPS=APS’∪{⟨ C ˄ Cr||GS’,OD⟩}, else 

NewAPS=APS’. 

o else if a default constraint Cd  exists then, 

 if C ˄ Cd is consistent then NewAPS=APS’∪{⟨←C˄Cd ||GS’,OD∪{L}⟩}, else NewAPS=APS’. 

 if C ˄¬ Cd is consistent then NewSPS=SPS∪{⟨L,←α || GS’,OD⟩} where C ˄¬ Cd⊨α. 

4.4 Fact Arrival Phase 

Supposing a constraint is returned from an information source S for a question Q@S. The returned constraint 

is passed on to Prolog. The returned constraint is denoted as Q@S←C||. Then, after a step of process 

reduction is finished, the following procedures should be followed: 

 NewRF=RF∪{Q@S←Cr ||} 

 If a default constraint Cd for Q@S exists then: 

If Cr entails Cd: 

o NewAPS=APS-DeletedAPS∪AddedAPS where DeletedAPS={⟨←C||GS,OD⟩∈APS | Q@S∈OD} and 

AddedAPS={⟨←(C˄Cr || GS,OD⟩ |⟨←C||GS,OD⟩∈DeletedAPS and C˄Cr is consistent}. 

o NewSPS=SPS-DeletedSPS∪AddedSPS where DeletedSPS={⟨SG,←(C||GS,OD⟩ ∈SPS | SG=Q@S or 

Q@S∈OD} and AddedSPS={⟨SG,←(C ˄ Cr   ||GS,OD⟩ | ⟨SG,←C||GS,OD⟩∈DeletedSPS and 

Q@S∈OD and C˄Cr is consistent}. 

If Cr contradict Cd: 

o NewAPS=APS-DeletedAPS∪ResumedSPS where DeletedAPS={⟨←C||GS,OD⟩∈APS | Q@S∈OD} 

and ResumedSPS={⟨←(C ˄ Cr) || GS,OD⟩ | ⟨Q@S,←C||GS,OD⟩ ∈ SPS and C˄Cr is consistent}. 

o NewSPS=SPS-DeletedSPS where DeletedSPS= {⟨SG,←C||GS,OD⟩∈ SPS|SG=Q@S  or Q@S∈OD}. 

If Cr does not entail Cd nor contradicts Cd: 

o NewAPS=APS-DeletedAPS∪ResumedSPS where DeletedAPS={⟨←C||GS,OD⟩∈APS | Q@S∈OD} 

and AddedAPS={⟨←(C˄Cr) || GS,OD⟩ | ⟨←C||GS,OD⟩ ∈ DeletedAPS and C˄Cr is consistent} and 

ResumedSPS={⟨←C˄Cr || GS,OD⟩ | ⟨Q@S,←C||GS,O⟩ ∈ SPS and C ˄ Cr is consistent}. 

o NewSPS=SPS-DeletedSPS ∪ AddedSPS where DeletedSPS={⟨SG,←(C ˄ Cr) || GS,OD,IA⟩  ∈  SPS 

| SG=Q@S or Q@S  ∈ OD} and AddedSPS={⟨SG,← (C ˄ Cr) || GS,OD,IA⟩ |⟨SG,←C||GS,OD,IA⟩ 
∈ DeletedSPS and Q@S ∈ OD and C˄Cr is consistent}. 

4.5 Execution Example 

When an atom is reduced, new processes are created by following the rule order unifiable with the atom. The 

selection of the atoms for reduction is done by a newly created or a newly resumed process, and a left-most 

atom. The following are the steps of an execution trace for nt(question1,F), a query to obtain the task 

following Question 1 in the clinical workflow: 
1. Initial Step: 

APS={〈{←||nt(question1,F )},∅⟩ } 

SPS=∅ 

AAQ=∅ 

RF=∅ 

CBS={t(T)@pis←T∈{t3}||,n(N)@pis←N∈{n2},m(M)@pis←M∈{m1}||} 

2. By Case 2.1: 

APS={〈{←||alt(question1,F ),tcv(F)},∅⟩ } 

3. By Case 2.1: 

APS={〈{←F∈{action1}||tcv(F)},∅⟩, 
〈{←F∈{action2}||tcv(F)},∅⟩, 
〈{←F∈{action3}||tcv(F)},∅⟩, 
〈{←F∈{action4}||tcv(F)},∅⟩, 
〈{←F∈{action5}||tcv(F)},∅⟩} 

4. By Case 2.1: 

APS={〈{←F∈{action1},T∈{tis,t0||t(T)@pis},∅⟩, 



〈{←F∈{action1},T∈{t1,t2},N∈ {n0},M∈{m0}||t(T)@pis,n(N)@pis,m(M)@pis},∅⟩ 
〈{←F∈{action2},T∈{t3},N∈{n0},M∈{m0}||t(T)@pis,n(N)@pis,m(M)@pis},∅⟩, 
〈{←F∈{action3},T ∈ {t4},N ∈ {n0},M ∈ {m0}||t(T)@pis,n(N)@pis,m(M)@pis},∅⟩, 
〈{←F∈{action4},T ∈ {t1,t2,t3,t4},N ∈ {n1,n2}∈ {m0}||t(T)@pis,n(N)@pis,m(M)@pis},∅⟩, 
〈{←F∈{action5},T ∈ {t1,t2,t3,t4},N ∈ {n0,n1,n2},∈ {m1}||t(T)@pis,n(N)@pis,m(M)@pis},∅⟩} 

5. By Case 2.2: 

t(T)@pis is asked to pis and since ((t(T)@pis⟵T∈{t3})  ∈ ∆): 

APS={〈{←F∈{action2},T∈{t3},N∈{n0},M∈{m0}||n(N)@pis,m(M)@pis},{t(T)@pis}⟩, 
〈{←F∈{action4},T ∈ {t3},N ∈ {n1,n2}∈ {m0}||n(N)@pis,m(M)@pis},{t(T)@pis}⟩, 
〈{←F∈{action5},T ∈ {t3},N ∈ {n0,n1,n2},M∈ {m1}||n(N)@pis,m(M)@pis},{t(T)@pis}⟩} 

SPS={〈{t(T)@pis,←F∈{action1},T∈{tis,t0}||∅},∅⟩ (*P1) , 

〈{t(T)@pis,←F∈{action1},T∈{t1,t2},N∈ {n0},M∈{m0}||n(N)@pis,m(M)@pis},∅⟩(*P2) , 

〈{t(T)@pis,←F∈{action3},T ∈ {t4},N ∈ {n0},M ∈ {m0}||n(N)@pis,m(M)@pis},∅⟩ (*P3), 

〈{t(T)@pis,←F∈{action4},T ∈ {t1,t2,t4},N ∈ {n1,n2},M∈ {m0}|| n(N)@pis,m(M)@pis},∅⟩(*P4), 

〈{t(T)@pis,←F∈{action5},T∈ {t1,t2,t4},N∈ {n0,n1,n2},M∈{m1}|| n(N)@pis,m(M)@pis},∅⟩(*P5) } 

AAQ={t(T)@pis} 

6. By Case 2.2: 

n(N)@pis is asked to pis and since ((n(N)@pis⟵N∈{n2})  ∈ ∆): 

APS={〈{←F∈{action4},T ∈ {t3},N ∈ {n2},M∈ {m0}|| m(M)@pis},{t(T)@pis,n(N)@pis}⟩, 
〈{←F∈{action5},T ∈ {t3},N ∈ {n2},M∈ {m1}|| m(M)@pis },{t(T)@pis,n(N)@pis}⟩} 

SPS={〈{n(N)@pis,←F∈{action2},T∈{t3},N∈{n0},M∈{m0}||m(M)@pis},{t(T)@pis}⟩(*P6) , 

〈{n(N)@pis,←F∈{action4},T ∈ {t3},N ∈ {n1},M∈ {m0}||m(M)@pis},{t(T)@pis}⟩(*P7) , 

〈{n(N)@pis,←F∈{action5},T ∈ {t3},N ∈ {n0,n1},M∈ {m1}||m(M)@pis},{t(T)@pis}⟩(*P8) , 

P1,P2,P3,P4,P5} 

AAQ={t(T)@pis,n(N)@pis} 

7. By Case 2.2: 

m(M)@pis is asked to pis and since ((m(M)@pis⟵M∈{m1})  ∈ ∆): 

APS={〈{←F∈{action5},T ∈ {t3},N ∈ {n2},M∈ {m1}||∅},{t(T)@pis,n(N)@pis,m(M)@pis}⟩} 

SPS={〈{m(M)@pis,←F∈{action4},T ∈ {t3},N ∈ {n2},M∈ {m0}||∅},{t(T)@pis,n(N)@pis}⟩(*P9) , 

P1,P2,P3,P4,P5,P6,P7,P8} 

AAQ={t(T)@pis,n(N)@pis,m(M)@pis} 

8. (t(T)@pis←T∈{t3}||) is returned from pis and by Fact Arrival Phase: 

CBS remains unchanged. 

t(T)@pis is removed from OD in  the active processes because it is no longer a default. 

APS={〈{←F∈{action5},T ∈ {t3},N ∈ {n2},M∈ {m1}||∅},{t(T)@pis,n(N)@pis}⟩} 

SPS={P7,P8,P9} 

P1,P2,P3,P4,P5 are terminated. 

RF={(T)@pis←T∈{t3}||} 

9. (n(N)@pis←n∈{n2}||) is returned from pis and by Fact Arrival Phase: 

CBS remains unchanged. 

n(N)@pis is removed from OD in  the active processes because it is no longer a default. 

APS={〈{←F∈{action5},T ∈ {t3},N ∈ {n2},M∈ {m1}||∅},{t(T)@pis}⟩} 

SPS={P9} 

P7,P8 are terminated. 

RF={(T)@pis←T∈{t3}||,n(N)@pis←n∈{n2}||} 

10. (m(M)@pis←m∈{m0}||) is returned from pis and by Fact Arrival Phase: 

CBS={t(T)@pis←T∈{t3}||,n(N)@pis←N∈{n2},m(M)@pis←M∈{m0}||} 

The process 〈{←F∈{action5},T ∈ {t3},N ∈ {n2},M∈ {m1}|| ∅},{t(T)@pis}⟩ is terminated. 

Process P9 is resumed. 

SPS=∅ 

APS={〈{←F∈{action4},T ∈ {t3},N ∈ {n2},M∈ {m0}||∅},∅⟩} 

End of execution. 

From steps 1 to 4, the goals in GS are non-askable atoms and successively unify with the head of some 

rule. The effects of Speculative Computation are seen throughout steps 5 to 7. For instance, in step 5, the 

process for action 4 is split into two processes regarding the t(T)@pis literal; one active process using the 

default constraint (t(T)@pis⟵ T ∈{t3}||) and one suspended process using the negation of the default 

constraint.  The same happens for the process of action 5 in the same step. At step 7, it is possible to arrive at 

an active process with an empty goal set by process reduction. By outputting C and OD one gets an 

alternative computation that represents a scenario for a situation of incomplete information. In this case, the 

scenario suggests that the next clinical task should be action 5 for a reasoning exclusively based on defaults. 

Based on this scenario, the physician may prepare for the direction the treatment process will most likely 



follow. As the answers from the information source arrive, the constraints of the active processes and 

suspended processes are revised. If the rule structure were different, there could be more than one process 

with an empty GS. If that is the case, the execution engine presents all the active scenarios. Fact arrival may 

cause active processes to be terminated, or suspended processes to be resumed. The answers from the 

information sources are regarded as definitive. At steps 8 and 9, the active processes contain both returned 

and default constraints. The returned facts may affect the conditional probability distributions of the 

remaining variables, thus requiring a default revision process. Such default revision process is possible with 

the help of the network obtained in the default generation process, by performing a MAP query with the 

returned facts has evidence. The improvement of the Speculative Computation framework with default 

revision is one of the objectives for the work ahead. 

5. CONCLUSIONS AND FUTURE WORK 

The value of this proposal of Speculative Computation is in structuring a scenario generation process that can 

deal with incomplete information, which, as previously mentioned, may have different causes. Such a 

framework provides a physician with a complete layout of the most likely unfolding of the clinical process. 

Moreover, the use of BNs provides advantages that surpass the simple generation of defaults. They enable the 

extraction of a likelihood measure for the setting, which can potentially improve the role of Speculative 

Computation has a reasoning interface to CIGs. Simulation is a growing field in medicine. This may also be 

an area of application for this system. Future work includes the improvement of the framework with the 

possibility of revising defaults. The default generation process also needs improvement because there are 

different dimensions that were not considered, with time being one of them, despite their importance in 

clinical decision making.  
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