
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Webifying the Computerized Execution of Clinical

Practice Guidelines

Tiago Oliveira1, Pedro Leão2,3,4, Paulo Novais1 and José Neves1

1CCTC/Department of Informatics, University of Minho, Braga, Portugal
2 School of Health Sciences, University of Minho, Braga, Portugal

3Life and Health Sciences Research Institute, Hospital of Braga, Braga, Portugal
4 ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal

1{toliveira, pjon, jneves}@di.uminho.pt
2pedroleao@ecsaude.uminho.pt

Abstract. The means through which Clinical Practice Guidelines are dissemi-

nated and become accessible are a crucial factor in their later adoption by health

care professionals. Making these guidelines available in Clinical Decision Sup-

port Systems renders their application more personal and thus acceptable at the

moment of care. Web technologies may play an important role in increasing the

reach and dissemination of guidelines, but this promise remains largely unful-

filled. There is a need for a guideline computer model that can accommodate a

wide variety of medical knowledge along with a platform for its execution that

can be easily used in mobile devices. This work presents the CompGuide frame-

work, a web-based and service-oriented platform for the execution of Computer-

Interpretable Guidelines. Its architecture comprises different modules whose in-

teraction enables the interpretation of clinical tasks and the verification of clinical

constraints and temporal restrictions of guidelines represented in OWL. It allows

remote guideline execution with data centralization, more suitable for a work en-

vironment where physicians are mobile and not bound to a machine. The solution

presented in this paper encompasses a computer-interpretable guideline model, a

web-based framework for guideline execution and an Application Programming

Interface for the development of other guideline execution systems.

Keywords: Computer-Interpretable Guidelines, Clinical Decision Support,

Framework, Web.

1 Introduction

Clinical Practice Guidelines (CPGs) are systematically developed statements that

contain recommendations to assist health care professionals and patients in specific

clinical circumstances [1]. Their main goals are to provide patient specific advice, to

reduce variations in medical practice and to promote cost containment, through efforts

towards the improvement of efficiency and quality. From the appearance of CPGs as

information vehicles of medical consensus groups and evidence-based medicine in the

late 1970s until the present day their use has become widespread, being regarded by

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634729?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jneves%7d@di.uminho.pt

most as useful tools in health care delivery. However, there are some issues that are

continuously raised by the medical community [2]. Many believe that paper-based

guidelines are difficult to consult at the moment of care. Others think they are an in-

strument for cookbook medicine and are not convinced that their use leads to better

care. Fortunately, the advent of Clinical Decision Support Systems (CDSSs) as tools

for information management and providing patient specific recommendations offered

a medium through which guideline appliance can become more acceptable, patient tai-

lored and interactive [3]. These are the features that make CPGs implementable during

care delivery. As will be seen far ahead, Computer-Interpretable Guideline (CIG) im-

plementations appeared in the early 1990s and have proliferated since then.

In the early 2000s the emergence of t Web 2.0 technologies created yet another op-

portunity for the evolution of CIGs. It was a change in how the web is perceived by

both users and developers, accompanied by the adoption of interaction and participation

as fundamental aspects of online activity. The concept of the web as an integrating

platform with rich internet applications offers software above the level of a single de-

vice. For CIGs this translates into the possibility of their being available anywhere,

anytime. This work is an introduction to the CompGuide web-based framework for CIG

execution.

The article is organized as follows. Section 2 provides insights on current CIG de-

velopment and the relevant work done in the field. Section 3 gives a brief explanation

of the model used for CIG representation. The framework is presented in Section 4.

Finally, Section 5 provides some conclusions about the work done so far and future

considerations for the work ahead.

2 Relevant Work

Since the 1990s many researchers have developed and proposed CIG models to rep-

resent guidelines in a computer-interpretable language. Arguably, the most relevant are

Arden Syntax [4], the Guideline Interchange Format (GLIF) [5], Asbru [6], PROforma

[7] and the Standards-based Active Guideline Environment (SAGE) [8]. Apart from

Arden Syntax, which is a model specifically for encoding small fragments of clinical

knowledge in the form of rules, the majority of models employ some kind of task-ori-

ented network to represent and display guideline knowledge. The Task Network Model

(TNM) appears to be the one that best fits the information conveyed by guidelines,

allowing for a clear separation between procedural knowledge, i.e. the relative order of

recommendations, and medical knowledge. A model is usually accompanied with an

execution engine which is responsible for interpreting the clinical constraints and tem-

poral constraints placed on tasks. Tools such as ArezzoTM (for PROforma), the Digital

Electronic Guideline Library (DeGeL) (for Asbru), the Guideline Execution Engine

(GLEE) (for GLIF3) and SAGEDesktop are used to provide recommendations interac-

tively and store execution traces of guidelines represented in their respective models.

Normally, the execution engines comprise a desktop client application that remotely

connects to a server which provides a guideline repository. This tendency for the de-

velopment of desktop applications is evident in Isern and Moreno’s review work [9] on

computer-based execution of CPGs. Despite the virtues of this type of structure and

desktop applications, one is forced to consider that CIG development is not taking ad-

vantage of the web’s full capabilities to increase the reach and availability of CPGs,

their level of dissemination, and their scrutiny. A comparative analysis of current ap-

proaches to CIGs was done in previous work [10], where a comparative table regarding

their main features is provided.

In a recent review article [11], Peleg indicated the development of ubiquitous CIG-

based systems as an emergent trend. Through web-based and smartphone/tablet inter-

faces, these systems should be able to provide ever accessible clinical decision support.

There are projects that have already started to develop their CIG solutions under the

concept of guidelines as services. The work presented herein assimilates these ideas,

and implements a Service Oriented Architecture (SOA) to make available the function-

alities that enable the execution of CIGs. It comprises a guideline representation model,

a server application that provides a set of guideline-related services and a web interface

that makes full use of these services.

Fig. 1. Initial formalization of the NCCN Guideline for Colon Cancer in CompGuide ontology.

A guideline is represented as a network of individuals connected by object properties.

3 Computer-Interpretable Guideline Model

The CompGuide ontology model for CIGs, which is used in this work, is expressed

in OWL-Description Logic (OWL-DL) version 2 [13], and it has been previously pre-

sented in [12]. Protégé was used as an ontology development tool and in the creation

of guidelines. In the ontology, a CPG is represented as an individual of the class Clini-

calPracticeGuideline, which has a set of data properties to express administrative in-

formation and object properties to connect it to individuals of other classes. This set up

may be seen in Fig. 1 which is the initial formalization of the National Comprehensive

Cancer Network (NCCN) Guideline for Colon Cancer according to the ontology. The

TNM is implemented in the form of four classes of tasks: Plan, a collection of tasks

containing any number of other tasks, including other plans; Action, a task performed

by a health care agent, namely a clinical procedure, a clinical exam, a medication rec-

ommendation or a non-medication recommendation; Question, an enquiry task to ob-

tain information about the patient; and Decision, a reasoning task about the state of a

patient which implies the choice between two or more options, yielding a conclusion

which is then used to update the state of the patient.

Similarly to what is expressed in Fig. 1, different tasks are represented by individuals

of the above-mentioned classes. Being a workflow representation, there have to be con-

trol structures to define the relative order between tasks. A guideline has a main Plan

which contains all the tasks. The individual corresponding to this Plan has, in turn, an

object property that points to its first task. Then, the previous tasks always indicate

those which follow. It is possible to define sequential tasks, tasks which should be ex-

ecuted at the same time (parallel tasks) and alternatives in the guideline workflow (al-

ternative tasks). For parallel tasks it is also possible to define synchronization tasks

where the workflow reunifies after splitting.

A CIG model requires the appropriate constructs for the definition of clinical con-

straints. In this regard, CompGuide offers the possibility to define TriggerConditions

which are used to specify the terms regarding the patient state that dictate the choice of

an alternative task. Other clinical constraint classes are PreCondition, which specifies

the conditions that must be met before executing a task, and Outcome, the expected

result of a task in terms of the alterations it produced in the patient state. It is also

possible to define, in Decisions, the options to choose from and rules associated with

them.

Temporal restrictions are also an important element of medical algorithms. Thus,

CompGuide provides Periodicity and Duration classes. The former may be used to ex-

press from when to when a task should be executed and/or its number of repetitions.

Through Periodicity it is also possible to define stop conditions for a cyclic task and, in

the event of these stop conditions holding true, the task the guideline execution should

move to, which is a stop condition task. The Duration indicates how long a task should

last.

4 CompGuide Framework

The CompGuide framework was created in order to provide tools capable of auto-

mating the functionalities offered by the expressiveness of the ontology, to automati-

cally process workflow control structures, clinical constraints and temporal restrictions.

The following briefly introduces the tools and technologies used in the development,

explains the framework’s architecture and addresses the most significant aspects re-

garding guideline execution.

4.1 Tools and Technologies

The tools and technologies which were used were chosen by taking into considera-

tion the requirements of the application’s architecture, namely its strong web compo-

nent, as mentioned in Section 2. Accordingly, web services were used as the preferential

form of communication. Their usage offers expandability and the possibility to improve

services without compromising others. For their lightness and ease of access, Repre-

sentational State Transfer (REST) Web Services were the chosen service model. To

stay aligned with the overall goal, the framework was developed as a Web Application

Programming Interface (Web API) to enhance multi-platform implementation capabil-

ities.

The access to guidelines in the OWL ontology file is done through the Java OWL-

API, developed and maintained at the University of Manchester. It provides an easy

way to create, manipulate and serialize OWL ontologies. The web application that

serves as user interface was developed using Java Server Pages (JSP). The data ex-

changed with the server is in JavaScript Object Notation (JSON), a text-based open

standard for data interchange. It offers simple parsing and, at the same time, is compact

when transferring small amounts of data.

The user, patient and execution information is stored in a MySQL relational data-

base. The applications are deployed in a JBoss application server.

Fig. 2. Architecture of the CompGuide framework with the Core Server connecting the data

storage components to the web application.

4.2 Architecture

The framework’s architecture is depicted in Fig. 2. It is composed of four separate

main components. The communication between the main applications, in particular

with the web application, is enabled by web services. The data storage components

feature a Database model to store user, patient and execution information, and the

Guideline Repository which is an OWL file in order to store CPGs. The Core Server

uses JBoss to provide the services required for guideline execution to external applica-

tions. It is responsible for all the database manipulation and guideline execution control.

It takes advantage of JBoss’s features by implementing session controllers, user authen-

tication and publication of web services (accessible through HTTP methods). Within

the Core Server there are different components which work under the web service layer,

being seamless for the user interface applications. Said components comprise the fol-

lowing modules:

 Authentication: the module provides both authentication and authorization. Two

types of users are defined: admin and user. While a user has full access to manipulate

user and patient information (add, remove and edit) and execute guidelines, an admin

has access only to the guideline execution functionality. The authentication process

is done through a specific web service which sends a token as response. This token

is then used to request the other services until expiring and ensures that the level of

access of the user is respected. The token verification is handled by a filter.

 Guideline Handler: this module does the retrieval of guidelines from the Guideline

Repository. It includes a set of functions to fetch the information for each class on

the guideline ontology. In big hand coded guidelines there are often mistakes, such

as missing components and properties, hence, a syntactic verification tool was cre-

ated so as to guarantee the validity of a guideline in this regard.

 Guideline Execution: guideline execution is done entirely in the Core Server by this

module. If offers two distinct services, both responsible for computing the next task

in the guideline algorithm as well as providing the information featured in it. The

difference between the two is that one of them allows to skip a task if the physician

desires to do so, while the other does not. When the task is executed, the module

stores this event in order to restore the state of the execution to previous moments.

This enables the resuming of a suspended execution trace for a patient.

 Database Handler: it contains all the updates, inserts and selects required by the

Core Server to handle stored data.

Fig. 3. Interface of the guideline management suite showing the active guidelines with the op-

tion to resume their execution and the new guideline ready to be deployed.

The implemented Database model stores all the user and patient information com-

bined with the information produced by the interface application. This allows for the

mapping of user and patient records to every guideline execution instance. The structure

is based on an OpenEHR archetype model [13]. The information is saved as observa-

tions (relevant states of the patient retrieved through Question tasks) and actions (ex-

ams, medication, non-medication recommendations and procedures).

The Web App aims at collecting information from and delivering information to the

user. It provides a control panel which enables the editing of the personal information

of users and patients, and a management suite (as shown in Fig. 3) that offers the pos-

sibility to start and resume the execution of guidelines. When starting a new guideline,

the user must specify the patient to whom the guideline will be applied. The interface

for the guideline execution covers all the tasks mentioned in Section 3, with tasks being

presented as they are computed by the execution engine.

4.3 Aspects of Guideline Execution

In CIG execution, there are essentially three types of verification that execution en-

gines must perform. They are task ordering verifications, clinical constraint verifica-

tions and temporal restriction verifications.

The model allows the representation of different modalities of task performing, from

sequential tasks and parallel tasks to alternative tasks. Mixing these types together,

which may occur in real guideline algorithms, significantly increases the complexity of

the programming necessary to handle these situations. As an example, a parallel task

may be followed by another set of parallel tasks or alternative tasks which, in turn, can

also be followed by other such tasks. This raises issues in keeping their synchronization

points in check. To tackle them, a task controller was developed for storing information

at three levels: the task, the plan, the parallel tasks and the alternative tasks. It ensures

that the execution engine follows a plan and that all parallel and alternative tasks are

synchronized. The patient state is built through Question tasks. The information is col-

lected and stored as an observation. Whenever it is necessary to check trigger condi-

tions for alternative tasks or validate rules in Decision tasks, the values of the clinical

parameters contained in them are searched in observations. A PreCondition is verified

before proposing a task and an Outcome after performing it. StopConditions are verified

at every iteration of a periodic task. Every task entry in the Database has a timestamp.

This is used to store the moment when a specific task is performed and to control the

different temporal restrictions. When a temporal restriction is met, a warning is issued

to the user.

5 Conclusions and Future Work

Leaving the heavier processing, such as task computation, to the server proves to be

an effective implementation of CIG execution, removing the need to exchange big

chunks of information. Comparing with existing systems, the hereby presented archi-

tecture offers some advantages, in particular it provides an API to access an OWL CPG

ontology that other developers can use in their own application, it is easy to access its

functionalities given the service-oriented architecture, and it offers the possibility to

easily develop other user-interfaces. It allows remote guideline execution with data cen-

tralization, more suitable for a work environment where physicians are mobile and not

bound to a machine. Nevertheless the usefulness of such a framework, its development

is still at an early stage. The Core Server requires more modules that implement func-

tionalities that are missing such as guideline creation and terminology services. The

integration of Unified Medical Language System (UMLS) features is within the scope

of the project, as is the mapping of the information produced by guideline execution to

standards of medical information exchange, such as the Health Level Seven (HL7)

Clinical Document Architecture. The original contributions of this work are: a com-

puter-interpretable guideline model which can be used for any type of guideline and

does not require knowledge on any programming languages; a web-based platform for

the execution of clinical practice guidelines in a simple and intuitive way; and an API

that developers can use in their own implementation

In the long run, the information stored by the system may be useful in order to assess

how guidelines cope with situations and if physicians conform to them.

Acknowledgements

This work is part-funded by ERDF - European Regional Development Fund through the

COMPETE Programme (operational programme for competitiveness) and by National Funds

through the FCT – Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science

and Technology) within project FCOMP-01-0124-FEDER-028980 (PTDC/EEI-SII/1386/2012).

The work of Tiago Oliveira is supported by doctoral grant by FCT (SFRH/BD/85291/2012).

References

[1] M. J. Field and K. Lohr, Guidelines for Clinical Practice: From Development to Use.

Washington DC: The National Academy Press, 1992.

[2] S. H. Woolf, R. Grol, A. Hutchinson, M. Eccles, and J. Grimshaw, “Potential benefits,

limitations, and harms of clinical guidelines,” BMJ Br. Med. J., vol. 318, no. 7182, pp. 527–

530, 1999.

[3] A. Latoszek-Berendsen, H. Tange, H. J. van den Herik, and a Hasman, “From clinical

practice guidelines to computer-interpretable guidelines. A literature overview.,” Methods

Inf. Med., vol. 49, no. 6, pp. 550–70, Jan. 2010.

[4] M. Samwald, K. Fehre, J. de Bruin, and K.-P. Adlassnig, “The Arden Syntax standard for

clinical decision support: Experiences and directions.,” J. Biomed. Inform., Feb. 2012.

[5] M. Peleg, A. A. Boxwala, O. Ogunyemi, Q. Zeng, S. Tu, R. Lacson, E. Bernstam, N. Ash,

P. Mork, L. Ohno-Machado, and others, “GLIF3: the evolution of a guideline representation

format.,” in Proceedings of the AMIA Symposium, 2000, p. 645.

[6] M. Balser, C. Duelli, and W. Reif, “Formal Semantics of Asbru – An Overview,” Science

(80-.)., 2002.

[7] E. Vier, J. Fox, N. Johns, C. Lyons, A. Rahmanzadeh, and P. Wilson, “PROforma : systems,”

Comput. Methods Programs Biomed., vol. 2607, no. 97, 1997.

[8] P. Ram, D. Berg, S. Tu, G. Mansfield, Q. Ye, R. Abarbanel, and N. Beard, “Executing

clinical practice guidelines using the SAGE execution engine.,” Stud. Health Technol.

Inform., vol. 107, no. Pt 1, pp. 251–5, Jan. 2004.

[9] D. Isern and A. Moreno, “Computer-based execution of clinical guidelines: a review,” Int.

J. Med. Inform., vol. 77, no. 12, pp. 787–808, 2008.

[10] T. Oliveira, P. Novais, and J. Neves, “Development and implementation of clinical

guidelines: An artificial intelligence perspective,” Artif. Intell. Rev., Mar. 2013.

[11] M. Peleg, “Computer-interpretable clinical guidelines: A methodological review.,” J.

Biomed. Inform., vol. 46, no. 4, pp. 744–63, Aug. 2013.

[12] T. Oliveira, P. Novais, and J. Neves, “Representation of Clinical Practice Guideline

Components in OWL,” in Trends in Practical Applications of Agents and Multiagent

Systems SE - 10, vol. 221, J. B. Pérez, R. Hermoso, M. N. Moreno, J. M. C. Rodríguez, B.

Hirsch, P. Mathieu, A. Campbell, M. C. Suarez-Figueroa, A. Ortega, E. Adam, and E.

Navarro, Eds. Springer International Publishing, 2013, pp. 77–85.

[13] P. Gutiérrez, “OpenEHR-Gen Framework,” 2010.

