
Improving Modularity, Interoperability and

Extensibility in Ambient Intelligence

Marco Gomes, Davide Carneiro, André Pimenta, Milton Nunes, Paulo Novais,
and José Neves

CCTC/DI - Universidade do Minho
Braga, Portugal

{marcogomes,dcarneiro,apimenta}@di.uminho.pt,pg22797@alunos.uminho.pt,

{pjon,jneves}@di.uminho.pt

Abstract. Ambient Intelligence (AmI) and its related �elds emerged
some years ago with the exciting promise of pervasive intelligence, magic
interaction mechanisms, and everywhere availability. This promise would
be materialized in homes that knew all about our habits and preferences,
proactive workplaces to support people's work or personal digital assis-
tants to improve our daily living in all aspects possible. This somewhat
utopian vision, expected by many to have already taken place, remains
unaccomplished and far from it. Many challenges still lay ahead which
delayed and continue to delay the expected technological unravelling. In
this paper we focus on the immense technological challenges of designing
and implementing AmI Systems. Speci�cally, we propose a technological
approach that will contribute to overcome some of these challenges by
making developed AmI solutions more modular, interoperable, and ex-
tensible. This will result especially advantageous for large development
teams or teams that span multiple institutions.

Keywords: Ambient Intelligence, Interoperability, Switchyard

1 Introduction

Ambient Intelligence is one of those sub-�elds of Arti�cial Intelligence that stim-
ulates our creativity. It results very easy for us to imagine scenarios in which
the artefacts around us have intelligence or consciousness, constantly interact
with us in a natural way and are always available. Some of these examples have
moved from the imagination of book writers and movie producers to the paper
or screen, to result in pieces describing a possible and very appealing future,
one of the most popular examples being the futuristic world depicted in the
�lm Minority Report. Here, Captain John Anderton interacts with a series of
futuristic interfaces and intelligent tools to assist in his �ght against (still to-be-
committed) crimes. In the books, examples of an exciting future can be found,
for example, in the �ctional universe of The Hitchhiker's Guide to the Galaxy.
In this world doors, for instance, are conscious (although their single ability is
to feel valued when people use them).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634679?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Marco Gomes et al.

While the second example is extracted from a humorous piece, the �rst allows
to think quite seriously on the future that awaits us. Hopefully. Indeed, the actual
broad implementation of even the simplest examples seen in these pieces seems
still distant in time. Moving from �ction to more serious grounds, the same issue
exists: the envisioned new world fostered by Ambient Intelligence and "foreseen"
by Bogdanowicz et al. [7] is still far from reality.

Indeed, many of the technological requirements and challenges pointed out
by the authors still remain nowadays or are only partly solved. Meanwhile, as
depicted in the following section, new challenges emerge that need to be ad-
dressed for the sake of the reliability and acceptance of such systems. This
paper makes an analysis of these challenges, with a particular focus on tech-
nological challenges. We propose an approach based on the novel SwitchYard
framework to facilitate the development of more modular and extensible AmI
systems. The main aim is to empower development e�orts by distributed teams
and the technology-independent integration of di�erent systems or modules, to
foster the development of AmI.

2 Current Challenges in AmI

As stated in the introductory section, there are several challenges that are, still
today, holding AmI development back. One of these challenges, often disregarded
by computer scientists (who form the backbone of AmI development) concerns
privacy, identity and security issues. In [4] the authors make a thorough analysis
of 70 AmI projects, principally in Europe, concerning these issues. They conclude
that in general, current projects present a rather too sunny view of our tech-
nological future, ignoring or postponing dealing with some pressing issues. The
authors also make an interesting reference to the SWAMI project (Safeguards
in a World of Ambient Intelligence) which, against this trend, has constructed
what they deemed "dark" scenarios [8], to show how things can go wrong in AmI
and where safeguards are needed. As Rouvroy puts it, the challenge here is to
preserve the individual freedom to build one's own personality without excessive
constrains and in�uences while have control over the aspects of one's identity
that one projects on the world [6].

Marzano, on a di�erent view, looks at the cultural implications of an unreg-
ulated or indiscriminate growth of AmI, making a parallel with the industrial
revolution [1]. As, at the time, more was (later proved to be) not necessarily
better (take for instance consequences such as the pollution), right now, smarter

may also not be necessarily better. Indeed, we may simply not want a smart
juicer or a talking toaster.

But let us focus on the technological challenges that are still ahead. One the
one hand, we have the challenges that are related with the physical constraints
and nature of the necessary hardware. In [3] the authors examine the intricate
relationship between the growing need for more computational and communica-
tional power to support increasingly complex services and, at the same time, the



Improving Ambient Intelligence 3

need for smaller, more lightweight and e�cient devices. It is easy to understand
how the objectives of these two �elds con�ict.

Another issue holding back a faster development of AmI is the scatter of
research e�orts. Indeed there are currently many di�erent institutions doing re-
search on very similar topics. When these institutions want to conciliate e�orts
they may �nd it di�cult to do so since they use di�erent technologies, standards
or approaches. We believe that facilitating this integration and interoperability
could result in a coming closer of di�erent teams, whom could join e�orts and
more e�ciently work together for the same goal. With this objective in mind,
we are developing an open architecture to support an AmI system: open not
only in the sense that it relies on open software but also, and most importantly,
that it can easily integrate external services, as well as provide its own to exter-
nal requesters. This architecture and its main advantages are described in the
following sections.

3 Architecture

In our pursuit to develop an architecture that covers the main AmI technological
needs, we �rst de�nite it at a conceptual level. The proposed architecture is log-
ically divided into several packages that encapsulate a set of features and tasks.
Figure 1 presents its high-level view, detailing the �ve packages that compose
the system.

Fig. 1. High-level view of the architecture.

The Runtime Environment is the main component of the architecture, where
system operations are executed. It is also through this environment that the
remaining components are accessed. The Service component, executed by the
Runtime Environment, contains all services of monitoring and data collection
through the use of sensors, and is responsible for encapsulating all external
resources collected by the system, represented by the External Resources. The
tasks carried out by the Runtime Environment are also supported by queries



4 Marco Gomes et al.

to components Knowledge Management and Intelligent Component. Knowledge
Management supports the management of information and knowledge collected
by the system. The Intelligent Component contains components of Intelligent
Systems/Arti�cial Intelligence used in this architecture for data processing.

The Runtime Environment corresponds to the core component of the archi-
tecture where the main features are executed. It is also divided in two subcom-
ponents, which are nonetheless interconnected: the Runtime Management and
Runtime Platform. The �rst is a platform for managing processes running on
the system. It is composed of a Data Manager that contains an interface to
link the Knowledge Manager, an Execution Manager responsible exclusively for
the management of the execution of system processes and the Service Directory
that contains all information from the execution of services in the architecture. It
should also be noted that the Runtime Management has an interface to connect
the Service component. The Runtime Platform is a platform for the execution
of the Runtime Environment. This is composed of a Service Bus that, through
the interface provided by the Runtime Management, establishes communication
between the two subcomponents and also a Service Execution Engine that rep-
resents the execution engine services in the architecture.

AmI systems are commonly described as electronic environments that seam-
lessly interact and adapt to human needs, in which people are surrounded by
intelligent and intuitive interfaces embedded in all kinds of objects. To take full
advantage of the information gathered ubiquitously from various sources in the
environment there is a need for a software infrastructure that allows an easy
integration, promotes interoperability, and focuses on extensibility. Considering
these aspects, in this work we present an infrastructure to support an e�cient
approach for the development of AmI applications, following an approach based
on Service Oriented Architectures (SOAs). Indeed, SOAs are being increasingly
adopted in both the academic and industrial arenas, even to integrate Multi-
agent Systems [2].

The more appropriate way of doing so is to adopt a Service-Component
Architecture (SCA): a group of OASIS speci�cations that has become an indus-
try standard. It is intended for the development of applications based on SOA,
which de�nes how computing entities interact to perform work for each other.
Originally published in November 2005, SCA is based on the notion that all the
functions in an system should exist in the form of services that are combined into
composites to address speci�c business requirements. In other words, it allows
to build service-oriented applications as networks of service components. SCA
is used for building service components, assemble components into applications,
deploy to (distributed) runtime environments and reuse service components built
from new or existing code using SOA principles. This approach is advantageous
in AmI for the following reasons:

� Interoperable. Provides loose coupling allowing to integrate without need to
know how components are implemented. Components can be written using
any language, and can use any communication protocols and infrastructure



Improving Ambient Intelligence 5

to link them, making it easier to integrate components to form composite
applications.

� Maintainable. Composition of solutions is clearly described as declarative
application of infrastructure services. Simpli�cation for all developers, inte-
grators and application deployers.

� Flexibility of Development. Service Components are easier to develop be-
cause the semantics of each independent Service Component are signi�cantly
less complex than the overall of a single, (relatively large) monolithic appli-
cation; each Service Component can be developed by a di�erent team of
developers, each of whom focus only on their component without having to
know the details of work done by others. Components can easily be replaced
by other components and services can be easily invoked either synchronously
or asynchronously.

� Reuse. Since each Service Component has well-de�ned interfaces, each com-
ponent can be developed, tested and debugged independently of the other
components. This not only speeds up project implementations but, in the
case of well-designed Service Components, also leads to signi�cantly en-
hanced reuse.

� Dynamic Deployment and Runtime Modi�cation/Replacement. Service Com-
ponents can be dynamically deployed to remote nodes at runtime, and com-
ponents within a process can be easily replaced by new or updated com-
ponents, further reducing the time taken to modify or change an existing
process in response to business requirements.

� Con�guration Management and Version Control. Service Components facil-
itate version control and dynamic con�guration management, allowing �ne-
grained control over deployments across the enterprise.

SCA provides a good basis for AmI applications [9], it is in line with our archi-
tectural model and it ful�ls major AmI deployment requirements by promoting
late bindings at deploy time and runtime with the support of several relevant
technologies including POJO, SOAP, REST, BPMN, BPEL, JMS, Camel or
Rules services. But most of all it is currently supported by several major com-
mercial and open source products such as Jboss Switchyard, IBM WebSphere or
TRENTINO (C++).

From the several available implementations of SCA we have chosen JBoss
SwitchYard since it is an open source solution in a relative mature state, and
also enhances some of the SCA advantages. Speci�cally, Switchyard advocates
transparency when running a service during its whole lifecycle. Important aspects
such as connectivity, orchestration and routing do exist on SwitchYard in a
modular format, which means one can deploy them in an independent way. Using
a SwitchYard graphical user interface (Fig. 2), one can build visual models of
the applications, that are meant to improve the software engineer's ability to
comprehend and communicate the full composition of their applications and
also to speed up development and integration projects.



6 Marco Gomes et al.

Fig. 2. Application composition using SwitchYard graphical user interface.

4 Case-Study of Context-aware Multimodal

Communication system

This case study describes an application in which contextual information about
the user is collected and used to detect states of stress and fatigue. The purpose
is to enrich communication processes allowing for its users to communicate in
ways that are closer to face-to-face communication. The estimation of stress
and fatigue are based on the transparent analysis of the user's behaviour and
interaction patterns [5]. In gathering data the following sensors were involved:

� Accelerometer - These devices, placed on the chair, keyboard and mouse,
measure how the user is moving and the amount of force he is applying in
the peripherals;

� Mouse and Keyboard - These devices provide information about how
the user interacts with the peripherals (e.g. velocity of the mouse, typing
rhythm, number of mistakes).

� Microphone - Microphones are used to measure the amount of noise in the
vicinity of the user, allowing to perceive their social environment.

� Video Camera - An estimation of the amount of movement is calculated
from the video camera. The image processing is based on di�erence tech-
niques to calculate the amount of movement between two consecutive frames.



Improving Ambient Intelligence 7

In order to materialize the architecture we developed a concrete instance
for this speci�c application. All the described sensors are encapsulated by ser-
vices running locally. Each of these services exposes di�erent features using a
Web Service interface. These services were integrated using SwitchYard allow-
ing the service orchestration to support the automation of system processes by
loosely coupling services across di�erent applications. There is a clear separa-
tion between process logic andWeb Services, providing the system with increased
�exibility.

The main process was modelled using Business Process Modelling Notation
(BPMN). In this standard (Fig. 3), a consumer service invokes a process �ow via
the service interface. The orchestration engine invokes services to process various
service which in turn invoke further service requests until the work�ow process
is completed and results are provided to the service consumer. The service or-
chestration engine, a component of the SwitchYard, handles the overall process
�ows, calling the appropriate web services and determining the next steps to
complete.

Fig. 3. The "camcof" process, view through BPMN

With this architecture it is possible to orchestrate the acquisition, transfor-
mation, and classi�cation processes used to collect and to extract meaningful
information. It is also possible to use di�erent services (encapsulating di�er-
ent and disperse sensors), simultaneously or individually, coordinating all the
elements of the main process.

5 Conclusions

Ambient Intelligence hasn't developed with the expected pace due to a number
of challenges that were pointed out at the beginning of this paper. Many of
these challenges still exist nowadays and include the di�culty in integrating and
incorporating di�erent approaches as well as the di�culty in developing highly
modular systems that can be easily con�gurable and extended at need.



8 Marco Gomes et al.

In this paper we presented an approach targeted at such scenarios. One that
allows to build AmI systems in a decoupled way, without technological con-
straints, relying on a service-oriented approach. This approach is also distributed
in the sense that services can be running anywhere in the world. For the man-
ager, this is completely transparent. Nonetheless, high-level functionalities can
be built when these services are combined using appropriate rules.

We believe that approaches such as this will not only make it easier to build
larger-scale AmI systems but also increase the opportunity for researchers to
more easily integrate their work, leading to more complex and AmI systems,
with far richer functionalities. Moreover, services scattered around the world
can transparently be used to achieve this goal in a far easier way.

Acknowledgements

This work is part-funded by ERDF - European Regional Development Fund
through the COMPETE Programme (operational programme for competitive-
ness) and by National Funds through the FCT - Fundação para a Ciência e a
Tecnologia (Portuguese Foundation for Science and Technology) within project
FCOMP-01-0124-FEDER-028980 (PTDC/EEI-SII/1386/2012).

References

1. Aarts, E. H., Marzano, S. (Eds.). The new everyday: Views on ambient intelligence.
010 Publishers. (2003)

2. Aguero, J., Rebollo, M., Carrascosa, C., Julián, V.: MDD-Approach for developing
Pervasive Systems based on Service-Oriented Multi-Agent Systems. Advances in
Intelligent Computing and Arti�cial Intelligence Journal, Vol 1, No 6 (2013)

3. De Man, H.: Ambient intelligence: gigascale dreams and nanoscale realities. In
Solid-State Circuits Conference. Digest of Technical Papers. ISSCC. IEEE Inter-
national, pp. 29�35, IEEE. (2005)

4. Friedewald, M., Vildjiounaite, E., Punie, Y., Wright., D.: The Brave New World
of Ambient Intelligence: An Analysis of Scenarios regarding Privacy, Identity and
Security Issues. Security in Pervasive Computing. Proceedings of the third Inter-
national Conference, SPC 2006, York, UK, April 18-21, 2006. Ed. Clark, J. A. et
al.. Heidelberg, Berlin: Springer, pp- 119�133 (2006)

5. Pimenta, A., Carneiro, D., Novais, P., Neves, J.: Monitoring Mental Fatigue
through the Analysis of Keyboard and Mouse Interaction Patterns. In Hybrid
Arti�cial Intelligent Systems (pp. 222-231). Springer Berlin Heidelberg (2013)

6. Rouvroy, A.: Privacy, data protection, and the unprecedented challenges of ambient
intelligence. Studies in ethics, law, and technology, 2(1) (2008)

7. Bogdanowicz, M., Scapolo, F., Leijten, J., Burgelman, J. C.: Scenarios for ambi-
ent intelligence in 2010 (pp. 3�8). O�ce for o�cial publications of the European
Communities (2001)

8. Wright, D.: The dark side of ambient intelligence. info, 7(6), pp. 33�51 (2005)
9. Giner, P., Pelechano, V.: An Architecture to Automate Ambient Business System

Development. PProceedings of the European Conference on Ambient Intelligence.
Heidelberg, Berlin: Springer, pp-240�257 (2008)


