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Abstract. With the growing popularity of micro-task crowdsourcing platforms, 

a renewed interest in the resolution of complex tasks that require the coopera-

tion of human and machine participants has emerged. This interest has led to 

workflow approaches that present new challenges at different dimensions of the 

human-machine computation process, namely in micro-task specification and 

human-computer interaction due to the unstructured nature of micro-tasks in 

terms of domain representation. In this sense, a semi-automatic generation envi-

ronment for human-computer micro-task workflows from domain ontologies is 

proposed. The structure and semantics of the domain ontology provides a com-

mon ground for understanding and enhances human-computer cooperation. 
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1 Introduction 

With the emergence of micro-task crowdsourcing platforms such as CrowdFlower 

and Mechanical Turk, human computation has gained renewed interest in the resolu-

tion of complex tasks that require the cooperation of human and machine participants 

[1–6]. This interest has led to several approaches built upon workflows of micro-

tasks. 

Micro-task workflows present new challenges at different dimensions of the hu-

man-machine computation process, namely in micro-task specification and human-

computer interaction [1, 2]. The unstructured nature of micro-tasks in terms of do-

main representation makes it difficult (i) for task requesters not familiar with the 

crowdsourcing platform to build complex micro-task workflows and (ii) to include 

machine workers in the workflow execution process [7]. Furthermore, it is seldom 

explicitly defined that while some of the micro-tasks in the workflow are better per-

formed by humans, others are better performed by a machine. 

Obrst et al. [8] state that ontologies “represent the best answer to the demand for 

intelligent systems that operate closer to the human conceptual level”. Considering 

this, this paper presents a semi-automatic generation environment for human-

computer micro-task workflows from domain ontologies. The inherent process relies 
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in the domain expertise of the requester to supervise the automatic interpretation of 

the domain ontology. The structure and semantics of the domain ontology enhances 

human-computer cooperation and allows the automatic generation (with included 

contextual information) of preliminary micro-task worker interfaces using a markup 

language.  

This paper is organized as follows. Section 2 provides some background 

knowledge on micro-task workflow approaches and ontologies. It is followed by, in 

section 3, the presentation of the overall architecture behind the proposed micro-task 

workflow generation approach. Section 4 presents the generation process through a 

running example. Finally, the conclusions are given along with some remarks on the 

future directions of this work.  

2 Background Knowledge 

2.1 Human Computation and Micro-Task Workflows 

Several experiments in different domains have shown that human computation (in 

particular micro-task crowdsourcing) has great potential for solving large scale prob-

lems that are often difficult for computers to solve automatically, on their own [9]. 

These problems usually require a degree of creativity or just common sense plus some 

background knowledge [10, 11]. The interpretation and recognition of images and 

natural language are two examples of these kinds of problems. 

Crowdsourcing platforms like Mechanical Turk, CloudCrowd, ShortTask and 

CrowdFlower are widely used for tasks such as (i) categorization and classification, 

(ii) data collection (e.g., finding a website address), (iii) moderation and tagging of 

images, (iv) surveys, (v) transcription from multimedia content (e.g., audio, video and 

images), and (vi) text translation. 

In particular, micro-task workflow approaches like CrowdForge, Jabberwocky and 

Turkomatic employ divide and conquer and map reduce strategies to build workflows. 

This usually involves workflows that include tasks for (i) the partitioning of the com-

plex task (partition tasks), (ii) the execution of the partitioned tasks (map tasks), and 

(iii) the aggregation of results (reduce tasks). 

However, the input given by workers, in several cases, is unstructured and in natu-

ral language. Furthermore, micro-task interfaces are built using markup languages 

that contain little if no meta-data, making it difficult for machine micro-tasks to be 

included in the workflow.  

The terminology employed in the crowdsourcing domain often varies from plat-

form to platform. In the context of this paper, the following terms and entities are 

considered: 

 Worker – a person that solves tasks; 

 Community – a set of workers; 

 Job – a complex task or workflow of tasks; 

 Task (or micro-task) – a definition of a concrete computation or operation that may 

be performed by workers; 



 Requester – an entity (typically a person) that submits jobs; 

 Unit – an input of a task; 

 Reference Unit – an input of a task for which the output is already known; 

 Assignment – an assignment of a unit to a single worker; 

 Answer – the given solution of a worker to a specific assignment; 

 Workflow – the continuity of work by passing the output of one task as the input of 

another. 

2.2 From Domain Ontologies to Micro-Task Workflows 

In this work, Description Logics (DL) knowledge bases and ontologies are consid-

ered. A DL knowledge base is defined as containing both a TBox (terminological 

box) and an ABox (assertion box), where the TBox contains all the concepts and rela-

tionships that define a specific domain, and the ABox contains the instances or indi-

viduals defined according to the elements in the TBox [12]. It is assumed that ontolo-

gy is synonym of TBox. 

In the TBox, a set of concepts (or classes) and properties exist. Each concept has 

associated property restrictions that define the necessary, and necessary and sufficient 

conditions for an individual to be an instance of the concept. These conditions may be 

enforced according to two main types of properties: object properties and data-type 

properties. While object properties relate instances (or individuals) with other instanc-

es, data-type properties relate instances with “primitive” type values (e.g., string, 

integer, double, date, time). 
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Fig. 1. The article translation ontology (TBox only) with ABox example. 



Consider the translation ontology presented in fig. 1, where each rectangle repre-

sents an instance and each ellipse represents a class. Arrows in the TBox represent 

property restrictions and dashed arrows are actual property relationships in the ABox. 

3 Three-Layered Workflow Generation 

Micro-tasks, whether they involve physical actions or not, can be seen as a process 

that, in a specific context, results in the emergence of new data (answers) from the 

presentation of other particular pieces of data (units) to a worker. Analogously, a 

workflow of micro-tasks is the continuous ordered increment of new (different types 

of) data, in a specific context or domain. 

The context (or domain) can be defined and delimited through domain ontologies, 

modelling all input and output data. Thereafter, a micro-task can be considered to be 

the instantiation of classes and specification of new relationships between instances 

according to the domain ontology. A workflow of micro-tasks is then considered as 

the incremental instantiation of the domain ontology according to its structure and 

semantics. 

In order to harness the power of ontologies in micro-task workflows, an iterative 

semi-automatic workflow generation process is proposed. This process is based in a 

layered architecture that defines the set of operations that can be performed by micro-

tasks on top of the ontology data (see fig. 2). 

1. Request Layer

2. Request Pattern Layer

3. Workflow Strategy Layer

Task Context

Workflow 
Context

In
cr

ea
se

d
A

u
to

m
at

io
n

In
cr

ea
se

d
C

o
n

tr
o

l

 

Fig. 2. The layered architecture of the generation process. 

The request layer defines the set of possible atomic operations that can be per-

formed over the ontology and workflow data. In this layer, a low-level structural 

analysis of the ontology is performed. 

A request pattern, in the request pattern layer, is a set of requests associated to a 

specific ontological pattern [13, 14]. Request patterns often depend on the employed 

ontology construction methodology [15]. In some cases, though, they may also de-

pend on the domain of the ontology. In the request pattern layer, mostly high-level 

structural and low-level semantic analyses of the ontology are performed. 

The workflow strategy layer is an abstraction over the previous base layers. Each 

workflow strategy represents a subset of requests and request patterns, often found in 

specific workflow domains. They automate the process by restricting the set of possi-

ble choices presented to the requester during the workflow extraction process. For 

instance, a workflow strategy for recommendation workflows could restrict the possi-

ble choices of the requester through its set of possible request patterns and requests. 



Through the workflow strategy layer, a high-level semantic analysis of the ontology is 

performed. 

3.1 The Request Layer 

A request is always associated with a workflow step and defines the operation to be 

performed. Multiple types of requests can be performed. They can be classified ac-

cording to their operation (see fig. 3) and structure. A request can be of multiple non-

disjoint types. 
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Fig. 3. Classification of requests according to their operation. 

In terms of operation, there are two main request types: (i) manipulation requests and 

(ii) control requests. On the one hand, manipulation requests (i) represent explicit 

machine or human micro-tasks in the workflow that perform some kind of operation 

over ontological instances in the ABox, according to the TBox. These can be creating 

instances and specifying their properties (Create & Fill Request), just specifying or 

completing the properties of existing instances (Fill Request), or filtering existing 

instances (Filter Request). On the other hand, control requests (ii) (e.g., conditional 

blocks, cycles) establish flow control components in the workflow. 

Table 1. Structure of a request and corresponding classification. 

Symbol Component (Structure) Classification 

  An ontology class (or concept) Concept Request 

     A set with at least one restriction Restricted Request 

  A path of relations (property restrictions) Path Request 

      A non-built relation in the path Relation Request 

   At least one link path Link Path Request 

  A cycle Cycle Request 

     A condition Conditional Request 

 



A request is a tuple                              as presented in table 1. 

The existence of each of the presented components is directly related to the classifica-

tion in table 1. The ontology class defines the object of the operation. For example, 

new instances of a specific class can be requested through a Create & Fill Concept 

Request. 

In some situations, the ontology class is not expressive enough to restrict the set of 

instances to be affected or created by the operation. A Restricted Request specifies 

property values that must be present for instances of the ontology class. If an instanti-

ation is performed, these property values will automatically be set and enforced. Oth-

erwise, if instances are already present, those that do not contain these property values 

will be filtered from the operation. 

Often, the target of a request is not the whole set of instances of an ontology class, 

but only those related to instances of other classes and so on. These relations form a 

path of relationships between named classes that represent the context in which the 

operation will be performed. Requests that include a path from the ontology graph, 

typically ending in the requested ontology class, are Path Requests. 

Path Requests contain relations that are either missing (one, at most) or present in 

the built graph. If a new relation (not in the built graph) is requested, the request is 

classified as a Relation Request (see fig. 4). 
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Fig. 4. Structure of a Relation Link Path Request (k and * are fixed and multiple cardinality 

values, respectively). 

While Path Requests and Restriction Requests capture operations upon all related 

entities surrounding the ontology class (or its context), it may also be useful to instan-

tiate secondary paths in order to establish relationships that, otherwise, would be lost. 

These secondary paths are called link paths, as depicted by the link path area in fig. 4. 

Link paths may contain the instantiation of at most one class, and the specification 

of at most two new relations. If two new relations are required, at least one must have 

a known fixed exact cardinality. If this is not verified, a combinatorial explosion of 

relationships problem, which falls outside the context of an atomic operation, occurs. 

Without link paths, additional secondary paths to instances generated by a specific 

request would not be possible, since it is not possible to select only instances generat-

ed by a previous request. 



3.2 The Request Pattern Layer 

The request pattern layer establishes a correspondence between an ontology pattern 

and a set of requests. These correspondences are called request patterns and provide 

automation over the direct usage of requests. 

Ontology patterns can be found in several different ontologies describing a variety 

of domains. In the case of micro-task workflows, several approaches exist that try to 

employ divide and conquer or map-reduce strategies. These strategies focus on divid-

ing the task at hand, executing the resulting units, and assembling the results. Such 

strategies can also be employed through the definition of partition and assembly re-

quest patterns. 

Both partition and assembly request patterns can be defined through meronymic 

(part-of relation) ontology patterns. While the partition request pattern picks requests 

using a top-down search following meronymic relationships, the assembly request 

pattern picks requests using a bottom-up search. 

3.3 The Workflow Strategy Layer 

The workflow strategy layer aggregates multiple request patterns, further automating 

the workflow construction process. 

Using both the partition and assembly requests patterns previously described a di-

vide and conquer workflow strategy can be specified. Considering that the input in-

stances supplied by the requester have meronyms, for which an output that can be 

assembled exists, both request patterns can be employed to form a full workflow. Fig. 

5 depicts the application of the divide and conquer workflow strategy for a translation 

ontology. 
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Fig. 5. Application of the divide and conquer workflow strategy with both partition and assem-

bly request patterns. 



4 The Generation Process 

The workflow generation process consists in four steps: (i) ontology and input speci-

fication, (ii) input pre-processing, (iii) iterative construction and (iv) post-processing. 

Each of these steps will be described through a running example, which consists in 

the construction of a workflow for translating articles or papers. 

During both the iterative construction step (iii), a task pattern detection algorithm, 

which acts according to the defined strategy, is triggered. If a pattern (or sequence of 

patterns) is detected, the requester may choose to apply the pattern, automatically 

adding several micro-tasks to the workflow. 

4.1 Input Specification and Pre-processing 

The process starts with the ontology and input specification (i) by the requester. The 

input includes the initial ABox (instances and relationships) fed to the workflow and 

the ontology describing the domain (e.g., the translation ontology in fig. 1). Typically, 

input instances contain data describing the initial task that will be supplied to workers. 

From these data, two graphs are extracted in the input pre-processing step (ii): the 

ontology graph and the built graph. The ontology graph is fully instantiated during 

this step and contains nodes that represent named classes in the ontology. Each edge 

represents a property restriction that relates two named classes and contains relevant 

information about the relationship such as the type of restriction (e.g., existential 

quantification, universal quantification, cardinality) and corresponding cardinality. 

The built graph will contain all classes and relations requested during the iterative 

construction step (iii). The built graph is partially instantiated during this step with the 

classes and properties found in the input data. 

For instance, the input in table table 2 will result in a built graph containing the 

classes Article and ArticleTranslation, and the object property restriction originalText 

relating ArticleTranslation with Article. 

Table 2. Input statements/triples for the translation ontology use case. 

Instance Property Value 

onto:paperTranslation1 rdf:type onto:ArticleTranslation 

onto:paperTranslation1 onto:originalLang “Portuguese” 

onto:paperTranslation1 onto:translatedLang “English” 

onto:paperTranslation1 onto:originalText onto:paper1 

onto:paper1 rdf:type onto:Article 

onto:paper1 onto:lang “Portuguese” 



4.2 Iterative Construction 

Using both built and ontology graphs, the iterative construction step (iii) presents the 

requester with a set of possible choices (requests, request patterns or workflow strate-

gies). As the requester iteratively picks one of these choices, new classes and relations 

(present in the chosen requests) are added to the built graph. Ultimately, the built 

graph becomes a clone of the ontology graph.  

As requests are picked by the requester, they are added to the request graph. Edges 

in this graph define the dependencies between requests. 

During the first iteration of the article translation example, the requester can opt to 

either request the entire translation of the article (using only the top-level classes 

Translation and Text, or ArticleTranslation and Article), or to partition the article 

before requesting translations. This partitioning of the task may be useful for articles 

with many paragraphs. 

For the entire translation of the articles given as input, one request would suffice, 

that is, a Create & Fill request for Article instances related to ArticleTranslation 

through the onto:translatedText property. Notice that, during the workflow construc-

tion, the requester deals only with the TBox (ontology classes and properties). The 

ABox (instances) will only be handled during the execution of the workflow. The 

initial input ABox is an exception to this rule, with the purpose of facilitating the 

specification of the input TBox. 

If the requester opts to partition the article into paragraphs, two possible request 

choices are presented (see table 3). 

Table 3. Possible requests for the ontology class Paragraph in the translation example - first 

iteration of the iterative construction step (new relation in path in bold). 

# Operation Path 

1 Create & Fill - 

2 Create & Fill ArticleTranslation - originalText - Article - part - Paragraph 

 

Request 1 is always presented for any ontology class. It results in instances of Par-

agraph, completely unrelated to already existent instances. Request 2 is only possible 

because the path ArticleTranslation - originalText - Article already exists in the built 

graph (added during the input specification step). 

For a specific Path request, a set of possible link paths is usually presented. In the 

case of request 2, the following possible link paths exist (notice how the start and end 

in classes present in the request path): 

1. ArticleTranslation - translatedText - Article - part - Paragraph 

2. ArticleTranslation - part - ParagraphTranslation - originalText - Paragraph 

3. ArticleTranslation - part - ParagraphTranslation - translatedText - Paragraph 

Picking one of these link paths will result in a connection from on-

to:paperTranslation1 to all instantiated Paragraphs through an intermediary “empty” 

(no other properties will be specified) instance. As instances of ParagraphTranslation 



are required in order to request the actual translation of paragraphs in future iterations, 

all link paths will be excluded except for link path 2. 

Up to this point, the requester has built a workflow (with only one micro-task) that 

partitions articles into paragraphs. Further partitioning of paragraphs into sentences is 

also possible by repeating the previous choice pattern. 

In the second iteration, the requester can finally request translations of paragraphs. 

The possible request choices for this iteration are presented in table 4. 

Table 4. Possible requests for the ontology class Paragraph in the translation example - second 

iteration of the iterative construction step (new relation in path in bold). 

# Operation Path 

1 Create & Fill - 

2 Create & Fill ArticleTranslation - part - ParagraphTranslation - translat-

edText - Paragraph 

3 Filter ArticleTranslation - part - ParagraphTranslation - originalText - 

Paragraph 

 

As the requester picks the request 2, only one possible link path is presented: Arti-

cleTranslation - translatedText - Article - part - Paragraph. This link path must be 

selected, otherwise no relation between the translated Article and its corresponding 

Paragraphs will be set. 

After requesting paragraph translations, the requester can finally request the trans-

lation of the article (third iteration). Table 5 contains the possible requests of this 

iteration. 

Table 5. Possible requests for the ontology class Article in the translation example - third and 

final iteration of the iterative construction step. 

# Operation Path 

1 Create & Fill - 

2 Fill ArticleTranslation - translatedText - Article 

3 Filter ArticleTranslation - translatedText - Article 

4 Fill ArticleTranslation - originalText - Article 

5 Filter ArticleTranslation - originalText - Article 

 

Picking request 2 will add a micro-task to the workflow, requesting workers to fill 

the translated article data-type property data, which includes the actual translated text. 

All related instances are given as contextual information, meaning that workers will 

have access to all related translated paragraphs and properties of the Translation in-

stance. 



4.3 Post-processing 

The post-processing step (iv) is executed after the requester decides to conclude the 

iterative construction step. It outputs the workflow structure after applying a transitive 

reduction algorithm over the edges of the request graph. 

For the given running example, it results in a sequential workflow with three mi-

cro-tasks (see fig. 6). 

1. Create & Fill Request
ArticleTranslation à  original à Article à part à Paragraph

Link Paths:
ArticleTranslation à part (*) à ParagraphTranslation à original (1) à Paragraph

2. Create & Fill Request
ArticleTranslation à  part à ParagraphTranslation à translated à Paragraph

Link Paths:
ArticleTranslation à translated (1) à Article à part (*) à Paragraph

3. Fill Request
ArticleTranslation à  translated à Article

 

Fig. 6. Request workflow generated from the translation ontology. 

5 Conclusions and Future Work 

The proposed process tackles the challenge of assisting requesters in building com-

plex micro-task workflows while promoting human-machine cooperation through 

high-level, declarative and semantically explicit domain ontology models. This is 

achieved through a semi-automatic micro-task workflow generation process that fil-

ters and proposes the following steps in a workflow according to pattern analysis and 

the context given by previous tasks.  

The current prototype of this process possesses a simple command line interface 

and allows the implementation of different adapters that interact with different 

crowdsourcing platforms such as CrowdFlower. 

Future work includes the continuous analysis of several ontologies, which may re-

sult in the identification of new relevant task patterns and strategies. Also, a focus to 

the automatic generation of micro-task worker interfaces from the domain ontology 

and context must be given. Evolving the prototype implementation and providing a 

friendly and efficient graphical user interface implementation, instead of the current 

command line interface, is also part of the future work. 
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