
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

An Ontology for Human-Machine Computation

Workflow Specification

Nuno Luz
1
, Carlos Pereira

2
, Nuno Silva

1
, Paulo Novais

3
, António Teixeira

2
, Miguel

Oliveira e Silva
2

1 GECAD (Knowledge Engineering and Decision Support Group), Polytechnic of Porto

{nmalu, nps}@isep.ipp.pt
2 DETI/IEETA (Department of Electronics Telecommunications and Informatics/Institute of

Electronics and Telematics Engineering of Aveiro), University of Aveiro

{cepereira, ajst, mos}@ua.pt
3 CCTC (Computer Science and Technology Center), University of Minho

pjon@di.uminho.pt

Abstract. Lately, a focus has been given to the re-usability of workflow defini-

tions and to flexible and re-usable workflow components, culminating with ap-

proaches that harness the benefits of the enriched semantics provided by ontol-

ogies. Following this trend and the needs of multiple application domains, such

as micro-task crowdsourcing and ambient assisted living, of incorporating co-

operation between the efforts of human and machine entities, this paper propos-

es an ontology and process for the definition, instantiation and execution of se-

mantically enriched workflows.

Keywords: Workflow, Task, Ontology, Domain Knowledge

1 Introduction

Extensive work exists regarding workflow specification languages and formalisms

[1–5], which focus on the workflow definition and instantiation. Workflows are typi-

cally used to represent business processes with languages such as YAWL [2], and

commercial languages such as XPDL (XML Process Definition Language) and BPEL

(Business Process Execution Language), which lack semantics and formal definitions

[6]. The standardization efforts that led to the emergence of these languages date back

to 1993 with the emergence of the WfMC (Workflow Management Coalition), a coa-

lition of several companies with the purpose of standardizing workflow model speci-

fication (or definitions) [5].

Lately, a focus has been given to the re-usability of workflow definitions and to

giving some degree of adaptation and flexibility to workflow components, culminat-

ing with approaches that harness the benefits of the enriched semantics provided by

ontologies [3, 5, 7]. Besides allowing re-usability, ontologies are conceptual models,

closer to the human conceptual level, which provide structure and semantics under-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634668?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:nps%7d@isep.ipp.pt
mailto:pjon@di.uminho.pt

standable to machines [8, 9]. In this sense, ontologies are ideal for agile model devel-

opment focuses on domain knowledge [10].

Particularly, in [5], OWL (Web Ontology Language) ontologies are used to capture

the semantics of the workflow domain in order to provide inference and guide the

workflow execution engine into the following steps of the workflow.

OWL-S (Semantic Markup for Web Services) [7] is a format that introduces the

semantics of OWL to web service specification and composition (service workflows).

Although it is not a format for workflow definition, services are represented as pro-

cesses or workflows of atomic operations with input and output parameters. Thus, the

specification of services shares many similarities with workflow definition specifica-

tion languages.

Current workflow definition approaches lack or do not consider the semantics of

the atomic operations performed throughout the workflow. They are usually limited to

the specification of input and output parameters along with some identification of the

type of operation. OWL-S, however, includes domain ontologies (with the inherent

expressivity of Description Logic languages) in web service process definitions. Be-

sides providing benefits in domain workflow extensibility, such semantics would aid

in the interoperability of workflow engines and execution agents.

In this paper, a workflow specification ontology tailored for workflows of human-

machine computations is proposed. The approach absorbs ideas from other workflow

definition languages and retains the benefits of OWL-S.

Workflow definitions according to this approach inherit the benefits of Description

Logic ontologies such as re-usability and extensibility. A focus on domain knowledge

is given through domain concepts, which describe a specific task or work domain.

These concepts can be re-used by multiple workflow definitions.

The ultimate purpose of this architecture is to allow not only the specification of

workflow definitions, but also to include all knowledge and semantics of atomic tasks

(not only the input and output, but also the full description of the operation itself) in

the definition through Description Logics [11]. Furthermore, the reasoning and con-

ceptualization capabilities given by ontologies are exploited in order to establish a

human-machine environment for solving workflows of tasks.

Typical applications of this work include micro-task crowdsourcing [12], which

benefits from the structure and semantics given by ontologies, and Ambient Assisted

Living (AAL) approaches [13], which benefit from the inherent scalability and re-

usability of the proposed solution.

This paper is organized as follows. Section 2 presents the proposed CompFlow

process, which is followed by its formal definition on section 3. Section 4 provides a

use case of CompFlow in the AAL domain. Section 5 concludes this work with some

remarks on future work.

2 The CompFlow Process

The CompFlow is a process for (1) workflow definition, (2) instantiation and (3) exe-

cution (see fig. 1). The workflow definition phase (1) results in a workflow-definition

ontology that extends the CompFlow upper ontology. The workflow-definition ontol-

ogy represents a workflow-definition for a specific domain, which can be instantiated

multiple times in the workflow instantiation phase (2). These instantiations are finally

executed during the workflow execution phase (3). In this paper, a focus is given to

the workflow definition phase. Phases 2 and 3 are considered in the context of an

execution engine and are, thus, left outside the scope of this paper.

In some situations, an abstract workflow-definition may result from the workflow

definition phase (1). These definitions capture only the domain knowledge and cannot

be instantiated. They can, however, be extended by concrete workflow-definitions.

CompFlow
Ontology

(Meta-Model)

1. Workflow
Definition

2. Workflow
Instantiation

Workflow-Definition
Ontology

(Model)

«extends»

3. Workflow
Execution

Workflow
(Instances)

Fig. 1. The CompFlow workflow definition, instantiation and execution process.

The workflow meta-model (see fig. 2) is fixed and defines the constructs required

for workflow-definitions at the model level. In practice, the meta-model is represented

through the CompFlow upper ontology.

A workflow is considered to be a set of tasks ordered according to a set of proce-

dural rules in order to deliver a specific result in a specific domain of application or

knowledge. The model or specification of a workflow is a workflow-definition, which

contains elements called activity-definitions. Activity-definitions have an associated

priority value that can be used to establish an execution order. There are four types of

activity-definitions: task-definitions, event-definitions, gateway-definitions and work-

flow-definitions. Analogously, instantiations of a workflow-definition, for different

units of work, are called workflows.

Task-definitions model tasks (the full atomic operations and their semantics) in a

specific domain. Tasks (instances of a task-definition), inherently belonging to a

workflow, perform atomic operations over data, which may have an associated (phys-

ical) effect on the state of the world.

Each task is performed by workers which can represent machines and/or humans.

Workers have access to a task through a specific interface. Interface-definitions estab-

lish the different types of interfaces through which a task can be delivered to a work-

er. For instance, tasks can be delivered to a worker through a visual interface, sound

interface, or simply through a web interface (the common case for crowdsourcing

applications). The inclusion of an interface as an element within the ontology allows

the customization of standard interfaces according to application scenarios. This cus-

tomization enables the creation of mixed or multimodal interfaces, capable of merg-

ing and coordinating multiple interfaces, commonly used on user-centric environ-

ments.

Event-definitions specify events that may either (i) trigger the continuation of an

existing workflow or (ii) trigger a new instantiation and execution of a workflow-

definition. Events are received and handled through event interfaces that follow a

publish-subscribe pattern [14].

Gateway-definitions establish flow control blocks in the workflow-definition.

While input gateway-definitions establish different behaviors on the input of the

gateway, output gateway-definitions establish different behaviors on the output of the

gateway. For instance, regarding input gateways, if a merge input gateway is found

during execution, the engine must simply wait for the first input in order to continue.

Instead, if a sync input gateway is present, the engine must wait for all inputs to ar-

rive. Regarding output gateways, if a decision output gateway is found, the gateway

condition must be evaluated in order to decide which paths must be followed next. If

a parallel output gateway is found, all paths are followed concurrently.

Task

Ǝ hasState

Workflow

Job StatePriority

Activity

Event Gateway

=1 hasPriorityƎ hasWorkflow

Ǝ hasFirstActivity
Ǝ hasCurrentActivity

Ǝ hasActivity
Ǝ transitionTo

Interface Worker

DecisionOutputGateway

ParallelOutputGateway

MergeInputGateway

SyncInputGateway

∀ Ǝ executedThrough Ǝ performedBy

Executable

EventInterface TaskInterface

∀ Ǝ executedThrough

∀ Ǝ executedThrough

Loop

«Domain Concept»
hasInput

hasOutput

Fig. 2. The CompFlow upper ontology (meta-model).

3 CompFlow Formal Definition

A CompFlow structure is a singleton , where is the set of enti-

ties pertaining to . A represents a self-contained unit of struc-

tured information. Elements in a are called workflow definition entities.

3.1 Workflow-Definition

A CompFlow extension, which represents a workflow-definition, is a 11-tuple

 where:

 is a set of activity-definitions, where:

─ is the set of executable-definitions;

o is the set of task-definitions;

o is the set of event-definitions;

─ is the set of gateway-definitions;

o is the set of gateway-definitions corresponding to DecisionOut-

putGateways;

o is the set of gateway-definitions corresponding to ParallelOutput-

Gateways;

o is the set of gateway-definitions corresponding to MergeInput-

Gateways;

o is the set of gateway-definitions corresponding to SyncInputGate-

ways;

─ is the set of activity-definitions that start the workflow-definition;

o is the set of task-definitions that start the workflow-definition;

o is the set of gateway-definitions that start the workflow-

definition;

o is the set of event-definitions that start the workflow-

definition;

 is a set of worker-definitions (or roles), where:

─ is the set of machine worker-definitions;

─ is the set of human worker-definitions;

 is a set of interface-definitions, where:

─ is the set of event interface-definitions;

─ is the set of task interface-definitions;

 is a totally ordered set of priority values;

 defines, for an activity-definition, (i) the following activity-

definition (transition restriction) and (ii) a priority value, where:

─ is an injective function that defines the priority value for each ac-

tivity-definition;

─ is relationship that defines a transition restriction between two ac-

tivity-definitions;

 is a function that defines the interface-definition for each executable-

definition;

 is a function that defines the worker-definition (or role) for each task-

definition;

 is the set of domain concepts that define the input and output of task-

definitions;

 is a relation that defines the input concept of the task-definition;

 is a relation that defines the output concept of the task-definition;

 is a subsumption relationship between elements of the same set
 , which maps to the sub-class-of relationship in Description Logics.

A workflow-definition consists in building a domain-specific workflow-definition

ontology (model) that extends the CompFlow upper ontology (meta-model).

An activity-definition is called abstract iff it doesn’t belong to any workflow-

definition, i.e., and ∀ . Otherwise,

it is called concrete.

For concrete workflow-definitions the following rules must be satisfied:

 A priority value must be specified for each activity-definition: ∀
 ;

 An input and output domain concept must be specified for each task-definition:

∀ ;

 A worker-definition must be specified for each task-definition: ∀
 ;

 An interface-definition must be specified for every executable-definition: ∀
 .

It is assumed that activity-definitions, interface-definitions and worker-definitions are

concept descriptors according to Description Logic languages. This allows the speci-

fication of domain-specific abstract definitions, from which new subsumed definitions

(through the relationship) can be created in order to build new workflow-

definition. The and relations can also be subsumed in order to represent specif-

ic domain relations between domain concepts. For instance, text constitutes the input

and output of a translation task. However the input is referred to, specifically, as the

originalText, and the output as the translatedText.

In this paper, Description Logic knowledge bases and ontologies are considered. A

Description Logic knowledge base contains a TBox (terminological box) and an

ABox (assertion box) [15], where the TBox contains all the concepts and relationships

that define a specific domain (workflow-definition), and the ABox contains the in-

stances or individuals defined according to the elements in the TBox (workflow in-

stantiation).

3.2 Workflow-Definition Instantiation

An instantiation of a workflow consists in creating and preparing an instance of the

workflow definition for future execution.

A CompFlow workflow-definition instantiation is a 10-tuple
 where:

 is a set of instances;

 is a function that relates an activity-definition (task-definition,

event-definition or gateway-definition) with a set of instances. Consequently, the

set of all activity instantiations is defined as ⋃ ∀ . Instantia-

tions of the sub-sets of are defined as:

─ is a function that relates an executable-definition with a set of

instances. Consequently, the set of all executable instantiations is defined as

 ⋃ ∀ ;

o is a function that relates a task-definition with a set of in-

stances (tasks). Consequently, the set of all tasks is defined as
⋃ ∀ ;

o is a function that relates an event-definition with a set of

instances (events);

─ is a function that relates a gateway-definition with a set of in-

stances (gateways);

─ is a function that relates an activity-definition that starts the

workflow, with a set of activities that start the workflow;

 is a function that relates a worker-definition with a set of instanc-

es (workers). Consequently, the set of all workers is defined as
⋃ ∀ ;

 is a function that relates an interface-definition with a set of in-

stances (interfaces). Consequently, the set of all interfaces is defined as

 ⋃ ∀ ;

 is the set of possible states that an activity can have;

 is a function that defines for every activity (i) the following

activities, (ii) its priority and (iii) its current state, where:

─ is a relation that defines the following activities for

every activity;

─ defines the priority value for every activity;

─ defines the current state for every activity;

 is a function that defines, for every executable, the set of

interfaces through which it was dispatched;

 is a function that defines, for every task, the set of workers

that participated in its execution;

 is a function that relates a domain concepts with a set of instances.

Consequently, the set of all domain instances is defined as

 ⋃ ∀ ;

 is a function that defines for every task (i) the input instances

and (ii) the output instances, where:

─ is a relation that defines the input instances for every task;

─ is a relation that defines the output instances for every

task.

3.3 Interpretation

An interpretation of a CompFlow workflow-definition is a structure
 , where:

 is the domain set assumed to contain a single workflow;

 is an activity-definition interpretation function that maps each ac-

tivity-definition (task-definition, event-definition or gateway-definition) to a sub-

set of the domain set. Accordingly, the following functions exist:

─
 is an executable-definition interpretation function that maps each

executable-definition to a sub-set of ;

o
 is a task-definition interpretation function that maps each task-

definition to a sub-set of ;

o
 is an event-definition interpretation function that maps each

event-definition to a sub-set of ;

─
 is a gateway-definition interpretation function that maps each

gateway-definition to a sub-set of ;

 is a worker-definition interpretation function that maps each

worker-definition to a sub-set of the domain set;

 is an interface-definition interpretation function that maps each in-

terface-definition to a sub-set of the domain set;

 is an instance interpretation function that maps each priority value to

a single element in the domain set;

 is an instance interpretation function that maps each state to a single

element in the domain set;

 is an instance interpretation function that maps each domain concept

to a sub-set of the domain set;

 is an instance interpretation function that maps each instance to a sin-

gle element in the domain set.

An interpretation is a model of CompFlow if it satisfies the general set properties and

instantiation properties. The general set properties are:

 ∀ , which implies:

─ ∀ ;

o ∀ ;

o ∀ ;

─ ∀ ;

 ∀ ;

 ∀ ;

 ∀ .

The instantiation properties define the rules for workflow definition instantiations.

They are:

 ∀

 ();

 ∀ ()

 ;

 ∀ ()

 ;

 ∀ ()

 ;

 ∀ ()

 ;

 ∀ ()

 .

4 Applications of CompFlow

The CompFlow upper ontology (as represented in the meta-model layer) establishes

the building blocks for every workflow definition. With it, workflow-definition ontol-

ogies can be built by importing and extending the upper ontology to a specific domain

while fully focusing on its specific logics. By extending tasks, events or interfaces,

domain specific classes with different purposes can be created.

CompFlow can be applied to a variety of domains with several use case scenarios

(e.g., human-machine computation scenarios and business workflows). In the scope of

this work, a proof of concept will be presented regarding AAL. AAL scenarios nor-

mally incorporate a wide number of passive and active interaction modalities, such as

sensors or actuators, touch, gestures or speech interfaces, or even location-tracking or

fall-detection services [13, 16]. Given the highly dynamic nature of AAL environ-

ments, CompFlow provides the flexibility required to incorporate and maintain the

cooperation of all the necessary components.

4.1 Scenario

For the purpose of a demonstration, imagine a scenario in which researchers want to

assess the relevance of a help option within a certain application. For that, they estab-

lish the need to ask a simple question whenever the user interacts with the help op-

tion, thus building the workflow in fig. 3.

Feedback
Decision

«Gateway»

Feedback Question
«Task»

Additional Feedback
Question
«Task»b) unhelpful

c) helpful (otherwise)

a) answer timeout < 3x

Help Event
«Trigger Event»

Fig. 3. AAL workflow for assessing the relevance of a help option in an application.

Given the AAL paradigm, and to introduce some level of redundancy, interaction

can be made via multiple interfaces such as speech and graphical interfaces. Further-

more, it is envisaged that similar additional workflows (placing questions to users)

will be required as the AAL environment evolves.

4.2 Workflow-Definition

CompFlow allows a straightforward implementation of this scenario through on-

tologies. It establishes the building blocks for creating semantically enriched work-

flow-definitions, while leaving the specificities of the domain entirely up to the de-

veloper. A CompFlow execution engine is then used to instantiate and execute any

concrete workflow-definition.

Fig. 4 shows the implementation of the help option AAL scenario using

CompFlow. The abstract workflow-definition establishes all domain constructs re-

quired to place questions to users. At this level, and upon the initialization of the exe-

cution engine, the code blocks that handle and know the domain must be associated

with each task-definition. Analogously, each interface-definition has an associated

code block that handles the specificities of the interface. This not only allows the

execution engine to scale through the inclusion of interface components, but also the

re-usability of domain specific task-definitions that may be included in different con-

crete workflow-definitions. Furthermore, it is possible to define composite interface-

definitions, which allow multimodal interaction through the aggregation of multiple

interface-definitions. This, in turn, makes it possible to achieve concurrency, redun-

dancy and cooperation between multiple interface components.

Concrete Workflow-Definition Ontology

Abstract Workflow-Definition Ontology

Feedback
Decision

«Gateway»

Feedback Question
«Task»

Additional Feedback
Question
«Task»

b) unhelpful

c) helpful (otherwise)

a) answer timeout < 3x

Question Task
Multiple-Choice
Question Task

Graphical Interface

Speech Interface

Terminal Interface Question Answer

hasPossibleAnswer
hasQuestion
«hasInput»

hasAnswer
«hasOutput»

executedThrough

CompFlow Upper Ontology

Help Event
«Trigger Event»

Fig. 4. CompFlow workflow-definitions for the help option AAL scenario.

The execution flow starts by making the execution engine wait for a specified

event. Since it is a trigger event, each manifestation of the event will result in a new

instantiation of the concrete workflow-definition. The event reaches the execution

engine through its associated interface, typically following a publish-subscribe pat-

tern.

After the event is processed, a Feedback Question Task is triggered. At this stage,

the task is delivered to workers (of the specified role or worker-definition) using one

of two strategies: (i) the slave strategy or (ii) the agent strategy. If the engine follows

the slave strategy (i), a worker is automatically selected from the set of available

workers. Otherwise, if the engine follows the agent strategy (ii), the task must be de-

livered to all available workers, which in turn will decide if they want to participate in

the task.

When an answer to the Feedback Question Task is received, the workflow contin-

ues onto the Feedback Decision Gateway. The Feedback Decision Gateway is a Deci-

sionOutputGateway, meaning that each output path will only be followed if a specific

condition is met. The logics that decide this are introduced in an associated code

block that evaluates the answer from the previous task. Depending on the answer, the

workflow may end, or the Additional Feedback Question may be triggered. The later

results in a process very similar to that of the Feedback Question Task, although it

refers to a free text question instead of a multiple-choice question.

5 Conclusions and Future Work

The CompFlow process and upper ontology represents an approach to workflow-

definition, instantiation and execution that exploits the benefits of Description Logic

ontologies and technologies. Its nature allows the straightforward definition of seman-

tically enriched workflows that are scalable and re-usable. The benefits of the

CompFlow are relevant to multiple application domains and scenarios such as human-

machine computation in general and AAL, in particular.

A formal definition of the meta-model (upper ontology) is given, which can be fol-

lowed for the implementation of CompFlow compatible workflow execution engines.

The structure and semantics provided by the ontology definitions allow these execu-

tion engines to deliver tasks to both human and machine workers able to understand

the domain of knowledge. An early implementation of the CompFlow execution en-

gine proves the applicability of CompFlow in AAL environments through the given

scenario.

Given the minimalistic structure of the CompFlow upper ontology, new features

will be added in the near future, which can be either considered as an application of

CompFlow or, if generic enough, be assimilated into the proposed upper ontology and

process. In the particular case of the later, a more thorough definition of gateway and

task is envisaged in order to avoid the requirement of code blocks in gateway-

definitions and task-definitions.

Acknowledgements. This work is partially funded by FEDER Funds and by the

ERDF (European Regional Development Fund) through the COMPETE Programme

(operational programme for competitiveness) and by National Funds through the FCT

(Portuguese Foundation for Science and Technology) under the projects AAL4ALL

(QREN13852) and FCOMP-01-0124-FEDER-028980 (PTDC/EEI-SII/1386/2012).

References

1. Eshuis R, Wieringa R (2001) A formal semantics for UML Activity Diagrams-Formalising

workflow models.

2. Van Der Aalst WM, Ter Hofstede AH (2005) YAWL: yet another workflow language. Inf

Syst 30:245–275.

3. Weske M (2001) Formal foundation and conceptual design of dynamic adaptations in a

workflow management system. Syst. Sci. 2001 Proc. 34th Annu. Hawaii Int. Conf. On.

IEEE.

4. Wodtke D, Weikum G (1997) A formal foundation for distributed workflow execution

based on state charts. Database Theory—ICDT97. Springer, pp 230–246.

5. Vieira TAS, Casanova MA, Ferrao LG (2004) An ontology-driven architecture for flexible

workflow execution. WebMedia -Web 2004 Proc. IEEE, pp 70–77.

6. Van der Aalst WMP (2003) Don’t go with the flow: Web services composition standards

exposed. IEEE Intell Syst 18:72–76.

7. Martin D, Paolucci M, McIlraith S, et al. (2005) Bringing semantics to web services: The

OWL-S approach. Semantic Web Serv. Web Process Compos. Springer, pp 26–42.

8. Obrst L, Liu H, Wray R (2003) Ontologies for Corporate Web Applications. AI Mag

24:49.

9. Happel H-J, Seedorf S (2006) Applications of ontologies in software engineering. Proc

Workshop Semat. Web Enabled Softw. Eng. ISWC. Citeseer, pp 5–9.

10. Oberle D (2009) How ontologies benefit enterprise applications. Semantic Web Journal -

Interoperability, Usability, Applicability. IOS Press.

11. Luz N, Silva N, Novais P Construction of Human-Computer Micro-Task Workflows using

Domain Ontologies. ESWC 2014 (Submitted).

12. Quinn AJ, Bederson BB (2011) Human Computation: A Survey and Taxonomy of a

Growing Field. Proc. SIGCHI Conf. Hum. Factors Comput. Syst. ACM, New York, NY,

USA, pp 1403–1412.

13. Teixeira A, Rocha N, Pereira C, et al. (2011) The Living Lab Architecture: Support for the

Development and Evaluation of New AAL Services for the Elderly. Ambient Assisted Liv-

ing Book. Taylor and Francis, USA (Accepted).

14. Eugster PT, Felber PA, Guerraoui R, Kermarrec A-M (2003) The many faces of pub-

lish/subscribe. ACM Comput Surv CSUR 35:114–131.

15. Baader F, Calvanese D, McGuinness DL, et al. (2007) The Description Logic Handbook:

Theory, Implementation, and Applications, 2nd ed. Cambridge University Press.

16. Abraham A (2012) Special Issue: Hybrid Approaches for Approximate Reasoning. Journal

of Intelligent and Fuzzy Systems 23:41-42.

