
Comput Syst Sci & Eng (2015) 6: 21–30
© 2015 CRL Publishing Ltd

International Journal of

Computer Systems
Science & Engineering

Web-based applications for open
display networks: Developers’
perspective

Constantin Taivan, Rui José and Bruno Silva

Centro Algoritmi, Campus Azurém, 4800-058 Guimarães, Portugal
E-mail: {constantin, rui}@dsi.uminho.pt, brcpsilva@gmail.com

Open Display Networks represent a new paradigm for large scale networks of public displays that are open to applications and content from third parties.
Web technologies may be particularly interesting as a technological framework for third-party application development in Open Display Networks because
of their portability and widespread use. However, there are also significant challenges involved that result from the specificities of this particular usage
domain and the lack of specific development insights for this context. In this work, we address the concept of public display application (display app)
from a development perspective. The overall goal of this paper is to identify and characterize some of the key specificities of display applications and the
appropriate Web solutions that can serve in the development of this type of application. The contribution of this paper builds on our extensive experience
with the application development for a real world public display infrastructure and also on a short-term experiment with third party developers. Overall,
the results show that Web technologies are valuable building blocks for public displays applications and their adoption is not only a subject for adaptation
procedures but also for redesigning their use according to the characteristics and user experience offered by public displays. This research will inform the
design of new Web-based models of display applications and shed light on the challenges that may impede third party development and the evolution of
an application ecosystem in this area.

Keywords: public displays; ubiquitous computing; third party applications, Web technologies, Open Display Networks

1. INTRODUCTION

Public displays can be found in all sorts of urban spaces. They
often operate under a content management model in which con-
tent is orchestrated at a central location and then distributed to the
displays just for presentation. Open Display Networks represent
an alternative model in which large scale networks of public dis-
plays are open to applications and content from many sources
[1]. This new model creates the opportunity for third parties
to create and publish content in the form of applications to be
used at any display across multiple administrative domains, pro-
moting openness as a source of value for all the parties involved.
Multiple entities anywhere in a global network could become co-
creators of value by developing new applications in which new
ideas could quickly be shared and feed the innovation cycle.

The overall vision of applications [2] for Open Display Net-
works requires addressing a broad range of challenges. This
includes the ability of applications to be globally available so
that they can be used anywhere across a global and open net-
work of public displays. Those applications would also have to
be able to run across many different types of displays and exe-
cution environments with very heterogeneous sets of computing
platforms, interaction techniques, display sizes and form factors.
While an application must be globally available, they also need
to exhibit a specific situated behavior at each of the many do-
mains in which it may be in use, similar to what we have seen
in mobile computing environments [3]. The content these appli-
cations would employ is to be managed and exposed in a way
to optimize its use in public displays. Finally, at each domain,
many applications may be available and would be concurrently

vol 29 no 6 January 2015 21

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634618?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

WEB-BASED APPLICATIONS FOR OPEN DISPLAY NETWORKS: DEVELOPERS’ PERSPECTIVE

used by multiple users with interfaces that can distributed across
an eco-system of large and personal displays – such as mobile
phones.

In this study, we specifically address the use of web technolo-
gies as the technological framework for third-party applications
development and deployment. Web technologies can be partic-
ularly valuable in regard to openness, portability, widespread
availability and easy to deploy in large scale [4]. The main ben-
efits lay in the wide usage of web technologies and their ability
to be supported across many platforms. A vast range of tools
already exist and many people already have the competences to
create all sorts of web content. This includes also the emergence
of new standards and specifications such as HTML5 and CSS3
which make possible dealing with the requirements imposed by
Open Display Networks.

The main limitation would be that web engines were not con-
ceived for this purpose as they were designed based on different
usage assumptions. For instance, a web browser is mainly used
for rendering content and there is no interaction with the web
content (web sites, web apps) being rendered. A proper use of
web technologies should enable web content to optimize its pre-
sentation in collaboration with the container, i.e., a web browser
or a specific web-based player, where it is being presented, and
it should provide a framework for extending the scenarios and
functionalities of the containers. Moreover, web-based applica-
tions face limitations in the access to device specific resources
(e.g., RFID, sensors). In particular, the use of Web technolo-
gies in display systems poses many new challenges and simply
showing normal web pages makes for poor signage content [5].
While the ability to present web content from a specific URL is
not a challenge in itself and is already an integral part of almost
any display system, the overall context of how this content is se-
lected, obtained and adapted to the circumstances of a particular
display is something that is not well matched by prevailing web
application solutions.

There are other alternative ways to approach the creation of
display apps, e.g. virtual machines [6] or cloudlets [7], and we
are not claiming that Web technologies would necessarily be the
best approach for all scenarios. We just considered that Web
technologies would be the right context to study the require-
ments of applications and then, based on emerging limitations,
identify more clearly the situations in which alternative tech-
nological frameworks could be adopted. For example, it may
be needed, depending on the requirements, to consider specific
software components that would complement Web technologies
such as the usage of display-specific virtual machines to improve
robustness against server and network problems [6]. However,
in this work we will only focus on the use of Web technologies.

In this paper, we study the key specificities of usingWeb-based
applications as the primary driver for the experience offered by
public displays. The research is focused on the application de-
velopment perspective and not so much on the goals of the ap-
plications. The study is grounded on our experience in creating
a varied set of Web-based applications for public displays and
also on interviews with third-party developers that have created
displays applications. The combination of these diverse per-
spectives has enabled us to consolidate the many challenges that
developers need to consider when creating web applications for
the execution environment of public displays. Overall, the re-

sults show that Web technologies are valuable building blocks
for public displays applications and their adoption is not only a
subject for adaptation procedures, but also for redesigning their
use according to the characteristics and user experience of pub-
lic displays. These results inform the repurposing of Web tech-
nologies as an appropriate technological background for display
applications.

2. RELATED WORK

Our research builds on the analogy of using Web technologies
for mobile devices. W3C developed a number of technologies
that explicitly address the specificities of mobile devices (e.g.
network costs and delays, memory and CPU limitations, input
differences, context-aware capabilities): CSS Mobile, SVG Tiny
and XHTML for Mobile [8]. A similar process occurs with the
use of Web technologies in TV sets, also addressed by W3C [9].
With the emergence of IP-based TV devices, a.k.a. connected
TVs or Smart TVs, Web applications can also be made available
in TV sets.

Building on the mobile app store metaphor, Clinch et al. [10]
present a set of design considerations for app stores for pub-
lic displays. Conceiving such application stores faces specific
challenges when compared with the mobile counterparts, such
as dealing with multiple stakeholders, new business models and
scheduling requirements. While mobile application landscape
includes well established platforms and ecosystems for running,
developing, distributing and selling of applications e.g., Win-
dows, iOS, Android, for public displays there is no product or
any established system that enables the creation and everyday us-
age of display applications. Although the research community is
increasingly trying to offer insights on how display applications
should look like, the support for third party development in the
context of public displays is not reached yet.

Various display prototypes used Web for their infrastructure
and applications [11, 12, 13, 14]. The simple inclusion of an ap-
plication URL is seen as a regular pattern to provide web content
or interactive services to a public display. In particular, Social
Networking Services (SNAs) are considered as a dynamic user
contributed content source that can add more value for public
displays [15, 16]. The integration of SNAs is also explored by
Locamoda – a company that provides several place-based social
media display applications focusing on enabling personalized
and interactive experience with display content [17].

Very often public display installations are conceived as dis-
tributed applications and common design goals include ease of
deployment and content creation, maintainability and robust-
ness. A reference example is the display infrastructure in Oulu
[18], with 12 interactive displays that support the deployment
of services in form of web-based applications. Oulu’s multi-
application public displays based its design on the Web paradigm
and enable content contribution from multiple third parties. Ser-
vices may reside anywhere in the Internet under a simple URL.
Their experiences over a period of three years have shown the
many specificities of public displays, which mainly result from
the public context of this type of installations. In their work [6],
an approach based on virtual machines and web technologies
was suggested as an appropriate model for supporting applica-

22 computer systems science & engineering

C. TAIVAN ET AL

tion deployment. e-Campus public display infrastructure from
Lancaster University [19] is another relevant example for us-
ing web applications as means to personalize user experience in
front of large displays [20]. Based on a mobile Android appli-
cation users can locate the nearby displays and configure what
content to see as part of the associated display web applica-
tions. Memarovic et al. [21] identified a number of challenges
when moving from personalized Web content to personalized
content for public displays including user identification, profile
location, profile content, content tailoring, model refinement and
applications that require personalization. In their vision, public
display networks require novel approaches for personalization
and existing web personalization solutions cannot be used as
they are employed in desktop computing environments. Over-
all, the Web and its set of enabling technologies are attractive for
building displays infrastructures and applications but not much
is known about the specificities of display applications and the
implications they might have on these technologies.

Our previous work focused on understanding what is an appli-
cation for the context of public displays and, in particular, what
are the opportunities and limitations of Web as a technological
framework. In a short-term study on creating web-based dis-
play applications by third party developers [22] we found that
developers face a set of challenges such as visual adaptation,
managing of content and fault tolerance support. In order to
effectively leverage on developers’ web experience, the study
uncovered that two conditions are essential: 1) provide a clear
description on the specificities of display applications and 2)
provide appropriate tools to facilitate the development process.
To better highlight the specificities of display applications and
their implications on Web technologies, based on our long-term
developing experience in creating this type of applications, we
elaborated a set of four key issues that web applications need
to consider when repurposed for the usage in public displays:
content management, content addressability, visual adaptation
and integration with the execution environment [23].

While the research community is already working on appli-
cations for public displays, this paper is the first to address the
concept of display application from a development perspective.
From considering the extension of current web development
practices and expertise to support the creation of web-based dis-
play application to a detailed journey into the long-term develop-
ment processes, this paper aims to identify what makes a display
application different from its desktop and mobile counterparts.
Driven by the vision of applications [2] for Open Display Net-
works, and not by a platform or system specific incentive (which
might limit the designs, perspectives and features), our goal is to
reach a generic understanding about the specificities of display
applications that can frame the development of many different
types of web-based applications across an unknown and diverse
set of multi-application displays.

3. WEB APPLICATIONS FOR PUBLIC DIS-
PLAYS

In this section, we clarify our main assumptions aboutWeb-based
applications for public displays. For the purpose of this work,
we consider a display application to be a Web-based applica-

tion whose primary goal is to render content on a public display.
Like any other Web application, display applications are based
on Web technologies and standards, e.g., HTML, JavaScript and
CSS. Display applications are shown in full-screen and run on
standard Web engines or other types of specially tailored Web
stacks and they encapsulate both content and the means to ren-
der that content on screens. Deploying applications in public
displays require a scheduler component which in our case is
a software player that actually runs the application within the
browser. Our current version of the player1 uses Internet Ex-
plorer browser and platform specific libraries in order to con-
trol when applications should start and, how long they should
present content. The need for supporting disconnected opera-
tion and specially tailored content management policies, led us
to assume a rich client model in which the core of the application
is running on the display node. Each application will have its
own JavaScript code to handle, on the display side, issues such
as obtaining and managing the content items that the application
will need, caching and prefetching of content, or dealing with
network disconnections.

We also assume that these applications entail a clear separa-
tion between content creators and particular displays, reflecting
the need to develop applications that may potentially be used
anywhere. Therefore, applications must be developed without
any assumptions about their execution contexts. This implies
dealing with the potentially strong variations in the resources
that may be available across locations. Portability, in the sense
of being able to work across multiple display platforms, it is the
most obvious requirement, but there is also a need to accom-
modate other differences in the operational environment, e.g.,
display sizes or interaction modalities, as well as variations in
the associated information space.

Regarding the user interaction model, we assume that multiple
display viewers can interact with the applications only through
mobile phones. Our software infrastructure enables viewers
to personalize some of the content of the applications but do
not allow them to influence the application presentation times
or change the application schedule. Within our display infras-
tructure, these tasks are handled exclusively by display owners.
Overall, the model of application presentation is driven by the
content sliding by with a fixed interval for each application and
without any direct interaction from viewers such as using touch
or gestures, the only possible interaction being remote through
the usage of mobile devices.

3.1 Application Development

As part of our work in Instant Places [24], a Web-centric plat-
form for place-based screen media, we have specified a model
forWeb-based display applications and developed a considerable
range of applications that were deployed in our prototype dis-
plays. While we are not claiming that our development approach
would be the only possible solution for Web-based display ap-

1The rationale behind this player is not within the focus of this paper. It
represents the main approach for application presentation used in Instant Places
display infrastructure [24]. However, in this work we provide insights into a
new type of player that is based on Chrome browser and helps addressing the
requirements of display applications without the need of any platform specific
components (Section 6.1 will describe our arguments for the new player).

vol 29 no 6 January 2015 23

WEB-BASED APPLICATIONS FOR OPEN DISPLAY NETWORKS: DEVELOPERS’ PERSPECTIVE

plications, this is a perspective that has evolved over the years
with our ongoing research in this topic.

Our applications represent a diverse set of requirements and
have allowed us to gain a broader understanding of the use of
Web technologies in creating them. The most significant appli-
cations are: Video app shows YouTube videos and allows users
interactions from their mobile devices in forms of comments
and likes; Posters app presents multimedia posters published
by visitors which were approved by the place owners; Places
app – aggregates the contents of a place such as pins, checkins
and has three views: a) check-ins and the current pins – shows
the name of the place, recent checkins (for one week) and the
place pins; b) Facebook account of the place by using a given
id one can see the related posts; c) Facebook albums – allows to
present the place Facebook albums; Pins app shows all the pins
from the place such as users driven pins from the checkins and
the place specific pins; Dropbox app allowing place owners to
present files from a Dropbox folder. Facebook app for show-
ing content from selected Facebook page walls; Twitter app that
shows discussions posted to a specified hashtag; RSS Feeds app
for showing selected news feeds; and Media RSS feed app for
showing the feeds from a media RSS, targeted for images and
videos. The applications developed have all been made available
across multiple deployments where they have been used by local
communities on a regular basis. These testbeds have been piv-
otal in enabling us to assess a more diverse set of requirements
and contextual assumptions.

3.2 Development Tools

We created a developers’ Web site with key information on how
to develop these apps and also with the following set of develop-
ment tools: Application Generator, Instant Places library and
Media Simulator. The Application Generator provides devel-
opers with the possibility to generate a ready-made application
structure. This considerably reduces the initial development ef-
fort and it promotes the use of patterns and components that are
known to work better with this type of application. This was
achieved by the generation of a Hello World display application,
which constituted the skeleton for the creation of other applica-
tions. The Instant Places library provides an abstraction layer for
the Instant Places service that enables applications to integrate
dynamic data into their content, more specifically place-based
information about their surrounding settings, i.e. sensing and
interaction information associated with displays. Finally, the
Media Simulator allows display applications to be tested in their
target execution environment, i.e., display nodes’player that uses
Internet Explorer browser. Instead of deploying applications to
the real display infrastructure, developers have the ability to use
this tool to check in advance if a display application is ready to
be shown on a public display. Based on a set of guiding refer-
ence tests, e.g., resizing the window of the application, unplug
the network cable, a developer could observe the behavior of the
application.

In addition to these tools, we also provided developers with
a few additional guidelines on how to handle key issues such as
network disconnection and visual adaptation. Building a fault-
tolerant application is essential to public display environments,

because we do not have an end-user that is ready to solve the
problem. We included a set of code blocks for the cases when
no data was fetched or it took too much time to show up, e.g.,
splash screens routines for masking application startup delays
or show something to its audience while external data is being
fetched. For example, the Hello World application generated by
the Application Generator already included a splash screen hid-
ing the error of no connectivity. To handle the diverse resolutions
and orientations that public displays can have, there is a need to
employ at least some basic techniques for making the application
content look good and – especially – readable. Our initial Hello
World app already included a technique based on CSS media
queries. It allows developers to add expressions to media type
to check for certain conditions and apply different style sheets.
For example, one can have one style sheet for large displays and
a different style sheet specifically for mobile devices. The tech-
nique is really helpful because it allows adjusting to different
resolutions and devices without changing the content. The con-
dition that is often verified to trigger the changes is the viewport
width. When the viewport is too narrow, applications can adjust
the font and some box sizes.

4. METHODOLOGY

In order to investigate the key specificities of using Web-based
applications as the primary driver for the experience offered by
public displays we conceived a methodology anchored on three
main activities: 1) an application hackathon to introduce new
developers to this type of applications and assess the effective-
ness of our development tools; 2) an internal focus group about
our experience in creating a varied set of Web-based applications
for public displays; and 3) interviews with third-parties devel-
opers that have created and deployed applications based on our
approach. The combination of these diverse perspectives has
enabled us to consolidate the many challenges that developers
need to consider when creating Web-based applications for the
execution environment of public displays.

4.1 Application Hackathon

We conducted a short-term development experiment in which
we investigated the learn ability and usefulness of our develop-
ment tools by new developers. The assessment of our develop-
ment tools was achieved by adopting an informal and controlled
laboratory evaluation [25][26]. We invited five participants to
create a given display Web application by using our guidelines
and tools and interviewed them about their overall development
experience. All of them had basic Web development skills, e.g.,
JavaScript, HTML and CSS, and had never built a display Web
application.

A week before the experiment, we sent participants the URL
of the development Web service so that they could learn the ba-
sics of the process. At the beginning of the experiment we gave
them a brief tutorial of about 10 minutes in which we introduced
the concept of display application and explained the APIs. They
were then asked to build a new display application, i.e., a poster
grid app, based on the Hello World example. To do this, we

24 computer systems science & engineering

C. TAIVAN ET AL

formulated three development tasks that led developers to create
the given app. The first task was to put the Hello World app
running and test its execution. For this, they needed to install
the App Generator and output an application example and Media
Simulator for being able to test it. The second task was to use
the Instant Places library for getting place related data, such as
the place name, place image and posters. Finally, participants
were asked to show the posters in a grid by using some CSS
rules. In this step, developers needed to use splash screens and
configure them to last for at least 3 seconds; support fault tol-
erance functionality (lack of data, lack of connectivity); prepare
the app to be displayed correctly in an iPad or in another device
of similar dimensions and test the application using a desktop
web browser and Media Simulator tool. Throughout the exper-
iment, participants were encouraged to raise questions and they
had four hours to complete all the tasks. At the end, each of
them was interviewed about their experiences with our develop-
ment tools. The interviews were audio recorded and the code
produced by developers was kept for subsequent analysis.

4.2 Internal Focus Group

To gain a better understanding into the concerns of application
development we conducted one internal focus group with three
participants. One of the participants was the main developer of
the Instant Places platform and the rest of two were researchers.
The focus group was employed as an unstructured discussion
around the key aspects of display application development us-
ing Web technologies. The emergent ideas and aspects were then
prioritized and organized in four themes: content management,
content addressability, visual adaptation and integration of ap-
plications with the execution environment (see [23] for a detailed
view). This constituted the analysis structure for the interviews
with third-party developers.

4.3 Interview with Third-Party Developers

Following the key topics outlined in the focus group activity
(and reported in[23]) we conducted three interviews with
third party developers in order to get insights into the devel-
opment experiences with display applications. The interviews
included three developers that created several real applications
based on our approach and guidelines. Developers did not par-
ticipate in the specification of our model for display application.
The applications were conceived to be deployed in our display
infrastructure and to be used on daily basis. The main goal of
the interviews was to understand to what extent developers ad-
dressed the issues of content management, content addressabil-
ity, visual adaptation and integration of applications with the
execution environment. As well, we looked to understand the
opportunities and limitations of Web technologies as the techno-
logical framework for the creation of this type of application.

5. DEVELOPMENT EXPERIENCE

This section highlights the main findings in regard to the develop-
ment process experienced by new Web developers that, as well
as third party developers did not take part in the specification
of our approach for creating display applications. The overall
view of this experiment was positive, even for less skilled devel-
opers. All the participants have achieved the key development
goals without wasting too much time in writing the code. They
found our tools useful and necessary for the first contact with
Web-based display applications.

Participants had some initial effort to grasp the specific con-
cepts associated with displays applications, but after that, they
were quickly able to master the process. Developers could eas-
ily follow the documentation provided by our development Web
site. Even though this was optional, all participants used the
Hello World app generated by the App Generator tool as a tem-
plate to start implementing the new display application. The
participants didn’t think very much about the structure of the
application, which meant that the use of Application Generator
was effective. When we asked developers how it would be to
develop without this tool all of them responded that would it be
difficult or even very difficult.

Developers had enthusiasm for this experiment despite their
weaker experience with some of the required Web technologies.
This is demonstrated by the fact that all of them succeeded in
applying their Web development skills to develop a display app.
However, a few of them experienced difficulties in understanding
and using all specific development and testing scenarios, e.g.,
implementing the splash screens or providing the required code
blocks for a fault tolerant display app. Only one of them could
entirely test the app execution behavior.

Due to the fact that our display application was not too com-
plex, it just required a set of API requests, the code source is
quite identic among the participants and the final applications
share the same structure and very similar lines of code. Hav-
ing a previously scaffold app structure proved to be comfortable
to the participants and reduced the amount of code they had
to write. Developers ended up not writing much code and not
changing the application structure at all. Instead, their effort was
mostly to combine various code blocks and configuring them ap-
propriately. However, one student noted that the integration of
our code blocks was straightforward, while making various cus-
tomizations was not so easy.

Using the Instant Places API library was something that
proved to be very handy. Although there were some initial prob-
lems in understanding the meaning of our API and the related
code blocks, after getting the place name, they easily succeeded
to get further data, such as posters.

Developers had difficulties when testing their apps because
they weren’t familiar with any tools to accomplish this task, e.g.
Fiddler. Most tests were made using a common Web browser
while the Media Simulator tool was just periodically used to rule
out eventual errors related to the different Web engine of display
players. Only one student did not test at all the new application
execution, neither in desktop Web browser nor in Media Sim-
ulator tool. The others tested the application but encountered
various difficulties.

Participants were really motivated by the innovative field of

vol 29 no 6 January 2015 25

WEB-BASED APPLICATIONS FOR OPEN DISPLAY NETWORKS: DEVELOPERS’ PERSPECTIVE

usage of Web-based applications and recognized their big po-
tential when deployed in real world settings. They associated
display apps with mechanisms to publish content, such as re-
placing the traditional paper based posters with digital forms of
content. In their final comments, they all referred particular fea-
tures for display Web apps, e.g., a display app should provide
content that is dynamic, personalized and place-based.

6. IMPLICATIONS FOR WEB TECH-
NOLOGIES

This section consolidates our findings on the identification of
the key challenges that Web applications need to consider when
being repurposed for usage in public displays. These results
are mainly informed by the long-development experience of
third-party developers. The discussion is organized around four
themes: content management, content addressability, visual
adaptation and integration with the execution environment. For
each of these themes, we identify the specific challenges regard-
ing the ability of Web technologies to support display applica-
tions requirements and how we approached them so far.

6.1 Content Management

In traditional interactive Web browsing, content selection is as-
sumed to be under the control of a single user, who may at
any moment request a new content resource or be prompted to
provide any necessary data, including, if needed, authentication
data. In a public display system, content presentation can be
mainly autonomously determined by the system itself, which
must be able to guarantee that any necessary configurations or
content selection options must have been done before the display
starts presenting content. In the following we present three key
specificities regarding content management issue.

Avoiding idle times caused by fetching content from servers.
Idle times may not always be bad, but on a public display people
expect the same smoothness and performance in content presen-
tation that they are used to see in traditional television broad-
casting and even in other existing display systems. Therefore,
loading time should never correspond to idle presentation time.
If the system stops presenting content while the next content is
being loaded, the user experience is completely destroyed.

Our first approach in dealing with this issue, which is em-
ployed in most of our applications, is based on splash screens.
A splash screen is a kind of animation that informs users about the
current application being loaded. While this approach is neither
specific for Web technologies nor for Web-based display applica-
tions, it provides an effective way to notify the users about what
is going on. However, it has the drawback that if the idle times
increase too much users would see the same splash screen exces-
sively. A second approach in dealing with the idle times is based
on a custom made pipelining technique called in-app prefetch
employed by a set of applications called schedulers. The sched-
ulers are able to present in full screen other apps (modules). For
instance, a scheduler puts a module running while prefetching
the next one. The prefetch of a module is implemented as a

hidden request and as soon as that module is ready it triggers an
event that is used by the scheduler to activate the next module.

We are currently working for a better approach that would be
based on a new type of player that will exclusively be based on
Chrome browser without any additional and platform specific
components. Such a player will be responsible to prefetch, run
the applications and coordinate them. For example, when the
app will be ready it will inform the player that it is able to run
and the player will act accordingly.

The decision for choosing Chrome was informed by our at-
tempts to find a browser that can run a Web-based player that
will run our display applications in a way that allows overlapping
operations like prefetching content while presenting other appli-
cations. Moreover, Chrome browser offers support for Cross-
origin resource sharing (CORS) technique – which is an essential
feature of the applications within our development model. The
iframe approach has the drawback that when the content from
an iframe blocks or it does not respond (e.g., Javascript errors),
the others blocks as well. Our solution to overcome this issue is
based on developing a Chrome App2 that can employ webviews
instead of iframes. A webview3 is a way to actively load live con-
tent from the web over the network and embed it in a Chrome
app. The advantage is that a webview runs in a separate process
than the main app and it doesn’t have the same permissions as
the main app and all interactions between the Chrome app and
embedded content will be asynchronous. In this way, the main
application is kept safe from the embedded content. Since the
current player is system-dependent, the new player that we are
working for Google Chrome browser will also alleviate the re-
strictions associated with the portability and deployment of our
display infrastructure software.

Make any content fetching errors transparent to users. In the
traditional Web browsing experience, when a content resource
cannot be obtained, the result is a message error notifying the
user about the problem and possibly giving additional indications
on how to proceed. On a public display, content loading errors
should never result in error messages being shown, because those
people who would see the message might have not requested the
content and probably cannot act to solve the problem. This
means that applications must be able to catch any such errors
before they show up infamously on the screen, and report them
through some alternative channels so that appropriate corrective
action can be taken. It also means that a fallback strategy must
be in place to be activated whenever a content loading error is
detected. The application itself may have the ability to detect
the problem and present an alternative content that is available.

In our applications we tried to catch and hide any errors and in-
form users about those resulted from content loading processes.
Currently, we use a very naïve approach that displays a funny
custom message in form of a splash screen that redirects users to
the main Web page of the system. Since our current player does
not have the possibility to switch between applications, users
will be promoted with the same screen message for an extended
amount of time.

However, this is not the intended approach and we are con-
sidering a better solution by developing of the new player (pre-
viously introduced) that will be able to solve this issue. The

2https://developer.chrome.com/apps/about_apps
3https://developer.chrome.com/apps/tags/webview

26 computer systems science & engineering

C. TAIVAN ET AL

current app may inform the player to show other app because its
content is not ready or show another splash screen, or the player
can detect that the app is not ready and skip it from presentation.
In general, to avoid any error messages, the app should recognize
the problem before diving to it. This should also eliminate any
idle times.

Support disconnected operation. In a personal browsing sce-
nario, disconnected operation is not normally very relevant. Ei-
ther it would be limited to content already seen by the user or the
system would have to be able to anticipate the intended content.
In public displays, where content is often designed around con-
tent loops, cycling through the same content multiple times may
even be seen as the expected behavior. The ability to maintain
a normal or slightly deprecated operation when disconnected is
thus essential.

Disconnected operation is currently the major problem we
faced in our applications. Currently, we are using a solution
based on 3 technologies: App Cache [27], HTML5 Local Stor-
age [28] and IndexedDB [29]. Overall, a key aspect in offline
behavior is to considering the frequency of data updates. Most
of our apps may survive a few hours of disconnection. For in-
stance, Place app is more dynamic and requires more frequent
data updates in order to show relevant information; if there is no
network we lose the presences information. A critical situation
would be if an app does not have any content to show and in
this case it should inform the player which might schedule other
applications, some predefined content items or apps that do not
change too frequently such as those with 2-3 updates a day.

In regard to local storage techniques, our current work fo-
cuses on implementing a functionality to store images locally.
We have just started to develop a wrapper around IndexedDB
which will allow us to increase the local storage size to GB in-
stead of MB used in HTML5 Local Storage mechanism. Right
now, the only issue is that the development process is a bit more
complex and harder to develop these apps because we have to
store everything we have in the app even the content that comes
from external servers. In particular, the challenge is that the im-
ages from external servers do not allow cross domain requests
and we cannot retrieve the images for storing locally. A solution
might be to use our servers to proxy them trying to retrieve their
content.

In conclusion, our solution for disconnected operation may
cover the case with 2-3 updates per day and in this regard HTML5
Local Storage and App Cache work pretty well. For the case
of applications that needs data within seconds we may have a
problem. Besides the local storage limits, we are also limited by
the lack of available services that tackle this problem for desktop
Web apps.

6.2 Content Addressability

A key distinction between a normal Web app and a display app is
that in the latter there is a much stronger need to systematically
handle the data exposed by the application. In a normal user-
driven browsing scenario, the issue is mainly about links and
navigation menus that the user will invoke as needed. When
the content is being consumed by a display system, the issue
is mainly about exposing and characterizing the set of content

items available in the application to allow the display system to
integrate that content into the local content schedule. Exposing
content as atomic presentation units, i.e., the smallest segment
of content that can be presented on a display, is not mandatory
but is crucial not only for automated scheduling purposes, but
also because it can become the enabling element for many other
key features such as cache management, prefetching, auditing,
logging, scheduling and social interactions around content.

In public displays, presentation units might play a similar role
as the concept of permalink in blog posts. For instance in a
blog scenario, with the emergence of permalinks (permanent
links) posts can now have a specific URL that remains the same
even when they are no longer visible in the blog front-page. This
permanence of the links enables those posts to be linked by other
sites and provide a reference that supports many other key web
functions, such as searching, traffic measure and comments.

In our approach, we mainly considered one scenario in which
applications can expose their resources. Our system enables apps
to expose resources and they can do it by exposing a URL to the
resource. For instance, people may interact with application re-
sources by getting their URLs in personal mobile devices. Then,
users can have a closer look to a specific content item regardless
the content shown on public displays. In this scenario, it is up
to applications to decide which resources to expose, if any at all.
For instance, Video app has this feature and the system allowed
the content of the screen to be posted on people’s mobile phones
so that they could subsequently access the respective application
resources independently. Other possible scenario not covered by
our work, would be that applications to be able to expose their
resources in order that other applications could integrate them
in different ways. For example, there might exists applications
that aggregates content from many other applications and offer
an integrated experience to the user such as a dashboard app
that provide a content overview of the applications running in a
display from a given place.

6.3 Visual Adaptation

We call visual adaptation the process of adjusting the content
appearance of a Web site or Web app to the browser screen di-
mensions. For instance, visual adaptation is performed when
a desktop Web site adapts its text font size to be legible in a
smartphone. While this need for visual adaptation is common in
desktop and mobile Web usage, the adaptability range in public
displays can be much more extreme and the role that users can
have in assisting the adaptation process is more limited. In public
displays, there is much more uncertainty about possible displays
sizes and properties. Content may need to be rendered on small
displays or small regions of a large display, but it may also have
to fill an entire display wall. Additionally, the position of the
display in regard to viewers may also face dramatic variations
in distance that will severely affect the adequate visualization of
content.

For all the applications we are using responsive web design
within a limited range of display resolutions or screen sizes.
Our approach is mainly based on using percentages instead of
fixed sizes for any visual elements in the application. We also
used the media tags on the CSS that can control the sizes of

vol 29 no 6 January 2015 27

WEB-BASED APPLICATIONS FOR OPEN DISPLAY NETWORKS: DEVELOPERS’ PERSPECTIVE

elements in relation with the screen size. For example, for a given
screen width we are going to give a certain width to an element.
While CSS media queries served very well for implementing the
responsive web design, we reached a limitation related to the
sizes of images and the text length that came from Twitter or
Facebook APIs. The first assumption in our applications was
that people cannot scroll text or images on the screen, so, all the
content need to fit a single display. Due to the lack support in
availably plugins4, we developed our text adaptor plugin that can
enlarge the text within a given min and max font size and ellipsis
the rest. Thus, the drawback of our approach was to cut the text
that did not fit the screen. As well, handling images involved
some manual configuration depending of the availability of the
image properties.

A second factor that influenced our adaptation solution was the
viewing distance. For the text, the approach was to experiment
with different font sizes in a way that allow people to get the
content from a few meters away. In particular, the Video app
highlighted that visual adaption may be different depending of
the users engagement with the app. Users could see the videos
on their mobile devices so, if they are in the back of a room this
might not affect too much. They can come closer or just watch the
videos on their mobile phones. Therefore, the viewing distance
is much important for the first phases of the engagement. Since
the users are already joined with the display app they may walk
away from the display. In other words, visual adaptation is an
interesting factor that may influence the displays’ role to entice
for interaction and to join the system. For example, in a big room
an application may adapt the content (providing only keywords)
in a way that people at a large distance can notice what is going on
and manifest interest in joining the system, while for small rooms
it can further provide additional content having the same goal to
entice people to get in. In conclusion, our experience shows
that responsive web design technique could not only consider
the screen size but also the space properties, e.g., maximum
available viewing distance, in order to better adapt its content
and entice interaction.

A third factor with a significant impact over the entire pub-
lic display experience was the visual aspect of the applications.
Developers struggled to design applications that do not have the
look and feel of a Web app or Web site. Instead, our applica-
tions need to present content in a natural way so passersby could
get that content easily understood. Developers tried not to em-
ploy as many elements as they are present in desktop Web-based
applications. For instance, we did not use columns and menus
as our particular model for user interactions assume that people
interact with display applications through their personal mobile
phones.

6.4 Integration with Execution Environment

An underlying assumption behind the notion that displays will be
open to many applications from third-parties is the idea that any
particular application is expected to be one of many that may si-
multaneously be running on a single display and requires sharing
the display resources, e.g., screen real estate or interaction fea-
tures. This means that a display system will employ optimization

4http://simplefocus.com/flowtype/ (just one example)

protocols between applications themselves and between applica-
tions and their execution environment. Application developers
do not know a priori the conditions in which their apps will be
running. Thus, applications could use these protocols to coordi-
nate between themselves to exhibit an integrated behavior, e.g.,
avoiding contradictory presentation times. In the following we
present three key aspects regarding the integration with execu-
tion environment.

Communication between the player and apps and between
apps themselves. This type of communication may help to coor-
dinate the content scheduling process, by allowing the container
to inform the app about the best moment to start, stop or prefetch
content presentation, and also inform the app about the allocated
presentation time. Likewise, the app may inform the container
about internal events that are relevant for the scheduling process,
such as content loaded or interactions received from users, or it
may request additional presentation time, request to be removed
from presentation or even take the initiative to request presen-
tation when certain events occur. In order to optimize network
resources usage, display applications should report their possi-
ble errors to the execution environment, so that it can channel
them more efficiently, e.g., to some application quality service
that then informs developers. Ideally, developers should have
access to libraries and tools for capturing errors and channeling
them appropriately.

Since our new player is not yet ready we did not address the
issue of integration with it. This integration will be a great plus
for the user experience offer by public displays in general. The
main role of the player is to act as a controller that is responsible
for the execution of each application. For instance, the commu-
nication between applications and player is needed in order for
the apps to inform the player when they are ready to be presented,
i.e., control the application start/stop time. A further example
for this communication includes managing of application errors,
e.g., reschedule an application or remove it from the presenta-
tion. In particular for the Video app, if there is a video currently
playing, instead of stopping the video when the time allocated to
an application elapses (actual behavior) the application can ask
for more presentation time.

Accessing local resources. The optimization protocols between
application and execution environment could also allow apps to
have access to local machine resources, e.g. a camera/Kinect de-
vice, or obtain information about the environment, e.g., display
ID or presence of people in the vicinity of a display.

So far, our applications did not consider the need for accessing
local machine resources. While this topic is of interest for us, our
focus was the use of Web technologies to study the requirements
of applications for public displays. For accessing the hardware
resources, the usage of third-party libraries would be mandatory.
DepthJS5 is one of such library that is under development of MIT
Media Lab. It is an open-source browser extension and plugin
(currently working for Chrome) and allows any Web page to
interact with the Microsoft Kinect using JavaScript. DepthJS
provides the low-level raw access to the Kinect as well as high-
level hand gesture events to simplify development.

Keeping state. Most of our applications keep state between
subsequent application calls. The applications store the state of

5http://depthjs.media.mit.edu – Last accessed on 7.07.2014

28 computer systems science & engineering

C. TAIVAN ET AL

the last content item shown and next time when it plays will not
show the same item again. In the majority of the applications we
used HTML5 Local Storage without any specific considerations
(only Video app used cookies).

7. FUTURE WORK

Deploying a display infrastructure in a real world environment
requires many software components to be in place. One such
component that has a key role in the overall experience of public
displays is the player that runs the applications and is able to act as
a scheduler. As Open Display Networks assume the provision of
applications from many sources that can be scheduled in different
ways, e.g., as users pass by, an app is not ready, the display
system would need to take decisions dynamically and most of
this functionality can be embed in the player. In our approach,
we considered the player as a Web-based component, that runs
in a browser and coordinate the most of the application events.
Therefore, the first priority for the future is to have the new
player ready and embed the features such as communication
with the apps using HTML5 Web Messaging [30], remove or add
applications to the schedule, log the errors and report them to the
application developers. Having this player in place will enable
a more fluid application presentation without putting people to
wait too much for the application to be ready. A second priority
is the communication between ourAPIs and apps. Based on Web
Sockets6, applications will be able to show the new content as
soon it arrives and it is ready rather than refreshing at 30s. And,
a third priority is to get a better understanding of disconnected
scenarios for display applications and to improve our knowledge
on the available technologies like App Cache and IndexedDB,
despite the lack of current services that tackle these issues in
desktop or mobile computing landscapes.

8. CONCLUSIONS

The openness and portability of Web technologies are key prop-
erties when considering the development and usage of third-party
applications in Open Display Networks. However, public dis-
plays represent a new frontier for Web technologies, with novel
usage situations and technical requirements. This means that a
Web-based development model for display applications would
be informed by specific activities e.g., adaptation procedures,
creation of new tools, complex configuring, redesign that make
sense only for the context of shared, large pervasive displays
and are not relevant for desktop or mobile computing cases. For
instance, not having a scroll in a public display is something that
makes different the development approach which might lead to
the emergence of new techniques. Similarly to what has hap-
pened in the mobile landscape, there is a need for specific ap-
proaches that enable display applications to seamlessly integrate
the content they generate on the presentation context of public
displays.

As part of an urban deployment of public displays, we have
created and deployed a number of applications, with different
characteristics and requirements. Based on these experiences,

6https://www.websocket.org/

we have consolidated our view on the best ways to adapt Web
technologies for the creation of display applications. We high-
lighted that while the Web has various building blocks that can
serve our scope, display apps have a number of specificities with
important implications on how web technologies can be used in
this context.

Firstly, we found that in order to effectively leverage on devel-
opers’ web development experience, clear development specifi-
cations, guidelines and tools are required for creating Web-based
display apps. Secondly, we provide a better understanding of
some of the specificities of display apps in form of a set of de-
sign and engineering issues that challenge developers, and how
it may shape the emergence of new Web-based models and wide
available application ecosystems. So far, we learnt from what
we have experimented with these specificities that: while many
Web techniques are ready available for the adoption for this type
of application, the challenges arise from the particular usage sce-
narios and user experience offered by Open Display Networks.

Acknowledgements

The research has received funding from “Fundação para
a Ciência e a Tecnologia”, under the research grant
SFRH/BD/75868/2011. We would like to thank our third party
developers João Teixeira, João Casal and Maximilian Müller for
their valuable insights.

REFERENCES

1. N. Davies, M. Langheinrich, R. José, and A. Schmidt, “Open Dis-
play Networks: A Communications Medium for the 21st Century,”
IEEE Computer, pp. 58–64, May-2012.

2. C. Taivan and R. José, “An application framework for open ap-
plication development and distribution in pervasive display net-
works,” in Proceedings of the 2011th Confederated international
conference on On the move to meaningful internet systems, Berlin,
Heidelberg, 2011, pp. 21–25.

3. D. Martín, D. López-de-Ipiña, A.Alzua-Sorzabal, C. Lamsfus, and
E. Torres-Manzanera, “A methodology and a web platform for the
collaborative development of context-aware systems.,” Sensors,
vol. 13, no. 5, pp. 6032–6053, 2013.

4. V. Pawan, Web Applications Design Patterns. Morgan Kaufmann,
2009, p. 448.

5. S. Clinch, N. Davies, A. Friday, and C. Efstratiou, “Reflections on
the long-term use of an experimental digital signage system,” in
Proceedings of UbiComp11, ACM, 2011.

6. T. Lindén, T. Heikkinen, V. Kostakos, D. Ferreira, and T. Ojala,
“Towards multi-application public interactive displays,” in Pro-
ceedings of the 2012 International Symposium on Pervasive Dis-
plays - PerDis ’12, 2012, New York, NY, USA, ACM.

7. S. Clinch, J. Harkes, A. Friday, N. Davies, and M. Satyanarayanan,
“How Close is Close Enough?? Understanding the Role of
Cloudlets in Supporting Display Appropriation by Mobile Users,”
in Proceedings PerCom’12, 2012.

8. W3C, “Mobile Web.” [Online]. Available:
http://www.w3.org/standards/webdesign/mobilweb. [Accessed:
08-Jul-2014].

9. W3C, “Web and TV Interest Group.” [Online]. Available:
http://www.w3.org/standards/webofdevices/tv. [Accessed: 8-Jul-
2014].

vol 29 no 6 January 2015 29

WEB-BASED APPLICATIONS FOR OPEN DISPLAY NETWORKS: DEVELOPERS’ PERSPECTIVE

10. S. Clinch, N. Davies, T. Kubitza, and A. Schmidt, “Designing
application stores for public display networks,” in Proceedings of
the 1st International Symposium on Pervasive Displays - PerDis
’12, 2012, pp. 1–6.

11. A. Erbad, M. Blackstock, A. Friday, R. Lea, and J. Al-Muhtadi,
“MAGIC Broker: A Middleware Toolkit for Interactive Public
Displays,” in PERCOM ’08 Proceedings of the 2008 Sixth An-
nual IEEE International Conference on Pervasive Computing and
Communications, 2008, pp. 509–514.

12. N. Memarovic, I. Elhart, and M. Langheinrich, “FunSquare: First
Experiences withAutopoiesic Content,” in Proceedings of the 10th
International Conference on Mobile and Ubiquitous Multimedia -
MUM ’11, 2011, pp. 175–184.

13. F. Alt, T. Kubitza, D. Bial, F. Zaidan, M. Ortel, B. Zurmaar, T.
Lewen, A. S. Shirazi, and A. Schmidt, “Digifieds: insights into
deploying digital public notice areas in the wild,” in Proceedings
of the 10th International Conference on Mobile and Ubiquitous
Multimedia - MUM ’11, 2011, pp. 165–174.

14. M. Geel, D. Huguenin, and M. C. Norrie, “PresiShare?: Oppor-
tunistic Sharing and Presentation of Content Using Public Displays
and QR Codes,” in Proceedings of the 2013 International Sympo-
sium on Pervasive Displays - PerDis ’13, 2013, NewYork, NY, USA,
ACM.

15. S. Hosio, H. Kukka, M. Jurmu, T. Ojala, and J. Riekki, “Enhanc-
ing interactive public displays with social networking services,”
in Proceedings of the 9h International Conference on Mobile and
Ubiquitous Multimedia - MUM ’10, 2010, pp. 23:1–23:9.

16. I. Elhart, “WE-BAT?: Web Based Application Template for Net-
worked Public Display Applications that Show User Contributed
Content,” in Poster at PerDis 13, 2013.

17. Locamoda, “Fifteen Seconds or More. Engaging Audiences With
Place-Based Social Media,” in White Paper, 2010.

18. T. Ojala, V. Kostakos, H. Kukka, T. Heikkinen, M. Jurmu, S. Hosio,
F. Kruger, and D. Zanni, “Multipurpose interactive public displays
in the wild: Three years later,” IEEE Comput., pp. 42–49, 2012.

19. A. Friday, N. Davies, and C. Efstratiou, “Reflections on Long-
Term Experiments with Public Displays,” Computer (Long. Beach.
Calif)., vol. 45, no. 5, pp. 34–41, May 2012.

20. T. Kubitza, S. Clinch, N. Davies, and M. Langheinrich, “Using
mobile devices to personalize pervasive displays,” ACM SIGMO-
BILE Mob. Comput. Commun. Rev., vol. 16, no. 4, pp. 26–27, Feb.
2012.

21. N. Memarovic and M. Langheinrich, “Beyond Web 2 . 0?: Chal-
lenges in Personalizing for Networked Public Display Environ-
ments,” in Pervasive Personalisation Workshop at Pervasive 2010.

22. C. Taivan, J. M. Andrade, R. José, B. Silva, H. Pinto, and A. N.
Ribeiro, “Development Challenges in Web Apps for Public Dis-
plays,” in 7th International Conference on Ubiquitous Computing
& Ambient Intelligence, UCAmI 13, 2013.

23. C. Taivan, R. José, and B. Silva, “Understanding the Use of Web
Technologies for Applications in Open Display Networks,” in PD-
Apps workshop at PerCom’14, 2014.

24. R. José, H. Pinto, B. Silva, and A. Melro, “Pins and Posters?:
Paradigms for Content Publication on Situated Displays,” IEEE
Comput. Graph. Appl., vol. 33, pp. 64–72, 2013.

25. S. R. Klemmer, J. Li, J. Lin, and J. A. Landay, “Papier-Mâché:
Toolkit Support for Tangible Input,” in Proceedings of the 2004
conference on Human factors in computing systems - CHI ’04,
2004, pp. 399–406.

26. J. Heer, S. K. Card, and J. A. Landay, “prefuse: a toolkit for inter-
active information visualization,” in Proceedings of the SIGCHI
conference on Human factors in computing systems - CHI ’05,
2005, p. 421.

27. W3C, “Offline Web applications — HTML5.” [Online]. Available:
http://www.w3.org/TR/2011/WD-html5-20110525/offline.html.
[Accessed: 08-Jul-2014].

28. W3C, “Web Storage.” [Online]. Available:
http://dev.w3.org/html5/webstorage/. [Accessed: 08-Jul-2014].

29. W3C, “Indexed Database API.” [Online]. Available:
http://www.w3.org/TR/IndexedDB/. [Accessed: 08-Jul-2014].

30. W3C, “HTML5 Web Messaging.” [Online]. Available:
http://www.w3.org/TR/webmessaging/. [Accessed: 08-Jul-2014].

30 computer systems science & engineering

