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Abstract The Sancho Reservoir, located in the Huelva

province (SW Spain), is supplied by the Meca River, which

receives water contaminated by mining activities in Thar-

sis. This study focused on determining the relationship that

temperature, pH, and electrical conductivity (EC) had with

rainfall. The temperature, pH, and EC were simultaneously

measured every 30 min by two probes suspended in the

Sancho Reservoir. It was anticipated that the use of fuzzy

logic and data mining would lead to a model that would

show how the contaminant load evolved over space and

time. Similar results were obtained for the two locations,

except that the parameters had more outliers near the dam

due to the greater distance from the contamination source.

As expected, higher pH corresponded with lower EC,

since, in the absence of chloride, sulphate was the principal

anion. The dependency relationship of the variables as well

as the cause–effect relationship with the rate of rainfall was

more evident in the up-gradient sampling location than

near the dam due to the different residence time and the

transit time between the two points.

Keywords Fuzzy logic � Iberian Pyrite Belt � Acid mine

drainage � Meca River

Introduction

Acid mine drainage (AMD) associated with surface and

underground mining in the Iberian Pyrite Belt (IPB) has

contaminated surface water in southwestern Europe

(Valente and Leal Gomes 2007; Younger 2001; Younger

et al. 2002). There is a legacy of about 90 abandoned

mines (Grande et al. 2013). The wells, open mines, open

pits, kilometres of tunnels, and 350 million m3 of dis-

persed waste are all potential contamination sources that

affect water, sediment, and the riverbanks. The contam-

inated water, with its low pH, and elevated metals and

sulphate, flows downstream and enters water reservoirs

(Santisteban et al. 2013), which must meet water quality

standards for human consumption and intensive agricul-

tural activity.

In semi-arid climates, dams are one of the most common

ways to meet the essential water requirements for socio-

economic development. The study area has a semi-arid

Mediterranean climate with an annual rainfall of

&630 mm/year, mild temperatures (averaging 17.1 �C and

a range of 50 �C). Rainfall occurs mainly in the autumn

and winter, with the summer and part of the spring being

dry (Santisteban et al. 2013).

The Sancho Reservoir, located in the Huelva province

(SW Spain), has a capacity of 58 MCM (Fig. 1). It is

supplied by the waters of the Meca River, which receives

contaminated AMD waters from Tharsis mining activities

via its tributaries. The dammed water is used to supply a

pulp and paper mill factory located 15 km downstream of

the reservoir in San Juan del Puerto (SW Spain).
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Fig. 1 Location map

Table 1 Statistical data of the variables of the 28 samples obtained at the Rivera Meca-Sancho AMD zone (Grande et al. 2010)

pH EC (lS/cm) Eh (mV) As (lS/cm) Cd (lS/cm) Cu (mg/L) Zn (mg/L) Fe (mg/L) Mn (mg/L) SO4
2- (mg/L)

Minimum 2.15 2,560 425 0.01 20.11 340.7 190.1 25.7 55.9 5,317

Maximum 2.72 15,810 623 2.11 45.26 607.3 556.5 261 183.6 11,700

Average 2.43 6,035 520.7 0.89 32.36 443.3 440.9 91.4 147.5 7,937

Variance 0.05 2.06E07 4,325.07 0.84 104.52 10,949.8 12,256.8 5,257.17 1,518.21 4.12E06

Table 2 Hydrochemical data of the Sancho Reservoir for October, 2011 (Ceron et al. 2013)

Minimum Maximum Average Variance

pH 3.5 4.67 3.93 0.23

T (�C) 14.6 25.8 22.4 20.1

CE (lS/cm) 401 472 442 279

TDS (mg/L) 257 302 283 116

DO (mg/L) 0.16 6.16 3.4 5.51

Fe (mg/L) 0.54 1.16 0.755 0.02508

Cu (mg/L) 0.418 0.807 0.6362 0.00763

Zn (mg/L) 1.493 2.723 22.717 0.12881

Mn (mg/L) 1.079 1.677 1.484 0.01409

Cd (mg/L) 0.108 0.147 0.132 9.2E-05

Ni (mg/L) 0.00947 0.01049 0.01028 6.61E-08

Sb (mg/L) 0.0012 0.0034 0.0023 5.2E-07

Pb (mg/L) 0.275 1.912 10.268 0.12669

Al (mg/L) 0.0278 0.2018 0.1029 0.00267

SO4 (mg/L) 170 199 182 91.2
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The Tharsis mining complex is responsible for the worst

levels of contamination by AMD recorded in the Odiel

River basin (Sarmiento et al. 2009). Tables 1 and 2 show

the physicochemical parameters of the Meca-Sancho Ri-

vera AMD zone and the hydrochemistry of Sancho Res-

ervoir, respectively.

Ceron et al. (2013) and Grande et al. (2013) defined

vertical hydrochemical variations in the Sancho water dam

and the establishment of potential vertical and horizontal

stratification patterns with respect to metals and sulphate.

Sarmiento et al. (2009) conducted a study tracking the

accumulation and release of metals associated with AMD

in the Sancho Reservoir, analysing the impact of these

cycles relative to water quality and sediment.

The application of fuzzy-logic tools to the character-

ization of pollution processes provides more consistent

answers than classical statistics (Aroba et al. 2007; Grande

et al. 2005). Grande et al. (2005) characterized the

hydrochemistry at the Chorrito stream, located in the IPB,

and describes the dynamic behavior of the riverbed.

Jimenez et al. (2009) applied fuzzy logic and data mining

to the acquired data from a multi-parameter probe located

in the Chorrito stream, which allowed him to establish a

qualitative pattern describing the relationship between pH

and conductivity in an AMD-contaminated channel.

Grande et al. (2005), using classical statistics, compared

the geochemical behavior of two channels, the AMD-

contaminated Chorrito stream and the uncontaminated

Higuereta stream, both located in the IPB. This comparison

focused on the relation between the variables studied,

including pH and conductivity.

Objectives and Methods

This study focused on the relationship between three

physical parameters, temperature (T), pH, and electrical

conductivity (EC), with rainfall. The Meca River collects

AMD from the Tharsis Mine and flows into the Sancho

Reservoir. Daily precipitation data were taken from a State

Meteorological Agency (AEMET) monitoring station

located at San Bartolome de la Torre. The T, pH, and EC

data was collected using two multi-parameter probes

(Hydrolab Company, Minsonde and MS5 models) sus-

pended from buoys at a depth of 0.5 m from the water

surface. One probe was located near where the Meca River

flows into the Sancho Reservoir and the other near the

reservoir’s dam (Fig. 2). They were programmed to

simultaneously measure T, pH, and EC every 30 min at the

two sampling points. The probes were maintained (clean-

ing of sensors, calibration, and battery replacement)

weekly, and data were dumped into a laptop computer. The

monitoring lasted from 1 October 2012 to 2 April 2013,

which corresponds to the rainy season in this area, and

therefore, with the period of the year when water flows

through the channel that carries AMD. This makes a full

series of 184 days during which a total of 8,825 data points

on pH and EC were collected every 30 min. This large

mass of data was processed using fuzzy logic and data

mining using PreFuRGe (Aroba 2003; Aroba et al. 2007).

Statistical Methods

Fuzzy logic is a highly effective technique for diagnosing

the extent that the environment is affected by agricultural,

urban, and industrial activities. Using this technique allow

one to obtain very valuable information that would be

impossible using only classical statistics. Fuzzy logic

(Zadeh 1965) operates using reasoning rules that closely

approximates a human’s intuitive way of thinking. The

main characteristic of fuzzy logic is that it allows one to

define values without being precise. This is not possible

with classical logic, which is typically binary in nature: one

is either a member or not. Fuzzy logic allows for rela-

tionships of samples with a certain degree of associated

sets. This degree is called the membership degrees of an

element of a set, S. The set X represents a range of values

of the variable x, with the range spanning from 0 to 1,

Fig. 2 Representative diagram

of the sampling points
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where each extreme value represents an absolute, either

membership or non-membership, to the set under con-

sideration. The membership grade can be represented by

shape functions, normally trapezia, triangles, or sigmoi-

dal. For example, working with pH data that range from

2.00 to 7.00, the universe of discourse for pH variation

could be described by the following fuzzy sets (Fig. 3):

very low pH, low pH, and moderate pH. The fuzzy sets at

the extremes are right-angled triangles, and the core set is

an isosceles triangle (highlighted in gray for better

understanding). Then, the expression, the pH of the

sample is average is true, with a grade of 0.75 for a

sample with pH 6.37. However, for the same samples, the

expression the pH of the sample is low is true, with a

grade of 0.25.

Once all of the variables involved in a problem are

coded to the qualitative domain applying membership

functions criteria, then it is possible to write a set of rules

describing the relationships that exist between input and

output variables. These rules are set up in an if–then for-

mat, consisting of an antecedent and a consequence; the

fulfillment of an antecedent leads to a conclusion. The

main characteristic of reasoning based on rules of this type

is the ability to represent and consider partial coincidence,

allowing fuzzy rules to provide interference, even when a

condition or premise is only partially satisfied. For

example: if x is A, then y is C or if x is A, and z is B, then y

is C, where A, B, and C are fuzzy sets, and x, y, and z are

variables defined in their respective universes of discourse.

The first rule has a single antecedent and the second has a

compound antecedent.

Classical clustering algorithms generate a partition of

the population where the assignation to each case is linked

to only one cluster. These algorithms use a rigid partition

derived from classical set theory: the elements of the par-

tition matrix (obtained from the data matrix) can only

contain values 0 or 1, where zero means null memberships

and one means full membership.

Fuzzy partition is a generalization of the previous

case, so it holds the same conditions and restraints for its

elements, except in this case, real values between zero

and one are allowed and reveal partial membership

grade. Therefore, samples may belong to more than one

group, increasing their selecting and clustering capacity.

The best known general-purpose fuzzy clustering algo-

rithm is the so-called fuzzy C-means (FCM) (Bezdek

et al. 1984), which can be used to build fuzzy models

(Sugeno and Yasukawa 1993). We have adapted and

improved the following aspects of these familiar

methodologies:

1. Quantitative databases can be worked with n input and

m output parameters,

2. The different variables, which are the object of the

study, could be assigned with different weights in

order to calculate distances between points in a

partitioned space.

3. The fuzzy clusters obtained are processed by another

algorithm to acquire graphic trapezia rules.

4. An algorithm processes and solves cases of multiple

projections in the input space (mounds of data).

5. The output provided in the original method has been

improved with a graphic interface showing graphics of

the rules obtained.

6. An algorithm automatically provides the graphic

interpretation of the fuzzy rules in a natural language.

The result is PreFuRGe (Aroba 2003), a computer

tool that provides graphical fuzzy rules of the type

shown in Fig. 4, which illustrates the graphical fuzzy

Universe of discourse of the set X: pH values.
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Fig. 3 Example of membership functions used to codify a set of pH

values by means of fuzzy logic
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Fig. 4 Example of graphical

fuzzy rule
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rule: if x is small or big and y is average, then z is very

small.

Results

Figures 5, 6, 7, and 8 show the fuzzy rules obtained from

the data collected by the multi-parameter probes installed

at the Sancho Reservoir describing the behaviour of the

variables under study: rainfall, pH, EC, temperature (T),

and sampling period expressed in months (Month). All

information collected for the different variables is repre-

sented in 6 rows and 5 columns. The furthest right column

represents the consequence; this graphic represents how the

considered parameters (antecedents) behave relative to the

consequent value. Notice how, for each fuzzy rule, the

affected variables shown at the bottom of the figure rep-

resents its degree or range of dispersion. There are several

numerical values that correspond with the universe of

discourse of the variable in question, which, in classical

statistics, is known as the range or amplitude of the

variable.

The semi-quantitative nature of this tool, applied to the

scenarios described, allows them to be sorted into five

classes, depending on the values taken by each variable

within its own universe of discourse. So, the existence of

extremely low, low, medium, high, and extremely high

values is feasible, along with all possible intermediate

combinations, e.g. medium–low and medium–high. In the

same context, Fig. 5 shows the rules obtained for the up-

Fig. 5 Fuzzy rules taking pH as the consequent and the rest of the variables at the tail as the antecedent
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gradient reservoir probe (which is subsequently referred to,

per Spanish terminology, as the ‘‘tail’’ of the reservoir,

which unfortunately happens to be the opposite of standard

English terminology) using pH as the consequence. The pH

values increase along with the months and temperature,

while the EC presents the opposite behaviour, decreasing

as pH increases.

It should be highlighted that at average pH, both EC and

T show very close values, from low to extremely low, and

from medium to low, respectively. This occurs during the

months of March and April when rainfall varied from

extremely low to high.

Figure 6 shows the rules obtained at the down-gradient

sampling location, near the dam, with pH as the conse-

quence. In this case, the behaviour during the months and

the temperatures versus pH is totally opposite what is

observed at the tail of the reservoir. The pH has an inverse

relationship with months and T; as the months and the

temperature increase, the pH value decreases. The rela-

tionship between pH and EC is also different from what

was observed at the tail. The EC does decrease as the pH

increases from extremely low to medium–high values;

however, for high and extremely high pH values, there is

no relationship between pH and EC. As in the case at the

tail, when the pH in the reservoir takes average values, the

EC has very well defined values that go from low to

extremely low during the months of March and April, when

rainfall ranges from extremely low to medium.

Figures 7 and 8 show the rules obtained for the two

monitoring points, with rainfall as the consequence. In

Fig. 6 Fuzzy rules taking pH as the consequent and the rest of the variables at the dam as the antecedent
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general, it can be seen that when rainfall is extremely low,

the other parameters appear random, with no clear rela-

tionship between rainfall and the other parameters. How-

ever, looking at months and temperature, we can see that

the behaviour at the two monitoring points is similar,

although unusual in both cases.

Discussion and Conclusions

This application of fuzzy logic and data mining for AMD

characterization confirmed operational models that had

been previously proposed for this area using classical sta-

tistics. PreFuRGe provided a remarkable dimension of

overall efficiency for qualitative diagnosis. It was also used

to establish cause–effect relationships that, in contrast with

classical statistical treatments, made understanding the

processes involved easier.

Several authors have reported the absence of a corre-

lation between pH and conductivity in AMD environ-

ments (Dogan 1999; Grande et al. 2005; Kwong and

Lawrence 1998; Liew and Sheppard 2001; Younger

1997; Younger et al. 2002). But according to Grande

et al. (2010), pH has a high, negative correlation with

EC. This should be expected since the sulfate oxidation

process generates, on the one hand, sulfate, which

increases EC, and hydrogen ions, which acidifies water

and decreases pH (Grande et al. 2010). This highly

negative correlation between pH and EC was confirmed

at the tail of the reservoir, but was less evident near the

dam. This can be explained by dissolution processes

associated with contaminant transit and the high volume

of water in the reservoir. As expected, higher pH corre-

sponded with lower EC values, as a direct result of

sulphate concentrations in the virtual absence of chloride

(Grande et al. 2010). The behaviour of the variables

versus rainfall was similar at both monitoring locations

except that there were more outliers near the dam due to

the distance between the AMD source area and the

sampling point.

As a final conclusion, we can say that the PreFuRGe

tool, already implemented in other AMD environments, is

Fig. 7 Fuzzy rules taking rainfall as the consequent and the rest of the variables at the tail as the antecedent
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an effective tool for studying this kind of environment. It

made the dependency relationships of variables, as well as

the cause–effect relationship with the rainfall, obvious.
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Model of behaviour of conductivity versus pH in acid mine

drainage water, based on fuzzy logic and data mining techniques.

J Hydroinformatics 11(2):147–153

Kwong YTJ, Lawrence JR (1998) Acid generation and metal

immobilization in the vicinity of a natural acid lake in Central

Yukon Territory, Canada. In: Geller W, Klapper H, Salomons W

(eds) Acid mining lakes. Springer, Toronto

Liew D, Sheppard J (2001) Use of conductivity to monitor the

treatment of acid mine drainage sulphate reducing bacteria.

Water Resour 35(8):2081–2086

Santisteban M, Grande JA, de la Torre ML, Valente T, Cerón JC

(2013) Acid mine drainage in semi-arid regions: the extent of the

Fig. 8 Fuzzy rules taking rainfall as the consequent and the rest of the variables at the dam as the antecedent

Mine Water Environ

123

http://dx.doi.org/10.1080/02626667.2013.834341
http://dx.doi.org/10.1080/02626667.2013.834341
http://dx.doi.org/10.1007/s12665-013-2652-0


problem in the waters of reservoirs in the Iberian Pyrite Belt (SW

Spain). Hydrol Res. doi:10.2166/nh2013086

Sarmiento M, Olı́as M, Nieto JM, Cánovas C, Delgado J (2009)

Natural attenuation processes in two water reservoirs receiving

acid mine drainage. Sci Total Environ 407:2051–2062

Sugeno M, Yasukawa A (1993) A fuzzy-logic based approach to

qualitative modeling. IEEE Trans Fuzzy Syst 1:7–31

Valente TM, Leal Gomes C (2007) The role of two acidophilic algae

as ecological indicators of acid mine drainage sites. J Iber Geol

33(2):283–294

Younger PL (1997) The longevity of mine water pollution: a basis for

decision-making. Sci Total Environ 195:457–466

Younger PL (2001) Mine water pollution in Scotland: nature, extent

and preventative strategies. Sci Total Environ 265(1–3):309–326

Younger PL, Banwart SA, Hedin RS (2002) Mine water, hydrology,

pollution, remediation. Kluwer Academic Publ, Dordrecht

Zadeh LA (1965) Fuzzy sets. Inf Control 83:338–353

Mine Water Environ

123

http://dx.doi.org/10.2166/nh2013086

	Fuzzy Intelligence Approach for Modeling the Migration of Contaminants in a Reservoir Affected by AMD Pollution
	Abstract
	Introduction
	Objectives and Methods
	Statistical Methods

	Results
	Discussion and Conclusions
	References


