
3D MICRO SIMULATION OF MILKRUNS AND PICKERS IN WAREHOUSES USING

SIMIO

António Vieira1, Luís S. Dias2, Guilherme B. Pereira2, José A. Oliveira2, M. Sameiro Carvalho2 and Paulo

Martins2

(1) (2) University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.

(1) antonio6vieira@gmail.com, (2) lsd/gui/zan/sameiro/pmartins@dps.uminho.pt

KEYWORDS

Warehouse, milkrun, picker, Micro simulation, Simio,
3D.

To help the Bosch Car Multimedia Portugal in
Ferreiros, Braga to reduce its costs (both in time and
space) with its warehouse, a micro simulation model is
being developed in Simio. Particularly, the tool needs to
be able to model pickers riding milkruns to collect
containers of products, from a warehouse, to satisfy the
needs of the production lines. In this sense, the storage
strategy used on the warehouse, the quantity of requests
a picker gets per shift, the time between shifts, the
number of types of products, the arrival rate of requests,
and the number of milkruns and pickers needs to be
adjustable. Additionally, to design the corridors of the
warehouse in a configurable way, an Add-in in C#, using
the API of Simio, is being developed. Thus, this paper
intends to document the first part of the simulation model
developed, which consists on the pickers receiving
requests and riding their milkruns to collect the
respective containers from the warehouse. Five different
Simio models compose the main simulation model.
Conclusions and future work are discussed.

1. INTRODUCTION

In recent years, the Bosch Group has been applying
concepts of the Toyota Production System (TPS)
(Monden, 1998) and of the Lean Manufacturing
(Womack et al., 1990, Womack and Jones, 1996),
designated as Bosch Production System (BPS) (Yildiz et
al., 2010, Costa et al., 2011). The purpose of the BPS is
to “eliminate waste in production and all related business
processes. BPS provides the basis for continuous
improvements in quality, costs, and supply performance”
(Bosch, 2014).

A significant part of the costs of a company are its
warehouses (Baker and Canessa, 2009). Since one of the
objectives of the BPS is to reduce costs, the need, to
study alternatives to the current design and picking
system of the warehouse on the company Bosch Car
Multimedia Portugal in Ferreiros, Braga, arose.

In this context, a micro simulation model, using
Simio, is being developed. The tool needs to be able to
model pickers riding milkruns to collect containers of
products, from the channels of a warehouse, to satisfy
the needs of the production lines. A Channel is the basic
unit for storage in this warehouse. Each has the capacity

to hold several containers. On the other hand, a container
holds many units of one type of product.

The storage strategy used in this warehouse is the
dedicated. This is the most simple that can be used, since
it consists on having a channel dedicated to a single type
of product (Bartholdi and Hackman, 2008). One of its
great advantages, resides on the fact that, since the
locations of the product don’t change, the pickers can
memorize them, making the picking process more
efficient (Bartholdi and Hackman, 2008). Nevertheless,
the problem with this strategy is that “it does not use
space efficiently. In fact, it is expected that, on average,
the storage capacity is about 50%” (Bartholdi and
Hackman, 2008), which represents a high amount of
costs associated. To overcome this problem, other
strategies can be considered (e.g. random storage). Thus,
the simulation model must be able to model several
storage strategies. In addition to that, the quantity of
requests a picker gets per shift, the time between shifts,
the number of types of products, the arrival rate of
requests, and the number of milkruns and pickers need to
be configurable.

Additionally, the warehouse is composed by
circulation corridors for milkruns that gives them access
to corridors of racks. In its turn, each rack is composed
by a variable number of channels, in height and in width,
whereby it is necessary to create several layouts of the
warehouse. To do so, the API of Simio is being used to
create an add-in, in C#. The latter reads data from an
excel file, where the user is able to specify several inputs,
e.g. the number of corridors, their positions, their rotation
angles, the number of channels on each rack (in height
and in width), among others. Nevertheless, the creation
of the add-in will not be covered in this paper. Regardless
of that, the simulation model was built so that several
layouts of the warehouse could be modelled. Thus, this
paper intends to document the first part of the simulation
model developed, which consists on the pickers
receiving requests and riding their milkruns to collect the
respective containers from the warehouse. The return of
the leftover containers and the restock processes are not
yet modelled.

Chapter 2 presents a review over the analysed
literature. In chapter 3, a description of the actual state at
the case study is given. In chapter 4, the several
modelling steps conducted to develop the simulation
model are covered. Lastly, in chapter 5, the main
conclusions of the conducted work, as well as some
future work, are discussed.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634528?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. LITERATURE REVIEW

2.1. The Case Study

According to Coyle et al. “Warehousing provides
time and place utility for raw materials, industrial goods,
and finished products, allowing firms to use customer
service as a dynamic value-adding competitive tool”
(1988). Thus, warehouses represent a very important role
on modern supply chains (Baker and Canessa, 2009).

In fact, “whilst warehouses are critical to a wide
range of customer service activities, they are also
significant from a cost perspective. Figures for the USA
indicate that the capital and operating costs of
warehouses represent about 22% of logistics costs
(Establish, 2005), whilst figures for Europe give a similar
figure of 25%” (Baker and Canessa, 2009). These costs
impel us to understand the problematic and to use the
storage space as efficiently as possible (Bartholdi and
Hackman, 2008).

Thus, the need to provide companies with methods
capable of improving the performance of warehouses
arises. According to Gu et al., some of these methods
include simulation, analytical methods and
benchmarking. The former is the most used whether in
literature or in practice (2010). One example is the
simulation model developed by Costa et al. using Arena.
The authors conducted experiments to identify changes
that could be made on a material delivery system to
improve the efficiency and precision of the logistic train
functioning they were modelling (2008).

Since the number of simulation tool options can be
very high, tool comparison becomes a very important
task. However, most of scientific works related to this
subject “analyse only a small set of tools and usually
evaluating several parameters separately avoiding to
make a final judgement due to the subjective nature of
such task” (Dias et al., 2007).

Hlupic and Paul (1999) compared a set of
simulation tools, distinguishing between users of
software for educational purpose and users in industry.
In his turn, Hlupic (2000) developed “a survey of
academic and industrial users on the use of simulation
software, which was carried out in order to discover how
the users are satisfied with the simulation software they
use and how this software could be further improved”.
Dias and Pereira et al. (2007, 2011) compared a set of
tools based on popularity on the internet, scientific
publications, WSC (Winter Simulation Conference),
social networks and other sources. “Popularity should
never be used alone otherwise new tools, better than
existing ones would never get market place, and this is a
generic risk, not a simulation particularity” (Dias et al.,
2007). However, a positive correlation may exist
between popularity and quality, since the best tools have
a greater chance of being more popular. According to the
authors, the most popular tool is Arena and the good
classification of the Simio is noteworthy. Based on these
results, Vieira et al. compared both tools taking into
consideration several factors (2014a).

2.2. Simio

Simio was the chosen tool for this project. It is based
on intelligent objects (Sturrock and Pegden, 2010,
Pegden, 2007, Pegden and Sturrock, 2011). These “are
built by modellers and then may be used in multiple
modelling projects. Objects can be stored in libraries and
easily shared” (Pegden, 2013). Unlike other object-
oriented systems, in Simio there is no need to write any
programing code, since the process of creating a new
object is completely graphic (Pegden and Sturrock, 2011,
Pegden, 2007, Sturrock and Pegden, 2010). The activity
of building an object in Simio is identical to the activity
of building a model. In fact there is no difference
between an object and a model (Pegden, 2007, Pegden
and Sturrock, 2011). A vehicle, a costumer or any other
agent of a system are examples of possible objects and,
combining several of these, one can represent the
components of the system in analysis. Thus, a Simio
model looks like the real system (Pegden and Sturrock,
2011, Pegden, 2007). This fact can be very useful,
particularly while presenting the results to someone non-
familiar to the concepts of simulation.

In Simio the model logic and animation are built in
a single step (Pegden and Sturrock, 2011, Pegden, 2007).
This feature is very important, because it makes the
modulation process very intuitive (Pegden and Sturrock,
2011). Moreover, the animation can also be useful to
reflect the changing state of the object (Pegden, 2007). In
addition to the usual 2D animation, Simio also supports
3D animation as a natural part of the modelling process
(Sturrock and Pegden, 2010). To switch between 2D and
3D views the user only needs to press the 2 and 3 keys of
the keyboard (Sturrock and Pegden, 2010). Moreover,
Simio provides a direct link to Google Warehouse, a
library of graphic symbols for animating 3D objects
(Sturrock and Pegden, 2010, Pegden and Sturrock,
2011).

Simio offers 2 basic modes for executing models:
the interactive and the experimental modes. In the first it
is possible to watch the animated model, which is useful
for building and validating the model. In the second, it is
possible to define properties of the model that can be
changed, in order to see the impact on the system
performance (Sturrock and Pegden, 2010).

Notwithstanding the fact that this is a recent tool, it
is already possible to find many studies that use this tool.
Vik et al. (2010) used Simio to model a logistic system
design of a cement plant. Vieira et al. also used Simio to
model traffic intersections, so that they could evaluate
the impact on the performance when pre-signals were
introduced (2014b).

3. MODEL DEVELOPMENT

Throughout this chapter, some terms will be used
that may be unknown for a user not familiar with Simio.
For those, a reading of the paper written by Vieira et al.
(2014a) would be advisable. Additionally we will refer
to the warehouse of the company as the supermarket.

For this simulation project, 4 types of entities and 5
models (4 sub-models and a main one) were created. In

the first section of this chapter, the former will be
presented, while the models will be analysed on the
following sections. Particularly, the main goals, the
properties and the external view of the sub-models will
be presented, so that it becomes easier to understand their
use on the main model, which will be addressed in the
last section. The 4 created types of entities were:

3.1. Types of Entities

 Picker: Represents the pickers of the system. Their
functions are to collect Requests at the beginning of a
shift and take Containers from Channels of the
Supermarket to place them on the Milkrun.

Figure 1: Symbol of the Picker entity

 MilkRun: Represents the milkruns of the system. Its
only purpose is to transport the Picker and the selected
Containers between the Supermarket.

Figure 2: Symbol of the MilkRun entity

 Request: Represents the request of the system

Figure 3: Symbol of the Request entity

 Container: Represents the containers of the system.

Figure 4: Symbol of the Container entity

3.2. GoToMilkRun

The only property defined for this model was a
Process property named Process. Thus, one can use it to
specify different processes to be executed at certain
simulation times.

Since Containers and Picker travel on a MilkRun
and Containers are added to the batch of the latter, there
was a need to separate the Picker from the Containers, in
order for the animation to become more realistic.
Therefore, the model GoToMilkRun was created. Its
only purpose is to transfer a Picker to the riding station
of the respective MilkRun. This way, the Picker will
seem to be riding the MilkRun, while the Containers will
stay at the wagon of the MilkRun. Figure 5 presents the
external view of the model

Figure 5: External view of the GoToMilkRun model

3.3. StopPlace

The properties defined for this model were:
 Place: Numeric property that works as an identifier
number of the instances of this model placed on the
Supermarket.
 Rack: String property that identifies the Rack that
this model belongs to.
 LastOfCorridor: Boolean property to indicate
whether this model is the last of a corridor or not.
 ConnectTo: Object property to specify instances of
this model. Used when a corridor has sets of channels on
both sides.

The main goals of this model are: to model the
MilkRun stopping; the Picker leaving the MilkRun to the
set of Channels reachable from this StopPlace; the
placement of the Container the Picker brought on the
batch of the MilkRun and to evaluate whether the Picker
needs to return to the Channels or not. The Facility of this
model is presented on Figure 6 and its external view is
presented on Figure 7. Apart from the nodes this model
also has a queue to display the MilkRuns stopped on this
model.

Figure 6: Facility of the StopPlace object

Figure 7: External view of the StopPlace model

3.4. StopPlace_Channel

No properties were defined for this model since its
only purpose is to create a copy of a Picker that left the
MilkRun and place it in front of the set of Channels. On
the other hand, the original entity travels through the set
of Channels and this model. Had this model not been
created and during the animation, what would be seen,
would be the Picker going completely inside the
Channels, regardless of its height. Additionally, after
entering the Channel the Picker would disappear for
some time, before returning with the selected Container.
Figure 8 displays the external view of this model. As can
be seen, apart from the nodes, the model also has a queue
to display the copy of the Picker.

Figure 8: External view of the StopPlace_Channel model

3.5. Channel

The properties defined for this model were:
 Position: Numeric property that works as an
identifier number of the instances of this model placed
on the Supermarket.
 TotalProducts: Expression property that indicates
the number of types of products to be modelled.
 StockPolicy: Expression property. This property
indicates the stock strategy to be modelled. Since the
restock process is not yet modelled, the containers are
being created inside each Channel. Thus, this property
indicates if the type of each container being created should be
in accordance to the channel (dedicated storage) or not.
 StopPlace: Numeric property. The value of this
property must be equal to the Place property of the
StopPlace that allowed the Picker to reach this model.

The main purpose of this model is to model the
behaviour of the Pickers, when they analyse a channel of
a warehouse to select the container they want. The
external view of this model is presented on Figure 9. As
can be seen, apart from the nodes, the model also has a
queue to display the containers on this Channel.

Figure 9: External view of the Channel model

3.6. Supermarket

On the Facility of this model, all the object that
compose the supermarket itself will be placed. Those
objects include instances of the previously presented
models. As such, we will refer to those instances as
objects, not models. Figure 11 shows an example of a set
of Channels designed with the API.

The properties defined for this model were:
 NumberMilkRuns: Expression property that
indicates the number of MilkRuns and Pickers to be
modelled.
 StockPolicy: Expression property. It indicates, to all
instances of the Channel model, the storage strategy
being used.
 NumberRequests: Expression property that defines
the way the Pickers add Requests to their batches.

 TotalProducts: Expression property that indicates,
to all instances of the Channel model, the number of
types of products to be modelled.
 RequestsIntensity: Expression property that defines
the average Interarrival time of Requests to the system.

In order to access all the Channel and StopPlace
objects placed on the Supermarket, two data tables were
developed: Channels to gather all the Channel objects
and StopPlaces to gather all StopPlace objects. Each
object occupies an index of the data table correspondent
to its Place or Position property, whether it is a Channel
or a StopPlace. Additionally, the Corridors data table was
created to gather all the information of all the corridors.
Figure 10 shows an example of a Corridors data table.

Figure 10: Corridors data table

As can be seen, the data table holds information
relative to the rotation angle of the corridors, the number
of ways and the identifier numbers. The former will not
be analysed on this paper.

Figure 11: Example of a rack

3.6.1. Requests Creation

Since the production lines were not modelled, the
arrival of requests to the system needs to be based on a
distribution expression. Thus, to define its creation rate
an exponential expression, with an average defined by
the RequestsIntensity, was used. Lastly, to define the
type of product the Request refers to, the following
expression is executed, when a Request is created:
𝑀𝑎𝑡ℎ. 𝑅𝑜𝑢𝑛𝑑(𝑅𝑎𝑛𝑑𝑜𝑚.𝑈𝑛𝑖𝑓𝑜𝑟𝑚(1, 𝑇𝑜𝑡𝑎𝑙𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠))

The number returned by the expression is saved on
the ref state of the Request. To associate the number to a
type of product, a list of products is imported from excel
to the data table ProductData, at the beginning of the
simulation run. Thus, the number returned by the
expression corresponds to the data table row number.

After being created, the Requests enter a Combiner
where they will be added to the batch of Pickers.

3.6.2. Creation of Pickers and MilkRuns

The creation of these types of entities only occurs at
the beginning of the simulation run and their quantity is
equal to the value on the property NumberMilkRuns.
Lastly, when they are created, each entity is assigned
with an identifier number that is unique for each pair of
entities Picker and MilkRun. This way, a Picker is
associated to a MilkRun and vice-versa.

3.6.3. Set Up the Shifts of the Pickers

After being created, the MilkRuns enter a
GoToMilkRun object, where each will wait for the
correspondent Picker. In its turn, after the creation of the
Pickers, they enter on the ParentInput node of a
Combiner. The capacity of this node is set to 1 so that no
conflicts occur when adding Requests to the batch of the
Pickers. Once a Picker is inside the node, the process
illustrated on Figure 12, is executed.

Figure 12: Process CheckIfRequests

The goals of this process are to make the picker wait
for its turn and to specify the quantity of Requests (on the
state BatchedRequests) to be added to its batch, taking
into consideration that both depend on the
NumberRequests property. In this sense, if the property
has a negative value, the Picker waits an amount of time
(in minutes) equal to the module of that value. In this
case, the number of Requests that are on the Combiner
object, is saved to the BatchedRequests state. This way,
when the Picker enters the Combiner object itself, that
number of Requests are added to its batch. On the other
hand, if the value is positive, the associated token will
save that number to the BatchedRequests state of the
Picker. Once on the Combiner, it will wait the time
needed for that amount of Requests to be added to its
batch. After the batch is formed, an associated will
execute the process displayed on Figure 13.

Figure 13: Process GetDestinies

The goal of this process is to save all the Channels
that have the Containers correspondent to the Requests
added, on an object array of the Picker. This way, each
Picker has its own array of destinies. When analysing the
Requests, the token saves the number identifier of the
Picker on the state Requested of each Request. By doing
so, it is ensured that there will be no exchanges of
Requests during a picking shift. Lastly, when analysing
each Container, the token also saves the ID of the Picker
on their Requested state. This way, since the Containers
are requested, it is ensured that the destinies of the Picker
are the right ones and that no other Picker will take the
Container requested.

Once the process ends, the Picker enters the
GoToMilkRun object, where the corresponding MilkRun
is. In this object the Picker will be transferred to the
riding station of the MilkRun. Additionally, on the
Process property of this object the value GetStopPlaces
is inserted, i.e., the MilkRun will have an associated
token execute that process. Figure 14 shows the process
GetStopPlaces. Similarly to the process GetDestinies,
this intends to save the StopPlaces where the MilkRun

needs to enter, to an array of objects of each MilkRun.
To that end, the StopPlace, with a value on the Place
property equal to the value of the StopPlace property of
the Channel on the array of destinies of the Picker, will
be added. It should be noted that no repeated objects are
added. Once the process ends, the MilkRun leaves the
object and initiates its picking shift.

Figure 14: Process GetStopPlaces

3.6.4. Shifts of the Pickers

We prepared our simulation model to model two
types of corridors. In the first, the MilkRuns only have
access to corridors of racks on one side of the corridor.
In the second type, they have access to corridors of rack
on both sides. Figure 15 and Figure 16 display examples
of corridors of type 1 and 2, respectively. It should be
noted that the placement of the objects this way only
intends to make it simpler to understand the way the
corridors work. In fact, the real model is constructed via
the Simio API, even though this will not be addressed in
this paper.

Figure 15: Example of a corridor of type 1

Figure 16: Example of a corridor of type 2

As can be seen, regardless of the type of the
corridor, both have two circulation directions and two
entry nodes. Considering Figure 15, it is possible to
verify that TransferNode48 works as the entry node of
one circulation direction (left to right) and
TransferNode49 works as the entry node of the
remaining circulation direction. The same logic is
applicable to Figure 16. However, it is also possible to

model one-way corridors. To do that, it is only necessary
to update the Corridors data table (Figure 10), on the
NumberOfWays column and on the row correspondent
to the corridor, to 1. For this situation, a Path that
connects both entry nodes of the corridor was placed.
This way, if it is supposed to be a one-way corridor, the
MilkRun selects the Path that takes it to the right entry
node. For instance, if the corridor from Figure 15 has
only one way of circulation and a MilkRun enter
TransferNode49, it would select the Path to the
TransferNode48, in order to enter from the right.

All the Paths that take the MilkRuns to a
TransferNode that works as an entry node of a corridor,
update the state target of the MilkRuns to the value of the
Place property of the first StopPlace of that corridor.
After entering the node itself the process represented on
Figure 17 is executed.

Figure 17: Process EnterCorridorOrNot

This process intends to evaluate if a MilkRun enter
a corridor, or not. To do that, the previously updated
target state of the MilkRun is used as an index of the
StopPlaces data table. This way, the associated token can
evaluate if a StopPlace of that corridor belongs to the
array of destinies of the MilkRun. Since the token needs
to know if the StopPlace being evaluated is the last of the
corridor, the property LastOfCorridor needs to be
checked. Lastly, in the possibility of being a type 2
corridor the ConnectTo property of all StopPlaces needs
to be analysed. If there is an object specified on that
property, the token also needs to evaluate if it exists on
the array of destinies of the associated MilkRun.

If any of the StopPlaces on the corridor belong to
the array of destinies of the MilkRun, the associated
token assigns the value 1 to the state GoIn of the
MilkRun and it enters the corridor. Otherwise, the token
assigns the value 0, the MilkRun ignores the corridor and
goes to the next entry node of the next corridor where all
the processes will be repeated.

Once inside a corridor, the MilkRuns enter a
succession of StopPlaces, where each one accesses a
different set of Channels. To better understand the
objects that need to be used on a corridor of type 1, Figure
18 was created. Once again, the placement of the objects
the way the figure displays only intends to make it
simpler to understand the way they work and thus, it is
not the final result of the animation of the model.

As we can see, for any circulation direction, there is
a TransferNode before and another after a StopPlace.
Thus, on the Path that takes the MilkRun to the
TransferNode situated before the StopPlace, the state
target of the MilkRun is updated to the value of the Place
property of that StopPlace. Thereafter, on the node itself,
the process illustrated on Figure 19 is executed.

Figure 18: Objects used alongside a StopPlace and the
corresponding set of Channels on a corridor of type 1

Figure 19: Process StopOrProceed

In this process, the token associated to the MilkRun,
uses the previously updated state target as an index of the
StopPlaces data table. This way, the token can check if
the StopPlace belongs to the array of destinies of the
MilkRun. If it belongs, the token assigns the value 1 to
the GoIn state of the MilkRun and the value 0 to the
GoToStopPlaceConnected state of the respective Picker.
While analysing a StopPlace, the token also needs to
verify if there is any object on the ConnectTo property.
If there is and if it belongs to the array of destinies of the
MilkRun, the token assigns the value 1 to the states GoIn
of the MilkRun and GoToStopPlaceConnected of the
respective Picker. If neither the StopPlace being analysed
nor the one on its ConnectTo property belong to the array
of destinies of the MilkRun, the token assigns the value
0 to the state GoIn of the MilkRun and ends the process.

Once the process ends, the MilkRun will select the
Path based on the value saved on its GoIn state. For
instance, considering that a MilkRun enters the
TransferNode42 (from Figure 18) and executes the
StopOrProceed process, if its GoIn state has the value 1,
the MilkRun will select the Path that takes it to
StopPlace8. Otherwise, it will choose the Path that takes
it directly to the TransferNode43.

When a MilkRun enters a StopPlace, it will wait for
the respective Picker to return from the set of Channels.
In this context, if the corridor is of type 1 (e.g. Figure 18),
the Picker will chose the Path that takes it to
StopPlace_Channel8. However, if the corridor is of type
2, the Picker will choose its destiny based on the value
on its GoToStopPlaceConnected. To help clarify this
situation, Figure 20 was created.

Figure 20: Pair of StopPlaces of a corridor of type 2

Considering as an example that a MilkRun is in
StopPlace10, if the respective Picker has the value 0 in
its GoToStopPlaceConnected state, it will go to the
StopPlace_Channel1. On the other hand, if the value is 1,
the Picker will go to StopPlace_Channel4. When the
Picker returns with the selected Container, it will chose
the Path based on the same logic. Therefore, the Picker
will always return to the StopPlace where its MilkRun is
waiting. As soon as the Picker enters a
StopPlace_Channel object, the remaining logic until it
returns to it, is the same for both types of corridors.

Considering Figure 18 again, we can see that there
is only one TransferNode that gives access to a Channel
(e.g. TransferNode 34 to Channel22 and TransferNode35
to Channel23…) and, after leaving a Channel, the Picker
will necessarily return to the StopPlace_Channel object,
i.e., it can only take one Container at a time.

When a Picker enters a Path that takes it to a
TransferNode that gives access to a Channel, its target
state is updated to the value of the Position property of
that Channel. Thereafter, when the Picker enters the node
itself, the process presented by Figure 21 is executed.

The purpose of this process is to evaluate if the
Channel in question belongs to the array of destinies of
the Picker. To that end, the associated token consults the
Channels data table on the index returned by the
previously updated target state of the Picker and
evaluates whether the returned object is one of the
destinies of the Picker or not. If it is a destiny, the token
assigns the value 1 to the GoIn state of the Picker,
otherwise, the value 0. Afterwards, the Picker selects the
next Path, based on the value of its GoIn state. Thus, if
the value is 1, it selects the Path that takes it to the
Channel. Conversely, if the value is 0, it selects the Path
that takes it to the next TransferNode, updating its target
state again, once on this Path. It should be noted that,
since the MilkRun only enters a StopPlace if any of the
Channels (that the StopPlace gives access to) is a destiny
of the Picker, it is guaranteed that the Picker will at least
enter one Channel.

Figure 21: Process OpenChannelOrNot

Once inside a Channel object, the Picker selects the
required Container and adds it to its batch. After leaving
the Channel, the object is removed from its array of
destinies. Then, the Picker returns to the
StopPlace_Channel and, after that, to the StopPlace.

Naturally, before leaving the StopPlace object, the
Picker needs to be transferred to the riding station of its
MilkRun. Therefore, on the Facility of the StopPlace,
there was the need to use a GoToMilkRun object (Figure
6). On its Process property, the name of the process
displayed by Figure 22 is inserted.

Figure 22: Process ReturnToChannelsOrLeave

The purpose of this process is to verify if the Picker
needs to return to the set of Channels or not. To that end,
the associated token verifies the StopPlace property of
every Channel on its array of destinies. If any of those
properties has a value equal to the Place property of the
StopPlace where the Picker is at, the token saves the
value 1 to the GoIn state of the Picker. Otherwise, it saves
the value 0. Additionally, if the StopPlace has an object
on its ConnectTo property, the token needs to repeat the
verification to that object. This way, the
GoToStopPlaceConnected state of the Picker will be
updated, to ensure that the Picker chooses the Path that
takes it to the correct StopPlace_Channel.

Once the Picker has placed all the required
Containers on the batch of the MilkRun, the latter
removes the StopPlace from its array of destinies and
resumes its route. When all the Containers from all the
corridors have been collected, the MilkRun returns to the
start point to restart a new shift.

4. PRELIMINARY EXPERIMENTS

In this chapter, we will show some pictures that
illustrate a shift of a Picker in runtime, so that it is
possible to verify that the Picker collects the right
Containers to satisfy the needs of the production lines.
Thus, Figure 23 to Figure 27 were developed. Figure 23
shows a Picker waiting for Requests to initiate its shift.

Figure 23: Requests being added to a Picker's batch

As can be seen, a label with the value of the ID of
the Picker was added to that entity. To the Requests, three
labels were assigned: one above it that identifies the
Picker that got that Request; one inside it which identifies
the type of product being requested and one below that
indicates if the request has been satisfied or not (1 if it
has and 0 otherwise).

Figure 24: Destinies assigned to Picker and MilkRun

In Figure 24 we can see that the same Picker is now
on the station of the MilkRun and it already has all the
Requests in its batch. For that reason, the label above the
Requests already has the same number as the ID of the
Picker. Additionally, five new labels were assigned to the
Picker to show its destinies. In its turn, the MilkRun also
has a label above it, which shows its ID and five others
below it that show its destinies. In this case, no repeated
StopPlaces were assigned.

In Figure 25 we can see that the Picker already
collected two Containers and the respective destinies
were removed from the array of destinies of the Picker
and of the MilkRun. Additionally, three labels were
assigned to the Container entity: two above it that show
the ID of the Picker and the type of products inside the
Container; and one beneath it that show the Channel from
which that Container was collected from. It should be
noted that the Channels on these labels correspond to the
objects removed from the array of destinies of the Picker.
Lastly, we can also see that two labels that indicate if a
Request has been collected, now have the value 1,
indicating that the Container has been collected.

Figure 25: Half of the destinies visited

Figure 26: End of the shift

Figure 26 shows the same type of information of the
previous image. However, this time the Picker has
collected all Containers. By analysing all images, we can
see that the Pickers always collect the right Containers
from the Supermarket.

Regarding simulation experiments, of the key
performance indicators (KPI) already defined, the only
one that does not depend on real data is the Depth,
indicated on Figure 27. This KPI indicates the position
on the Channel where the selected Container was.

Figure 27: Preliminary simulation experiments

As we see, the first six scenarios, present more
random values than the last ones, that display values near
1. This represents what is expected to happen, since the
first six scenarios correspond to a random storage
strategy (StockPolicy = 1) and the last six scenarios
correspond to a dedicated storage strategy (StockPolicy
= 0). Nevertheless, for the last six scenarios, it would be
expected that the values would be exactly 1. This
happens because, as was explained in section 3.6.3, the
Picker only collects the Container with a value on its
Requested state equal to the ID of the Picker. Thus, in a
few cases, even if the storage strategy is dedicated, the
Picker will not take the first Container. The fact that
those scenarios were executed (with considerable
simulation time and replications) without errors also
indicates that there are no modelling errors on the model.

5. CONCLUSIONS

Warehouses are critical to a wide range of customer
service activities and yet, they are also quite significant
from a cost perspective. One of the goals of the Bosch
Production System (BPS), implemented at Bosch, is to
provide “the basis for continuous improvements in
quality, costs, and supply performance” (Bosch, 2014).
Thus, the opportunity to develop a micro simulation
model in Simio that could help the Bosch Car
Multimedia Portugal in Ferreiros, Braga arose.
Particularly, this tool needs to be able to design several
layouts of the warehouse and use them to test different
scenarios of their picking system. In this on-going work,
the present paper documents what was done to model the
picking system observed at the Bosch Car Multimedia
Portugal.

Since no real data was introduced on the model, no
simulation experiments could be conducted. Despite that,
we could see that the developed model is working as
intended, since the MilkRuns stop where they should
and the Pickers collect the right Containers to satisfy
the needs of the production lines. Additionally, many

scenarios were executed, with considerable simulation
time and replications, without errors.

Throughout chapter 3 many figures of the model
were shown. Yet, the only purpose of those pictures was
to make it easier to understand the way the model works
and how it was developed. The final result of the
animation is achieved by using the developed add-in,
which was not addressed in this paper. However, the
symbols of the Channel object (Figure 9) and of the entity
types (Figure 1 to Figure 4) are good indicatives of the
quality of animation that Simio offers.

Nonetheless, while interacting with Simio, some
downsides were noted. Vieira et al. had already stated
some of them (2014a). Moreover, the very useful
expression editor feature that Simio offers, is not always
enabled. For instance, on an Assign step, to define the
StateVariableName property, the user can only select the
state from a limited list of options. While it is true that it
keeps it simpler for new users, it is also troublesome to
have to use the expression editor where it is enabled to
write a complex expression and then copy it to the actual
place we want to use it. This is also true for other
properties such as the StationName property of a
Transfer step.

5.1. Future Work

Since this is an on-going work, there are some
things that still need to be done, such as the restock and
the return of the leftover containers. While the latter is
not yet implemented, the former is implemented by
creating Containers inside each Channel.

Another aspect that could be improved resides on
the fact that the MilkRuns have a fixed route of corridors
Other strategies could be pondered, such as smallest
distance.

Once all the sub-systems that compose the picking
system are finished, it would be mandatory to gather

real data and validate the model, so that it becomes
ready to perform simulation experiments.

ACKNOWLEDGMENTS

This work has been co-supported by SI I&DT
project in joint-promotion nº 36265/2013 (HMIEXCEL -
2013-2015 Project) and by FCT – Fundação para a

Ciência e Tecnologia in the scope of the project: PEst-
OE/EEI/UI0319/2014.

REFERENCES
BAKER, P. & CANESSA, M. 2009. Warehouse design: A structured

approach. European Journal of Operational Research, 193,
425-436.

BARTHOLDI, J. J. & HACKMAN, S. T. 2008. Warehouse &

Distribution Science: Release 0.89, The Supply Chain and
Logistics Institute.

BOSCH. 2014. consulted online at:

http://www.bosch.com/en/com/home/homepage.html
[Online].

COSTA, B., DIAS, L. S., OLIVEIRA, J. A. & PEREIRA, G.
Simulation as a tool for planning a material delivery system
to manufacturing lines. Engineering Management
Conference, 2008. IEMC Europe 2008. IEEE International,
28-30 June 2008 2008. 1-5.

COSTA, P., ALVES, A. C. & SOUSA, R. M. 2011. Implementação da
metodologia Quick ChangeOver numa linha de montagem
final de auto-rádios: para além da técnica SMED.

COYLE, J. J., BARDI, E. J. & LANGLEY, C. J. 1988. The

management of business logistics, West Pub. Co.
DIAS, L., PEREIRA, G. & RODRIGUES, G. 2007. A Shortlist of the

Most Popular Discrete Simulation Tools. Simulation News

Europe, 17, 33-36.
GU, J., GOETSCHALCKX, M. & MCGINNIS, L. F. 2010. Research

on warehouse design and performance evaluation: A
comprehensive review. European Journal of Operational
Research, 203, 539-549.

HLUPIC, V. Simulation software: an Operational Research Society
survey of academic and industrial users. Simulation
Conference, 2000. Proceedings. Winter, 2000 2000. 1676-
1683 vol.2.

HLUPIC, V. & PAUL, R. 1999. Guidelines for selection of
manufacturing simulation software. IIE Transactions, 31,
21-29.

MONDEN, Y. 1998. Toyota Production System – an integrated
approach to Just-In-Time. Institute of Industrial Engineers,
Norcross, Georgia.

PEGDEN, C. D. Simio: A new simulation system based on intelligent
objects. Simulation Conference, 2007 Winter, 9-12 Dec.
2007 2007. 2293-2300.

PEGDEN, C. D. 2013. Intelligent objects: the future of simulation.
PEGDEN, C. D. & STURROCK, D. T. Introduction to Simio.

Proceedings - Winter Simulation Conference, 2011
Phoenix, AZ. 29-38.

PEREIRA, G., DIAS, L., VIK, P. & OLIVEIRA, J. A. 2011. Discrete
simulation tools ranking: a commercial software packages
comparison based on popularity.

STURROCK, D. T. & PEGDEN, C. D. Recent innovations in Simio.
Proceedings - Winter Simulation Conference, 2010
Baltimore, MD. 21-31.

VIEIRA, A., DIAS, L., PEREIRA, G. & OLIVEIRA, J. 2014a.
COMPARISON OF SIMIO AND ARENA SIMULATION
TOOLS. ISC. University of Skovde, Skovde, Sweden.

VIEIRA, A., DIAS, L., PEREIRA, G. & OLIVEIRA, J. 2014b. Micro
Simulation to Evaluate the Impact of Introducing Pre-
Signals in Traffic Intersections. ICCSA. University of
Minho at Guimarães - Portugal.

VIK, P., DIAS, L., PEREIRA, G., OLIVEIRA & ABREU, R. 2010.
Using simio for the specification of an integrated automated
weighing solution in a cement plant. Proceedings of the

Winter Simulation Conference. Baltimore, Maryland:
Winter Simulation Conference.

WOMACK, J. P. & JONES, D. T. 1996. Lean Thinking. Siman &
Schuster, New York, USA.

WOMACK, J. P., JONES, D. T. & ROOS, D. 1990. The machine that
changes the world. Rawson Associates, NY

YILDIZ, H., RAVI, R. & FAIREY, W. 2010. Integrated optimization
of customer and supplier logistics at Robert Bosch LLC.
European Journal of Operational Research, 207, 456-464.

http://www.bosch.com/en/com/home/homepage.html

