
Evaluating Cassandra as a Manager of Large File Sets

Leander Beernaert, Pedro Gomes, Miguel Matos, Ricardo Vilaça, Rui Oliveira
High-Assurance Software Laboratory INESC TEC & Universidade do Minho

Braga, Portugal
{lbb,pedrogomes,miguelmatos,rmvilaca,rco}@di.uminho.pt

Abstract
All companies developing their business on the Web, not
only giants like Google or Facebook but also small com-
panies focused on niche markets, face scalability issues in
data management. The case study of this paper is the content
management systems for classified or commercial advertise-
ments on the Web. The data involved has a very significant
growth rate and a read-intensive access pattern with a re-
duced update rate.

Typically, data is stored in traditional file systems hosted
on dedicated servers or Storage Area Network devices due to
the generalization and ease of use of file systems. However,
this ease in implementation and usage has a disadvantage:
the centralized nature of these systems leads to availability,
elasticity and scalability problems.

The scenario under study, undemanding in terms of the
system’s consistency and with a simple interaction model, is
suitable to a distributed database, such as Cassandra, con-
ceived precisely to dynamically handle large volumes of
data.

In this paper, we analyze the suitability of Cassandra as
a substitute for file systems in content management systems.
The evaluation, conducted using real data from a production
system, shows that when using Cassandra, one can easily get
horizontal scalability of storage, redundancy across multiple
independent nodes and load distribution imposed by the
periodic activities of safeguarding data, while ensuring a
comparable performance to that of a file system.

Categories and Subject Descriptors D.4.2 [Operating Sys-
tems]: Storage Management; C.2.4 [Computer Communi-
cation Network]: Distributed Systems :Distributed databases;
D.4.7 [Operating Systems]: Organization and Design : Dis-
tributed systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
CloudDP ’13, April 14, 2013, Prague, Czech Republic.
Copyright c© 2013 ACM 978-1-4503-2075-7. . . $15.00

General Terms Design, Performance, Evaluation

Keywords Non-relational databases, Cassandra, File sys-
tems

1. Introduction
Companies developing their business on the Web need con-
tent management systems for classified or commercial ad-
vertisements on the Web, able to handle the sheer volumes
of data generated by very large scale Internet services. More-
over, most of these systems require elasticity properties, the
capacity to add more storage capacity without disrupting the
service.

The discussion about the best persistence method of static
content (e.g. image files) is recurrent. Since this is the core
function of file systems, they are usually the first and most
appropriate choice for the implementation of such service,
as its use does not pose difficulties and the user interface is
very simple.

Currently, the contents of these systems are easily ac-
cessed from HTTP servers taking advantage of calls to the
operating system that allow a direct and asynchronous read-
ing of the file to the network device. These solutions are typ-
ically placed into production on centralized storage servers
such as NAS (Network-Attached Storage) or SAN (Storage
Area Network), which are sometimes limited in terms of
scalability and system availability. Moreover, most of these
systems need to be taken offline in order to increase capacity
thus compromising availability.

In order to circumvent the limitations in terms of scalabil-
ity and system availability of traditional file systems several
distributed file systems exist, such as Lustre1, Ceph [9], and
GFS [4]. However, they are designed to handle large files and
thus provide poor performance on workloads such as content
management systems that access many small files.

One alternative approach could be the use of relational
databases. In terms of availability, a database can offer a
more consolidated solution and increased performance re-
garding replication. However, they have limited scalabil-
ity [7] and even distributed and parallel databases, that have
been around for decades [6], build on the same architecture

1 http://wiki.lustre.org/index.php/Main _Page

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634375?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and thus have the same scalability limitations. Moreover,
the strong consistency model associated with traditional re-
lational databases poses a significant overhead and perfor-
mance penalty in a scenario where content is mostly static.
In hindsight, these are some of the reasons underlying the
emergence of non-relational databases such as Cassandra.

In this paper, we evaluate Cassandra [5], for the storage of
a large number of files of reduced size whose access pattern
is essentially composed of reads.

With multiple physical replicas we can achieve a system
capable of horizontally scaling, coping with the increased
volume of data, and in some cases of high load, while simul-
taneously offering a better protection against possible fail-
ures of nodes and disk corruptions.

The rest of this paper is organized as follows. In Section 2
we present the related work, and in Section 3 we describe the
details of Cassandra relevant to this paper. In Section 4 we
present our approach to the management of large file sets on
Cassandra. Section 5 presents an evaluation of a real case
study, and a comparison of our approach with traditional file
systems. Finally, Section 6 concludes the paper.

2. Related work
The persistence of static or seldom updated content is a
common need in Web companies. Many companies choose
specific file systems for this purpose, which are supported by
storage devices with redundancy to ensure the durability of
the data. However, such services are limited to the capacity
of the server on which they are placed and, as such, an
increase of the load beyond its rated capacity is problematic.
In this scenario there are two options: scaling vertically and
replacing, if possible, the server with a larger one, or scaling
horizontally and adding new servers and distributing the
system’s load.

The horizontal scalability of file systems is still an area of
ongoing developments with new solutions emerging in the
market. Many distributed file systems have evolved as com-
mercial products and others as internal solutions in compa-
nies like Google. In fact, this is the case of GFS[4](Google
File System), a system built to hold large volumes of the
company’s data using current general purpose hardware.
This depends on a node coordinator to ensure consistency
in some operations, such as a locking and election mecha-
nism in case of failures.

Other systems are also designed for larger scales, but di-
rected to the common user. In Ceph[9], we have mechanisms
of replication and fault tolerance that, however, require syn-
chronization among all replicas. Other systems, such as Lus-
tre, assume that each node provides its own redundancy with
different persistence schemes on disk.

Unfortunately, all distributed file systems are not opti-
mized for the workloads we target, namely content manage-
ment systems that access many small files. This stems in
part from the need to perform many operations over meta-

Figure 1. Example of a family of columns and another of
super columns.

data [4, 9] yielding poor performance under these work-
loads.

Moreover, Cloud storage services such as Amazon’s S3
service2, or open-source alikes such as OpenStack’s SWIFT3

are designed for large files and thus have the same perfor-
mance issues with many small objects.

3. Cassandra
Cassandra is a distributed solution that tries to combine the
architecture with no single points of failure of Amazon’s
Dynamo [3] with the data structure of Google’s BigTable [1].
This database, originally created by Facebook, is now used
in several companies in the Web due to its recognized ability
to reasonably scale up to several hundred nodes. It is chiefly
characterized by its relaxed consistency model based on
quorums, where different replicas may differ in time, and
finally reconcile based on temporal labels that accompany
each of the writes [8]. Such errors are immediately detected
and corrected, thus preserving integrity.

Cassandra gives the user the flexibility in selecting the
level of consistency of reads, providing settings for the num-
ber of replicas and their location, when reading and writing
data.

Regarding the model, the data is grouped into structures
called column families. In these structures, similar to the
tables of the relational model, each line has a set of arbitrary
columns, thus allowing more dynamism in data modeling.
There is also the ability of each column being itself a list
of columns called Super column. However, this option is
seldom used, because it imposes a penalty database. These
structures are exemplified in Figure 1.

4. An alternative on file persistency
Regarding the problem of scalability and integrity of data in
common file systems, we now present a new alternative. The
goal is not to develop a system that can be fully compared
to a file system, whether in its POSIX interface or manage-
ment of metadata. In fact, when working with rarely updated
data, there are some restrictions which can be relaxed, re-

2 http://aws.amazon.com/s3/
3 http://swift.openstack.org/

vealing new deployment options. We present a new approach
based on the use of a large scale non-relational database
which presents advantages regarding scalability and dura-
bility. However, in order to be adapted to a traditional envi-
ronment, we chose to keep the file and directory concepts in
the data structure, because it is easier for the administrator
to view the content in accordance with these structures.

These systems are mainly updated off-peak during hours
with the operation operation performed either by a single op-
erator or an automatic process. Therefore, competing writes
are a problem that we can largely ignore. Reading data is the
core operation and is characterized by accesses to single or
small groups of files. These characteristics fit in Cassandra’s
consistency model benefiting from its data distribution that,
if partitioned based on keys’ hash, also avoids contention
points.

4.1 System’s Architecture
Having Cassandra as the base element, the architecture pro-
posed here is simple in terms of components but requires the
creation of new interface components for integration with
traditional systems. In fact, this is the biggest disadvantage
of this proposal, because we lose the modules and interfaces
that are commonly used to communicate with web servers
and clients. Apart from its database on Cassandra, the sys-
tem still depends on a dedicated connector for a web server,
and an interface where the client can manipulate the files to
be stored. We consider these issues to be out of scope of the
current paper and focus only on the core system.

4.2 Model Adaptation
One of the first tasks has the adaptation of the data model to
Cassandra. At its base, each file is treated as an array of bytes
with a name associated to it as identification. This is the base
unit of the system, excluding for now additional metadata.
The notion of directory as a container of files or other di-
rectories is also fundamental. This hierarchical structure can
be used or ignored in the organization of the data model,
as only the files themselves are vital to the system. There are
thus two options: a) transform the directory structure that the
client creates while inserting files into unique names result-
ing in a model of file per line; or b) incorporate the directory
concept in the system, inserting a notion of association be-
tween files, thereby, creating a directory structure per line.

File per line: To implement the first option, the file name
is concatenated to the directory structure and acts as a pri-
mary key in a single column family in Cassandra (Figure 2
a). In each line there is a column with the file content. In this
model, each line can also contain posteriorly other informa-
tion with a column that encodes the metadata of the file in
question. Each reading of files is done by name and direc-
tory, and there is no direct way to read a group of files as-
sociated with each other (usually organized on a directory).
Actually, the directory structure can be preserved in a col-
umn family aside so that simultaneously reading multiple

Figure 2. Alternative data models: a) file per line, b) direc-
tory per line

files common to an application or web page is possible; al-
though, this is not currently an essential requirement to the
system.

Directory per line: In this model each line has as key
the name of a directory, or concatenation of the names in the
hierarchy forming a path, Figure 2 b). For each line, columns
have the value and name of the file. In this option there is
some notion of directories and groups of files that allow
reading several related files without knowing their name.
From the client’s point of view, the overall structure of the
directories may or may not be represented in the database,
because accesses may require the full path of the file or just
the containing directory.

These options imply different access patterns and inter-
nal representations in the database, thus existing an inherent
difficulty of knowing which of these will have a better per-
formance or variability in terms of access time. We evaluate
both approaches in the next section.

5. Experimental analysis
This section evaluates our approach to the management of
large file sets on Cassandra. We have done some prelimi-
nary experiments to confirm whether distributed file systems
have performance issues with workloads consisting mostly
of many small objects. To this end we tried to populate our
case study over GLuster FS4, Ceph[9] and SWIFT5 but in all
systems the populate has very slow, taking several weeks to
finish.

5.1 Case study
Our case study, based on a production system, is a list of files
associated with a portal that currently hosts content for var-
ious websites of classified or commercial advertisements. It
consists of thirteen million images, with size distribution as

4 http://www.gluster.org
5 http://swift.openstack.org/

 0

 20

 40

 60

 80

 100

1e3 1e4 1e5 1e6 1e7 1e8

%
 (

C
D

F
)

File size (bytes)

Figure 3. File size distribution.

Figure 4. Structural model of the nodes.

depicted in Figure 3 and where 90% of these are smaller than
50 KB, occupying about 300 GB of space. Most images are
inserted by the client and written overnight and then served
in different websites via requests to the Apache server, which
is connected to the file system served by a centralized stor-
age system.

Currently, the total size of the data is not yet a problem
in terms of access to the system, as the average latency for a
single client to read local files is of 1.8 ms.

However, it is already problematic whenever a full backup
is needed. In fact, the reading of all files on disk (without
resorting to cache) or the simple traversal of the directory
structure, is not only slow, taking several hours, but also
affects the performance of the system during the process.
This problem makes it impossible to carry out differential
backups, forcing the creation of backup strategies defined
together with the application. This problem together with
the single point of failure of a centralized storage, is a sce-
nario suited to the solution we propose in this paper.

In terms of access patterns, there are two concurrent op-
erations. The first are regular read operations that follow a
power-law distribution. The second are sequential traverses
that read all the data which model backup operations. Fol-
lowing the behavior of a real system, we don’t want the sys-
tem to be taken offline (don’t allow regular read operations)
to realize backup operations.

5.2 Testing Platform
To test our implementation, we use Yahoo!’s YCSB[2] that
is designed to test large scale non-relational databases. It is

an adaptable platform whose value is recognized both within
academic and business communities to test new solutions in
the area of databases.

Nevertheless, the platform has some limitations to our
case study. In fact, YCSB is prepared for reading and col-
lecting small amounts of information that are uniform in
size, and whose keys are integers so they are easy to gen-
erate during execution. Yet, this is a mechanism that does
not conform to the scenario in question, and it is, therefore,
necessary to create a new request client.

This client can make requests by file name or directory
thus allowing to test the different models of data organiza-
tion described in Section 4.2. Another important factor for
the creation of this new component is the fact that we can
inject into the platform sets of pre-existing keys which we
previously inserted in the database. In fact, in databases like
Cassandra the dynamic nature of the data model, and more
specifically the naming of the keys and columns represents
a real cost in terms of storage and performance.

Further modifications to the platform adapter for Cassan-
dra were required due to the limited configuration options
of operations performed in Cassandra, thus inserting a more
dynamic control of the consistency levels to be used. Ac-
cordingly, it is now easy to define what number of nodes are
involved in each read in the database. Similarly, we assigned
node categories to each type of reads. An example of the us-
age of this option is the routing of sequential reads of data to
nodes isolated from the rest of the system. All modifications
done to YCSB and to the Cassandra adapter are available at
https://github.com/PedroGomes/YCSB.

In short, we use YCSB for the execution of requests and
collection of obtained results, receiving as input different
Cassandra settings and types of operations used. The plat-
form also makes use of an external in-memory database (Re-
dis 6) with the names of all files to be accessed. Thus, this
avoids reading millions of names through the platform on
each execution with minimum cost in generating requests.

5.3 Experimental setting
In terms of hardware, all nodes used are commodity ma-
chines with an Intel dual-core i3 at 3.1GHz, 4GB of memory
and a storage capacity of 250 GB. All machines are con-
nected by a local network of 1Gb/s.

As our workload is composed of unique and sequential
read operations (for backup), we divided 12 Cassandra nodes
into two groups that are configured as two different data
centers as depicted in Figure 4.

From Cassandra’s perspective these two groups are two
distinct physical locations, allowing to perform, in isolation,
different operations on each group of nodes. In the first of
these groups, which would be the data center to serve most
requests, there are nine nodes configured with a replication
factor of 3. In the second group, which works as a backup,

6 http://redis.io/

https://github.com/PedroGomes/YCSB

 20

 40

 60

 80

 100

 120

 140 160 180 200 220 240 260 280 300 320

L
a
te

n
c
y
 (

m
s
)

Throughput (reads/second)

Dir. per line

5

10

15

20

25

File per line

5

10

15

20

25

(a) Cassandra deployment

 0

 5

 10

 15

 20

 25

 30

 200 400 600 800 1000 1200 1400

L
a
te

n
c
y
 (

m
s
)

Throughput (reads/second)

Without Scans

5

10

15

20

25

With Scans

5

10

15
20

25

(b) File system deployment

Figure 5. Cassandra and filesytem comparison. Results for Cassandra include the scan operation. The numbers close to the
line points are the number of clients.

Cass.
File

Cass.
Dir.

SAN

 0 200 400 600 800 1000 1200
Time (min.)

Figure 6. Full traversal/backup performance.

there are 3 nodes that replicate data that exist in the other
data center. In this scheme, the data of node 3 is replicated
in nodes 4 and 5, and in node B1 of the auxiliary data center,
as can be observed in Figure 4.

Thus, such structure provides a degree of redundancy
which allows the system to remain online even if a portion
of the nodes fails. Other advantages of this scheme is that
the replicas in the second data center can function as a
data exploration site or backup without interfering with the
normal operation of the system. Moreover, since all writes
will ideally go to both places, there is no problem in serving
requests from this site at times of great load on the system.
In short, in its typical operation, each direct read of the data
will always be made in a node quorum in the main data
center, and the read requests for backups directed to the
alternate data center. As for writes, a level of consistency that
guarantees writings in node quorums of both sides is enough
(in which case the quorum in the auxiliary data center is only
a node).

In order to compare our proposal based on Cassandra
with a typical environment, as the one used in production
for the case study, we setup a RAID-0 volume with 350GB
on a HP storage Works Eva 4400, and formatted it with the
ReiserFS file system.

5.4 Models analysis
In this section, we compare the performance of the two
alternative data models proposed in Section 4.2 with the
performance of a traditional file system deployment, using

all the data from the case study for unique and sequential
read operations (for backup).

Results for our proposal for regular read operations are
depicted in Figure 5(a). As it is possible to observe, the
file per line model has lower latency and higher throughput
as the number of clients increases and thus is preferable to
the directory per line model. Despite Cassandra’s single row
read operation allowinging to filter which column to retrieve
(for the directory per line model, only fetch the column with
the requested file), it has additional overhead that adds up to
latency and thus decreases throughput.

For sequential traversal operations, the requests are run in
parallel to each of the replicas that are at the backup data cen-
ter, thus not interfering with regular reads. For these opera-
tions, the directory per line model is faster, taking on aver-
age one hour to complete, while the file per line model takes
about an hour and a half (Figure 6). This can be explained
by the number of files per directory that exist in each line.
In fact, the number of directories in the system is 8 thousand
contrasting with the 13 million files, and the number of files
per directory is highly variable. Thus, this difference affects
the reads of individual columns, but according to the results,
the lowest number of lines helps the sequential reading of
the data.

Considering that the backup operation is not frequent, the
time for backup the file per line model is still acceptable
and that the overhead of the files per directory model for
regular read operations is not huge, the file per line is the
most appropriate model for this workload.

Regarding the comparison with the traditional file system
deployment, as can be observed in Figure 5(b), for regular
read operations the file system deployment has lower latency
accompanied by an higher read throughput. However, the
time for sequential traversal operations is unbearable, tak-
ing on average nineteen hours to complete (Figure 6). More-
over, we can see that when a sequential traversal operation
is running concurrently to regular read operations, their la-
tency almost doubles. This confirms the observations in the
production system.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 500 1000 1500 2000 2500 3000 3500

L
a

te
n

c
y
 (

m
s
)

Throughput (reads/second)

No replication

5

10

15

20

25

30

In-memory

5
10

15
20

25
30

Figure 7. Scalability results

5.5 Scalability
Based on the results obtained obtained above, we decided
to continue with the model of file per line and explore Cas-
sandra’s scalability in this scenario. For this purpose, and
in the absence of a larger number of machines, we used 10
of the nodes previously used to recreate the same scenario
but without replication. Analyzing this transformation, from
the 300 GB of existing data, each node would always be re-
sponsible for one third of the data in the above scheme (i.e.
approximately 100 GB), contrasting with this new scenario
where each node is only responsible for 30 GB (i.e. less than
one third of the original load). Compared to the original re-
sults, we can see from Figure 7 that latency has fallen by
half while the throughput of read operations rose consider-
ably. Actually, considering the data distribution and replica-
tion factors in both scenarios each machine effectively serves
on average about 30 GB of data. This difference in perfor-
mance is justified by the fact that, containing much less data,
the cache of these nodes becomes more efficient, especially
if we take into account that the reads are executed according
to a power-law distribution.

Then we inquired what is the real performance of the
system when using machines with a more favorable ratio
between RAM and data volume. This is a scenario in which
much of the data can be in memory. For this, and given the
constraints regarding the available hardware, we chose to
reduce the number of persisted data so that each machine
does not hold more data than what it can fit in memory. As
can be observed in Figure 7, there is a substantial decrease in
latency accompanied by an increase in the read throughput.
In this setting, the latency of our proposal is slightly lower
of traditional file systems, Figure 5(b), and the throughput is
much higher.

6. Conclusion
This paper presents a new approach to content management
systems for classified or commercial advertisements on the
Web, containing large amounts of seldom updated small
files.

Applied to a real scenario, we noted that our proposal has
comparable performance with a common file system with

clear advantages in scalability, durability and data availabil-
ity, allowing the system to work regularly while perform-
ing maintenance tasks such as backups. Complementing the
tools that for this purpose are already offered by Cassan-
dra, we show that a global reading mechanism of data im-
plemented to run separately on selected nodes can also be
used. In fact, being a system with redundancy in multiple
data centers, one of these sites can be regarded as a func-
tional backup of the other. This allows the client to reduce
the number of times this operation is performed and, as a
consequence, reduce its cost.

Acknowledgments
This work is in part-funded by; ERDF - European Re-
gional Development Fund through the COMPETE Pro-
gramme (operational programme for competitiveness) and
by National Funds through the FCT - Fundação para a
Ciência e a Tecnologia (Portuguese Foundation for Science
and Technology) within project Stratus/FCOMP-01-0124-
FEDER-015020; and European Union Seventh Framework
Programme (FP7) under grant agreement no 257993.

References
[1] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,

M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable:
a distributed storage system for structured data. In OSDI’06,
pages 205–218, Berkeley, CA, USA, 2006. USENIX Associa-
tion.

[2] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking cloud serving systems with YCSB. In
SOCC ’10, pages 143–154, New York, NY, USA, 2010. ACM.
doi: 10.1145/1807128.1807152.

[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lak-
shman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vo-
gels. Dynamo: amazon’s highly available key-value store. In
SOSP ’07, pages 205–220, New York, NY, USA, 2007. ACM.
doi: http://doi.acm.org/10.1145/1294261.1294281.

[4] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file
system. SIGOPS Oper. Syst. Rev., 37(5):29–43, 2003. doi:
http://doi.acm.org/10.1145/1165389.945450.

[5] A. Lakshman and P. Malik. Cassandra: a decentralized struc-
tured storage system. SIGOPS Oper. Syst. Rev., 44(2):35–40,
2010. doi: http://doi.acm.org/10.1145/1773912.1773922.

[6] M. T. Özsu and P. Valduriez. Principles of distributed database
systems (2nd ed.). Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1999.

[7] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos,
N. Hachem, and P. Helland. The end of an architectural era:
(it’s time for a complete rewrite). In VLDB’07, pages 1150–
1160, 2007.

[8] W. Vogels. Eventually consistent. Commun. ACM, 52(1):40–
44, Jan. 2009. doi: 10.1145/1435417.1435432.

[9] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and
C. Maltzahn. Ceph: A scalable, high-performance distributed
file system. In OSDI’06, pages 307–320, 2006.

	Introduction
	Related work
	Cassandra
	An alternative on file persistency
	System's Architecture
	Model Adaptation

	Experimental analysis
	Case study
	Testing Platform
	Experimental setting
	Models analysis
	Scalability

	Conclusion

