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Université de Neuchâtel

Switzerland
Email: etienne.riviere@unine.ch

Abstract

Large-scale distributed systems appear as the major in-
frastructures for supporting planet-scale services. These
systems call for appropriate management mechanisms and
protocols.

Slicing is an example of an autonomous, fully decentral-
ized protocol suitable for large-scale environments. It aims
at organizing the system into groups of nodes, called slices,
according to an application-specific criteria where the size
of each slice is relative to the size of the full system. This al-
lows assigning a certain fraction of nodes to different task,
according to their capabilities.

Although useful, current slicing techniques lack some
features of considerable practical importance. This pa-
per proposes a slicing protocol, that builds on existing so-
lutions, and addresses some of their frailties. We present
novel solutions to deal with non-uniform slices and to per-
form online and dynamic slices schema reconfiguration.
Moreover, we describe how to provision a slice-local Peer
Sampling Service for upper protocol layers and how to en-
hance slicing protocols with the capability of slicing over
more than one attribute.

Slicing is presented as a complete, dependable and inte-
grated distributed systems primitive for large-scale systems.

1 Introduction

The shift to large-scale distributed systems techniques is
one of the main trends in the current computing era. This is
linked with the advent of the Cloud Computing paradigm,
which makes computational resources available at a global
and ever-increasing scale. These systems call for the design
of appropriate scalable and reliable distributed algorithms
and protocols. However, designing such protocols and ap-
plications aimed at large-scale systems is a non-trivial task.
The increase in system size is accompanied by escalated

probability of software and hardware failures which need to
be tolerated by the protocols.

In addition, system scale turns any kind of global knowl-
edge assumption unrealistic. In fact, any mechanism that
relies on information that grows linearly with the system
size is unusable. Therefore large-scale systems require pro-
tocols designed to intrinsically scale to very large number
of participating nodes, which should be able to cope with
highly dynamic environments. These requirements are eas-
ily addressed by a well studied class of protocols known
as epidemic or gossip-based. These have been used pre-
viously to build several Internet-scale systems and applica-
tions [23] like overlay construction and maintenance [9,27],
consensus [20], data aggregation [17] and distributed slic-
ing [8, 10, 21]. More recently, epidemic protocols have
also been used in industrial systems such as Amazon’s Dy-
namo [6] and Facebook’s Cassandra [18].

There remain, however, several practical considerations
that need to be taken into account to foster a broader adop-
tion of gossip-based systems for large-scale systems man-
agement and operation. Such disregard of practical aspects
often stem from the use of simplifying models and simula-
tions. This gap was observed previously even in fundamen-
tal primitives such as consensus [4, 20]. We consider the
same happens currently in another useful distributed sys-
tems primitive: slicing.

Slicing is the process of organizing a group of nodes into
logical disjoint subgroups, called slices, according to some
application dependent sortable criteria. Such logical divi-
sion can be used for a variety of purposes such as the con-
struction of hierarchical systems, identification of outliers,
load-balancing or offering differentiated service levels [10].
Moreover, slicing is the natural candidate for managing het-
erogeneity which appears naturally in any large scale sys-
tem from nodes with varying degrees of stability [1] to
different resource capacities [13, 25]. As a matter of fact,
popular systems such as the Skype VoIP service explicitly
split the system into super and normal peers with different
roles [12], and state-of-the-art video streaming systems like
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mTreeBone [28] offload most of the work to stabler nodes to
improve streaming quality. We thus believe there is a need
for a distributed slicing primitive able to offer a generic but
efficient slicing system that can be used by system and ap-
plication designers.

Contribution: Since early work on slicing [8], research
focused on providing a convergence proof, making it robust
to churn and non-uniform Peer Sampling Services [10] and
improve its resource usage and steadiness [21]. Nonethe-
less, these proposals still ignore a set of crucial require-
ments for any real system: multi-attribute slicing, non-
uniform slice sizes, online slice reconfigurations and the
ability to propose slicing as a substrate for other protocols
by the provision of random set of nodes from the same slice,
effectively implementing a slice-local Peer Sampling Ser-
vice (PSS) [16].

In this paper we start by distilling existing protocols
into a common slicing framework. Then, we present
novel solutions to the aforementioned issues: dealing with
non-uniform slices, performing online and dynamic slices
schema reconfiguration, and provision of a slice-local Peer
Sampling Service. We also describe how to enhance slicing
protocols with the capability of slicing over more than one
attribute. We discuss the impact of these additions to the
various protocols proposed in the literature.

Roadmap: The rest of this paper is organized as fol-
lows: Section 2 motivates the paper. In Section 3 we pro-
vide a common slicing framework. Such framework is used
to study and compare the different slicing protocols avail-
able. Moreover, we propose a variant of our previous work
on SLEAD [21] illustrating the modularity of the frame-
work. In Section 4 we extend the slicing framework with
the requirements to make it a slicing primitive. Finally, we
conclude the paper in Section 5.

2 Motivation

The motivation behind this work lies on the plurality of
applications of distributed systems slicing. In order to illus-
trate our claim we describe three examples of application of
slicing techniques.

The first example is related with critical services. Let us
consider a large scale infrastructure consisting of a pool of
computational nodes, shared by a set of heterogenous appli-
cations and services. This scenario is becoming relatively
common thanks to the Cloud Computing paradigm and its
use by Internet scale applications. Under these assumptions,
the problem of resource assignment arises. For instance, in
order to maintain acceptable quality of service levels and
satisfy service level agreements, critical services or appli-
cations should be assigned to more stable nodes. Slicing
allows partitioning the system according to some attribute
such as the uptime of the nodes. In fact, it was demonstrated

in previous research that nodes with a high uptime are more
likely to be stable for another period [1]. Slicing can thus
help solving the problem of critical service resource assign-
ment by favoring these nodes.

A second example is data replication. Let us consider a
simple data store system where the total amount of data can
not be stored in a single system node. In order to guaran-
tee that no data is lost, it is necessary to partition and repli-
cate those data partitions across different system nodes. The
problem is that of assigning data partitions to system nodes,
without requiring costly protocols. Once again, slicing pro-
vides a simple yet robust solution. Slicing the system into
a number of groups equal to the number of data partitions
ensures that a virtually constant percentage of system nodes
replicates each data partition.

Finally, a third example considers disaster recovery.
Looking at the pervasiveness of geographic location infor-
mation, it is possible to consider a system where each node
has access to its geographic location. Slicing the system
according to such attribute allows for location-aware slices.
Let us also consider that each system slice is responsible
for a set of data or services. On one side, it is possible to
have slices with nodes that are physically close, to minimize
communication costs. On the other side, having slices with
nodes that are geographically distant can allow for repli-
cation of data or services that allows for disaster recovery.
Even if a datacenter crashes, the slicing mechanism ensures
that each slice has nodes that are geographically distant,
replicating the correspondent data and services.

These are some examples of scenarios where a slicing
primitive is an important asset. They serve as motivation for
the present paper where we study current slicing protocols,
compare them and propose a number of features that expand
the usefulness of slicing.

3 Slicing framework and protocols

Autonomous and fully decentralized slicing using
gossip-based protocols received some attention recently [8,
10, 21] due to its convenience and desirable properties for
large-scale distributed system provisioning: dependability,
scalability and adaptivity. However, little effort has been
made to consider slicing as a building block for other ap-
plications and in particular, concerning its completeness.
This capability is the key for composing gossip-based pro-
tocols into more complex services [22]. We begin by ex-
tracting from the existing literature the main characteristics
of slicing protocols and factoring them in a generic slic-
ing framework. Next, we go through existing slicing pro-
tocols, instantiating our framework to compare and differ-
entiate them. Finally, we propose a variant of the SLEAD
protocol [21] recurring to the modularity of the framework.
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3.1 Basic Definitions

Slicing is the process of organizing the set of nodes in a
distributed system, into k groups called slices. Each slice
must eventually be composed of the nodes that lie in the
sequence of k subgroups ranked by increasing values of
a sortable metric: if slices are S1, . . . , Si, . . . , Sk, then all
nodes belonging to Si must have a greater value for the met-
ric than those in Si−1, and a lower value for the metric than
the nodes in Si+1. Examples of sortable metrics include
the uptime, available disk space, CPU or other application-
specific metrics. The system is modeled as a set of nodes
connected through an asynchronous network.

Slicing protocols operate by means of gossip-based mes-
sage exchanges of partial information about the system
state, that yield a global convergence but do not require any
centralized knowledge. In detail, each node in the system
has access to a local attribute value representing the mea-
sured value of the metric of interest (disk space, uptime,
etc.). Periodically, it contacts some peers and exchanges its
attribute with them. Through this mechanism, each node
gathers some local knowledge that it uses to progress. This
is a key characteristic of gossip-based protocols that confers
them high resilience and scalability.

The set of peers each node may contact (the view of each
node) is given by an underlying protocol called the Peer
Sampling Service (PSS) [16]. The PSS is typically imple-
mented using gossip-based protocols itself and produces a
random stream of peers drawn from the whole system. The
PSS is a key service that maintains membership of nodes to
the system in a decentralized fashion and offers a set of de-
sirable properties, namely: i) departed nodes are eventually
removed from the random stream of nodes provided at alive
nodes, ii) new nodes are inserted in these streams within
a bounded amount of time, and iii) convergence is guaran-
teed for protocols built on top of the PSS by ensuring that
all nodes will be involved in the exchanges regularly. In our
experiments, we assume the availability of the Cyclon [27]
PSS implementation, that provides good randomness prop-
erties for the constructed views.

3.2 Slicing Framework

At this point, we can define the basic framework of a
slicing protocol, with which we can instantiate the various
existing slicing protocols. The pseudo-code for this frame-
work is presented in Algorithm 1. In this algorithm, node
represents the node id while v represents its attribute value.

At its core are two threads, a passive (lines 2 to
6) and an active one (lines 8 to 10), running at each
node. The active thread periodically and proactively sends
to each neighbor in the view a message containing the
unique node identifier, me, and the current value of the

Algorithm 1: Slicing Framework.

function passive thread1

upon reception(message)2

data.insert(message.sender,message.value)3

smaller ← data.getSmaller()4

total← data.getTotal()5

slice← estimate slice(smaller, total)6

function active thread7

periodically8

for (node, v) ∈ view do9

send(sender = me, value = local attribute value)10

Algorithm 2: Basic slice estimation.

function estimate slice(smaller, nodes seen)1

position← smaller/nodes seen2

slice← position ∗ number of slices3

return slice4

local attribute, local attribute value (line 10). Recall
that view is populated by the underlying PSS and is
composed of a random subset of system peers (neigh-
bors). The reception of those messages triggers the pas-
sive thread waiting condition. Upon reception, the slicing
protocol stores the received information in a data struc-
ture (line 3) that offers three methods. The first method
is insertData(sender, attribute value) used to store in-
coming data. Methods getSmaller() and getTotal() refer
to the attribute values the node has seen. The first one re-
turns the number of attribute values which are smaller than
the local one while getTotal() returns the total number of
attribute values received. Note that this only represents
locally gathered information and does not requires global
knowledge. With this local knowledge, nodes rely on an
estimate slice() (line 6) function to compute the node’s
slice and report it to the application.

What differentiates each instance of such framework is
the possibility of implementing the estimate slice() func-
tion and the data structure differently. Moreover, as we will
see next, from the implementation details of both, the be-
havior and properties of each protocol change. However, in
all protocols considered in this section the estimate slice()
function is implemented similarly (as shown in Algo-
rithm 2). Existing literature on slicing only considers the
case where every slice is equally-sized and each node in the
system knows the number of slices, k, a priori by configura-
tion. Consequently, computing the slice position is simply a
matter of multiplying the node’s position obtained from the
ration of smaller attribute values and total nodes seen by k.
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Algorithm 3: Data structures for RANKING.

initialization1

smaller ← 02

total← 03

function insertData(sender, attribute value)4

if ((attribute value < local attribute value)5

∨(attribute value = local attribute value6

∧sender < me)) then7

smaller ← smaller + 18

total← total + 19

function getSmaller()10

return smaller11

function getTotal()12

return total13

To the best of our knowledge, there are three main slic-
ing algorithms in the literature: RANKING [8], SLIVER [10]
and SLEAD [21]. We describe each one of them instan-
tiating the data structure implementation from our slicing
framework and point out their specificities and motivations.
Subsequently, in Section 3.6 we present a novel slicing pro-
tocol called DSLEAD.

3.3 RANKING

The RANKING protocol [8, 11] was the first slicing al-
gorithm proposed in the literature. Its data structure simply
consists on two variables: smaller and total updated each
time a message is received. The pseudo-code for this data
structure is presented in Algorithm 3.

It is important to note that the second part of the boolean
expression in method insertData (line 6) is used for dis-
ambiguation. Considering the possibility of two nodes shar-
ing the same attribute value, their id is used to order the
nodes, improving slice calculation.

Although very simple, the RANKING protocol is highly
resilient. Message loss and churn do not prevent the pro-
tocol from progressing. However, some details prevent the
protocol from achieving optimal results. In particular, there
is no regard to duplicate messages. A node that receives du-
plicate messages from a specific peer will consider them re-
peatedly when calculating the slice estimative: the number
of nodes with higher and lower values will thus be miscal-
culated leading to wrong slice attributions.

Observe that, in [8], a RANKING node contacts a single
selected node at a time. However, RANKING can be im-
plemented by sending the attribute to all nodes in the view.
Such implementation is faster and avoids biasing the pro-
tocol towards nodes in the slice border [11]. In our frame-
work, we only consider this version of the protocol.

Algorithm 4: Data structure for SLIVER.

initialization1

list← new dict()2

function insertData(sender, attribute value)3

list[sender]← attribute value4

function getSmaller()5

res← 06

for k, v ∈ list do7

if (v < local attribute value)8

∨(v == local attribute value9

∧ k < me) then10

res← res+ 111

return res12

function getTotal()13

return list.size()14

3.4 SLIVER

To solve the duplicate message problem, the
SLIVER [10] protocol was proposed. It is very simi-
lar to RANKING but alongside the node attributes, SLIVER
also stores the node identifiers. This way, attributes from
a specific node are considered only once in the slice esti-
mation. The pseudo-code for SLIVER’s structure follows
on Algorithm 4. The data structure to support SLIVER is
a key-value table where the keys are node ids and values
their attributes (line 2).

It is possible to see that this protocol converges under
the assumption of the availability of a PSS. Let us consider
that a single node is capable of storing a number of pairs
(id, attribute value) equal to the size of the system. Due
to the random nature and continuous refresh of the PSS
views, eventually every node will receive a message from
every other node in the system. With this global informa-
tion available at each node it is easy to see that the protocol
will converge and every node will compute the correct slice.

At this point it is important to make an observation. As
noted in Section 1, a protocol that relies on an amount of
information proportional to the system size is not scalable
nor suitable to large-scale systems. To address this problem
and to make SLIVER run in a bounded memory environ-
ment, instead of storing all received attribute values, only
the more recent ones are kept. In practice, this is achieved
by considering a FIFO queue with fixed size. It should be
noted however, that this adjustment not only solves mem-
ory issues but also allows the protocol to handle churn in
a more effective way. Nodes leaving the system will stop
publishing their attribute values and the limited size queue
will force them to be eventually forgotten from the system.
Analogous behavior happens for nodes joining the system.
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An alternative implementation of the RANKING protocol
can also be considered in order to allow the protocol to for-
get attribute values. Instead of simply storing two variables,
a fixed size list of attribute values is stored. The core be-
havior of the protocol is preserved but now it is able to cope
with dynamic attribute values.

3.5 SLEAD

The SLEAD [21] protocol was proposed with the objec-
tive of tackling the lack of steadiness and high memory con-
sumption issues manifested by previous approaches.

Steadiness issues were addressed using an hysteresis
mechanism. In practice, the mechanism delays slice change
decisions until such decisions have been confirmed by more
than one cycle of slice estimation. This mechanism avoids
unnecessary slice changes, specially for nodes at slice bor-
ders. The hysteresis mechanism, detailed in [21], is plug-
gable to all slicing protocols and is left out of the scope of
the present paper.

Memory consumption problems arise from the need to
store a list with every pair of (id, attribute value) received
in order to ensure that the protocol converges. Let us con-
sider a stable environment where each node has a constant
attribute value and no node leaves or enters the system. It
is easy to see that, in such scenario, in order for a slic-
ing protocol to converge to the correct slice organization
it is necessary that each node sees the attribute value of
every other node in the system. With that complete view
over the system it is possible to compute the exact slice
to which the node belongs. Nevertheless, having a proto-
col that uses an amount of memory proportional to system
size is clearly not scalable. This problem was addressed
with the use of a FIFO queue of fixed size, m, that fol-
lows the behavior of a sliding-window. As a result, at each
point in time, every node has access to a sample of m pairs
(id, attribute value) with which it is able to estimate its
relative position and thus its slice. Because the underlying
Peer Sampling Service provides a stream of nodes that is
extremely close to a continuous random selection, it is ex-
pected that each network sample preserves characteristics
similar to the system as a whole distribution, hence allow-
ing each node to correctly estimate its slice. However, in
practice the size of m impacts the accuracy and steadiness
of the protocol. Low values of m degrade the quality of the
sample and negatively impact the protocols behavior while
high values of m result in high memory consumption rates.
This behavior is observable in the results from [21].

SLEAD’s solution to the high memory consumption was
the use of Bloom filters [2] to store data. With Bloom fil-
ters, SLEAD is able to store the complete view of the system
with a bounded memory footprint which solves the prob-
lem for the case of a stable environment. Still, as noted

Algorithm 5: Data structures for SLEAD.

initialization1

smaller ← new A2BloomFilter()2

greater ← new A2BloomFilter()3

function insertData(sender, attribute value)4

if ((attributevalue < local attribute value)5

∨(attributevalue = local attribute value6

∧sender < me)) then7

smaller.insert(sender)8

greater.remove(sender)9

else10

smaller.remove(sender)11

greater.insert(sender)12

function getSmaller()13

return smaller.size()14

function getTotal()15

return smaller.size() + greater.size()16

in the SLEAD paper, the sliding-window-type behavior of
SLIVER not only addresses memory consumption issues but
also addresses system dynamism. The system may experi-
ence instability due to two main factors: churn or node-level
change of attribute values. Both these factors provoke the
need for the system to adapt and consider new information
arriving and forget obsolete one. In SLIVER, this is imme-
diately achieved through the fixed sized queue as old val-
ues are progressively being forgotten and replaced by fresh
data. In SLEAD, as traditional Bloom filters do not have the
capacity to remove items, a special kind of Bloom filters,
called A2 [29] is used. This Bloom filter implementation
is capable of forgetting values by having two Bloom filters
and periodically reseting one of them. Beside, we replaced
the traditional Bloom filters used in A2 by counting Bloom
filters that allow for the removal of specific items [7]. The
combination of both mechanisms enables SLEAD to cope
with dynamism.

The instantiation of SLEAD in our slicing framework is
presented in Algorithm 5.

3.6 DSLEAD: Decaying SLEAD

Although successful in reducing steadiness and memory
consumption issues from previous approaches, the SLEAD
protocol exhibits some frailties. In particular, the way it
deals with dynamism with the A2 Bloom filter implemen-
tation has a main disadvantage. related to the difficulty of
configuring the rate at which values are being forgotten in
a tractable way. This is important since forgetting values
too fast results in protocol output instability while forget-
ting them slowly results in very slow adaptation to change.
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In SLIVER, changing this rate is easy because it suffices to
change the queue size (a larger queue means slower adapta-
tion to change). In SLEAD this is not a straightforward task.
The rate at which the protocol forgets values is related to the
fill ratio of the A2 Bloom filter [29]. Inevitably, this means
that changing the refresh rate is achieved by changing the
Bloom filter size. This is definitely not practical as chang-
ing the Bloom filter size means reseting the whole Bloom
filter, impacting negatively on the slice estimation.

Fortunately, we can take advantage of the slicing frame-
work and SLEAD modularity. In fact, SLEAD is independent
of the Bloom filter implementation. To solve these issues
and achieve a more complete slicing protocol we propose
the use of a different Bloom filter variant: time-decaying
Bloom filters [5]. These Bloom filters not only allow direct
item removal but also allow the user to define a function
that removes according to a certain time-related function.
In other words, it is possible to define at which rate items
are forgotten from the Bloom filter. This leads to DSLEAD,
a variant of SLEAD that shares the same structure from Al-
gorithm 5 but with a different Bloom filter implementation.

In our implementation it works as follows. Each time an
item is inserted into the Bloom filter a certain number of
positions in the Bloom filter array are incremented accord-
ing to a set of hash functions [2]. It is important to note
that the implementation of time-decay Bloom filters relies
on counting Bloom filters [7] which have more than one bit
per array position, allowing to count various occurrences of
the same item and enabling item removals. Then, periodi-
cally, each of the array positions is multiplied by a fraction
value ([0, 1[). If a certain position or group of positions in
the array are not refreshed their value will eventually de-
cay to a value close to 0. As the value never reaches 0 and,
in order to actually forget items, when a certain value in a
certain array position becomes smaller than a user defined
threshold, it is considered to be 0.

A decay function is, therefore, composed by three vari-
ables: the period of decay, the fraction of decay per period
and the minimum threshold. The ability to define a decay
function over the Bloom filter values and easily change the
rate at which it is operating, alongside the ability to imme-
diately accommodate changes to attribute values completes
the DSLEAD protocol.

We evaluate both SLEAD and DSLEAD in the following
experiment. We measure protocol steadiness as the num-
ber of slice changes that occur in the system for a particular
cycle [21]. In our experiment we let the protocols run for
about 50 cycles and then triggered a configuration change
increasing the memory footprint of SLEAD and decreasing
the decay rate of DSLEAD. The results are depicted in Fig-
ure 1. Note that we intentionally configured SLEAD and
DSLEAD with small memory and high decay rate respec-
tively which issue a non desirable behavior from both proto-

cols, observable until cycle 48. In particular, the steadiness
of slice estimation is degraded as values are continuously
being forgotten or decayed. Both protocols eventually con-
verge, lowering the steadiness values. However, DSLEAD
does not incur the same burst of slice changes as SLEAD.
This is due to the fact that in order to reconfigure SLEAD
it is necessary to reset the protocol’s data structure while
this is avoided in DSLEAD, resulting in a much smoother
transition.
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Figure 1: SLEAD and DSLEAD with reconfiguration.

4 Slicing as a Distributed Systems Primitive

Slicing protocols provide the capability of assigning
each node a slice which is useful from the perspective of
system organization. However, nothing is said about how
nodes from the same slice interact with each other or how
to have different sized slices. These are very important fea-
tures for slicing protocols to be practical.

In particular, in our opinion, there are four main features
that are lacking from slicing protocols. First, it is important
to support slices with different sizes. This feature widens
the range of applicability of slicing protocols. It consid-
ers, for instance, the case of having 10% of nodes with a
coordination task and groups of 30% nodes each with sepa-
rate responsibilities. Secondly, having a fixed slice config-
uration also impairs the applicability of slicing protocols.
These protocols are intended for highly dynamic environ-
ments where adaptivity is key. Consequently, it is diffi-
cult to conceive the use of a protocol that needs to be pre-
configured and restarted each time a new configuration is
needed. We propose the addition of a mechanism that al-
lows slicing protocols to change slice configuration without
having to stop or restart the system. Third, in [15] it is noted
that slicing is only useful if each slice is presented to the
application as a group. This means that each node in the
system should not only know to which slice it belongs to
but also which nodes share such slice. Finally, the ability to
slice considering more than one attribute seems a very use-
ful feature. For instance, allowing to look not only to CPU
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load as an indication of node utilization but to a combina-
tion of different metrics like disk I/O and uptime. In this
section we describe each one of these features and how they
can be implemented.

In addition, we evaluate some of these features. In this
regard, we ran our experiments on top of Splay [19]. Splay
is a platform that enables rapid development and testing of
distributed systems. In particular, we ran each experiment
on a local deployment of Splay and each consisting in 1000
Splay nodes. Splay was deployed in a 24-core machine with
128GB of RAM. Each node runs the same Lua [14] code
consisting of the DSLEAD protocol. As described earlier,
DSLEAD follows a gossip-like message exchange pattern.
Each node periodically contacts its neighbors sharing its lo-
cally read attribute and considers this a cycle. However,
nodes are not synchronized which means there is no guar-
antee that nodes are progressing, in terms of cycle count, at
the same rate. In order to retrieve usable information from
system runs these logical cycles are ignored and used only
internally by each node. We present our results in terms
of cycles measured in actual time. This period of observa-
tion was configured to be of 10 seconds and a cycle, in our
experiments, should be understood as one of these periods.

4.1 Heterogeneous slicing

Previous work on distributed systems slicing protocols
focused in dividing the system into k equally-sized slices.
However, this approach is restrictive. Moreover, it is possi-
ble to equip existing protocols with the capability of consid-
ering different slice configurations with minimum change
to the protocols and maintaining their properties. We name
these slice configurations schemas.

Originally, each node calculates its slice by estimat-
ing its position in a virtual ranking of all nodes accord-
ing to a certain attribute. This position estimative is calcu-
lated dividing the number of smaller attributes observed by
the total number of attributes observed as described in the
estimate slice() function implementation of Algorithm 2.

To allow the protocol to consider different slice schemas,
we need to store an additional data structure representing
the slice size distribution: a simple schema configuration
list (CL) with cumulative percentages is sufficient. This list
is populated with one entry per slice (s1 to sk) and each
entry, i, represents the percentage of the system expected to
be assigned to all slices from s1 to si. For instance, the list
CL ← [0.2, 0.4, 1], issues a system partitioned into three
slices. The first slice would gather 20% of the system, the
second slice another 20% of the system and the third slice
would encompass the remaining 60% of system nodes. It
is important to note that this organization still follows the
virtual ranking of nodes according to a local attribute.

Furthermore, even though we are using DSLEAD in our

Algorithm 6: Implementation of heterogeneous slice
estimation.

initialization1

CL← list with slice configuration2

function estimate slice(smaller, total)3

position← smaller/total4

slice← 05

for s in CL do6

if position <= s then7

return slice8

slice← slice+ 19

experiments, this technique can be implemented by all the
slicing protocols that fit the slicing framework we defined
in Section 3 simply by reimplementing estimate position
as follows (Algorithm 6). The new function will still take
as arguments the total number of attributes seen by the node
and the number of those that are smaller than its local at-
tribute. It computes the node’s relative position in the vir-
tual rank of all nodes as before but uses this result in a differ-
ent way. The node slice is estimated by checking in which
schema configuration interval such position falls.

This change in slicing protocols proved to be effective.
To evaluate this particular feature we ran two different tests
with different slice schemas. Schema one considers five
slices, each with 20% of the system nodes and it was chosen
in order to show that previous equally sized slices are still
achievable in this new protocol version. On the other hand,
schema two is an heterogeneous slice schema. It is config-
ured to achieve three slices, one with 50% of the nodes and
the remaining two with 25% of nodes each. The results are
depicted in Figure 2 and Figure 3, respectively.
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Figure 2: DSLEAD run configured with schema one.

Each vertical bar represents how the slices are distributed
in a certain cycle. Each shade of grey represents the amount
of nodes of a certain slice. Slices as ordered from bottom up
according to the CL list order. The sum of all segments of
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Figure 3: DSLEAD run configured with schema two.

the vertical bar is the total number of nodes in the system.
Note that this is not true for some initial cycles, as can be
observed in Figure 2 and Figure 3 where some nodes are
still starting.

4.2 Slice reconfiguration

In previous work [8, 10, 15, 21] focused on slicing, the
number of slices was a pre-configured parameter and little
is said about dynamic reconfiguration of slices. Moreover,
now that it is possible to have different slice schemas, the
logical step is to capacitate slicing protocols with the ability
to change schema on-the-fly.

We begin by assuming that the initiative of changing
schema is external to the system and communicated to an
arbitrary node or set of nodes. The nodes that receive the
schema change request are responsible for processing it.
The main challenge here is how to effectively disseminate
the schema to all system nodes. However, all the slicing
protocols rely on Cyclon [27]. Cyclon provides each node
a random view over the complete set of nodes and this view
has the properties of a connected graph. As a result, in or-
der to send a message to all nodes in the system, it is suffi-
cient to send it to all the nodes in the current Cyclon view
and have each node repeat such task on the reception of a
new message, essentially flooding the network. It is impor-
tant to note that more elaborate and effective dissemination
techniques could be used to spread the slice reconfiguration
message [3]. Nonetheless, such messages are very small in
size and sent sparingly and thus we consider such optimiza-
tions out of the scope of this work. The code for schema
change request is presented in Algorithm 7.

In order to validate this approach we ran
DSLEAD with an initial slice schema with CL ←
[0.1, 0.5, 0.6, 0.7, 0.9, 1] and issued a schema change
to CL ← [0.1, 0.2, 0.3, 0.4, 0.5, 1] at cycle 250. The
change request was made to a single node in the system,
responsible for propagating it.

To better illustrate the protocol behavior, Figure 4 de-

Algorithm 7: Implementation of changeSchema
function.

function changeSchema(newSchema)1

if not CL == newSchema then2

CL← newSchema3

for peerinview do4

send(peer, newSchema)5
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Figure 4: Slice reconfiguration.
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Figure 5: Slice variance for a slice schema change.

picts slice distribution at each ten cycle period and Figure 5
depicts slice variance measurements. Slice variance, as de-
fined in [21], measures the distance of a certain slice distri-
bution to a target distribution. In our experiment we deter-
mined the system slice variance according to both schemas.
It is interesting to see how the two curves behave when the
schema change occurs. Initially, as expected, high variance
values are measured for schema two and low variance val-
ues measured for schema one. Around cycle 250, the curves
exchange roles indicating the schema change. The same
time behaviour can be observed in Figure 4. For instance, if
we look at slice two, which held 40% of the nodes initially
we can see how it shrinks to the 10% of nodes configured in
schema two.
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4.3 Slice-local view

Independent of the slice schema discussion, another gap
in current slicing protocols is intra-slice connectivity. In the
current slicing protocols, each node is capable of communi-
cating with a set of other nodes in its view which are called
neighbors. This group of neighbors, although of key im-
portance, is oblivious to the slicing protocol. Consequently,
there is no practical way for a node to contact its slice peers.
In fact, partitioning a distributed system into slices is only
useful if it is possible to take advantage of such slices.

In order to achieve this the immediate solution is to have
another instance of a Peer Sampling Service for each slice.
This approach was actually mentioned in [15] as a future re-
search path. This has however a bootstrapping problem as
we do not know in advance each node’s slice. Our approach
is to inject the node’s current slice into the slicing protocol
message defined in Algorithm 1, line 10. Besides the cur-
rent node’s slice we also inject the slice-local view when
the target node belongs to the same slice as the sender. This
information, despite limited, allows nodes to quickly pop-
ulate its slice-local view and quickly deal with changes by
resetting it when slice changes happen.

4.4 Multi-attribute slicing

Existing slicing strategies take into account a single sys-
tem attribute to rank nodes. However, it might be useful
to consider more than one attribute in order to better char-
acterize each node. For instance, considering various load
attributes simultaneously or considering attributes such as
geographic information and bandwidth simultaneously. The
immediate approach can be to extend the slicing protocol
to exchange more than one attribute at each algorithm cy-
cle. This would allow considering various attributes for
slicing. We propose instead a local computation of an ar-
tificial attribute resulting from the combination of different
measured attributes and in particular the use of Space Fill-
ing Curves (SFC) [24]. This mathematical construction pro-
vides a mapping from a d-dimensional space to a unidimen-
sional one. The different attributes considered are viewed as
a multi-dimensional space. This space is divided into sub-
spaces which are mapped to a line that traverses the sub-
spaces passing through every point and entering and exiting
the space only once. Then, the virtual attribute can be con-
structed as the length of the line from one of its ends to the
point with spatial coordinates derived from the attribute val-
ues. Therefore, nodes will be able to map several attributes
to a single point in the SFC given by a real number. This
number is then used as the ranking criteria, allowing exist-
ing protocols to run unmodified but still supporting multi-
attribute slicing. An example of the application of these
curves can be found in [26].

5 Discussion

In this paper we focused on distributed systems slicing.
Even though slicing has received attention from several re-
searchers, the generalized use of these slicing techniques
is impaired by the lack of some fundamental features. We
look at slicing as a potential distributed systems primitive,
i.e., as a potential building block for many applications.

To achieve our goal we start from the analysis of exist-
ing literature and define a generic slicing framework. The
outcome of this study is twofold. On one hand, it allows
a straightforward and exhaustive comparison of each pro-
tocol while, on the other hand, it lays down the foundation
for future reasoning on these topics. In fact, our framework
identifies the core features of a slicing protocol and iden-
tifies which are the components specific to each instantia-
tion. As a result, in order to design and implement a new
slicing protocol, it suffices to instantiate the slicing frame-
work, which is done by implementing two components: the
protocol’s data structure and the slice calculation function.

Finally, we looked at slicing from a practical point of
view and studied which features are missing towards the
goal of having slicing as a distributed systems primitive.
The first feature is non-equal sized slicing. Previously, slic-
ing protocols divided the system into k equally sized slices.
Because this is restrictive, we show how to implement het-
erogenous slicing. Secondly, we focus on dynamic slice
schema change. Once it is possible to have heterogeneous
slicing, it naturally follows the need for slice schema change
without having to stop or restart the system. Finally, we
equip slicing with a way to provide slices as groups and
support to multi-attribute slicing.

An important point to make is that, although slicing as a
building block is well defined, much work is yet to be done
with respect to its application. For instance, the decaying
mechanism introduced in DSLEAD can open very interest-
ing research paths. In particular, properly defining decay
variables is very important. These variables define the rate
at which information is being forgotten from the system and
replaced by fresh one. If we define the decay rate to be too
high the system becomes very unstable while low decay val-
ues may imply slow adaptation to change. As churn is one
of the main causes for dynamism, it could be interesting to
find a correlation between the churn and decay rates. Such
task in a non trivial one because churn rates are typically
defined in terms of number of nodes joining/leaving the
system while, due to how Bloom filters are implemented,
knowing how many values are forgotten at each decay in-
terval is hard. Nevertheless, finding a way to automatically
adjust the slicing protocol according to the churn rate is a
interesting and challenging problem.
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