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Abstract. Massive-scale distributed computing is a challenge at our
doorstep. The current exponential growth of data calls for massive-scale
capabilities of storage and processing. This is being acknowledged by
several major Internet players embracing the cloud computing model
and offering first generation distributed tuple stores.
Having all started from similar requirements, these systems ended up
providing a similar service: A simple tuple store interface, that allows
applications to insert, query, and remove individual elements. Further-
more, while availability is commonly assumed to be sustained by the
massive scale itself, data consistency and freshness is usually severely
hindered. By doing so, these services focus on a specific narrow trade-off
between consistency, availability, performance, scale, and migration cost,
that is much less attractive to common business needs.
In this paper we introduce DataDroplets, a novel tuple store that shifts
the current trade-off towards the needs of common business users, pro-
viding additional consistency guarantees and higher level data process-
ing primitives smoothing the migration path for existing applications.
We present a detailed comparison between DataDroplets and existing
systems regarding their data model, architecture and trade-offs. Prelim-
inary results of the system’s performance under a realistic workload are
also presented.

Keywords: Peer-to-Peer; DHT; Cloud Computing; Dependability

1 Introduction

Storage of digital data has reached unprecedented levels with the ever increasing
demand for information in electronic formats by individuals and organizations,
ranging from the disposal of traditional storage media for music, photos and
movies, to the rise of massive applications such as social networking platforms.

Until now, relational database management systems (RDBMS) have been
the key technology to store and process structured data. However, these systems

? Partially funded by project Pastramy – Persistent and highly available software
transactional memory (PTDC/EIA/72405/2006).
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based on highly centralized and rigid architectures are facing a conundrum: The
volume of data currently quadruples every eighteen months while the available
performance per processor only doubles in the same time period [22]. This is
the breeding ground for a new generation of elastic data management solutions,
that can scale both in the sheer volume of data that can be held but also in how
required resources can be provisioned dynamically and incrementally[8,6,5,17].
Furthermore, the underlying business model supporting these efforts requires
the ability to simultaneously serve and adapt to multiple tenants with diverse
performance and dependability requirements, which add to the complexity of
the whole system. These first generation remote storage services are built by
major Internet players, like Google, Amazon, Microsoft, Facebook and Yahoo,
by embracing the cloud computing model.

Cloud data management solutions rely on distributed systems designed from
the beginning to be elastic and highly available. The CAP theorem [4] states
that under network partitions it is impossible to achieve both strong consistency
and availability. Cloud data management solutions acknowledge these difficulties
and seek to establish reasonable trade-offs. Some focus on applications that have
minor consistency requirements and can thus favor availability. They replace the
traditional transactional serializability [2] or linearizability [14] strict criteria by
eventual consistency (e.g. Basically Available Soft-state Eventual consistency [9])
or even explicit out of the system conflict resolution [8]. Furthermore, they pro-
vide only single tuple operations or at most range operations over tuples.

By doing so, these services focus on a specific narrow trade-off between con-
sistency, availability, performance, scale, and migration cost, that fits tightly
their motivating very large application scenarios. They focus on applications
that have minor consistency requirements and can favor availability with an in-
creasing complexity at the application logic. In most enterprises, in which there
isn’t a large in-house research development team for application customization
and maintenance, it is hard to add this complex layer to the application. More-
over, these applications typically have queries that, in addition to single tuple
and range operations, have the need for multi-tuple operations, and require the
usual, standard, more consistent data management. As a result, it is hard to pro-
vide a smooth migration path for existing applications, even when using modern
Web-based multi-tier architectures. This is a hurdle to the adoption of Cloud
Computing by a wider potential market and thus a limitation to the long term
profitability of businesses model.

In this paper we present DataDroplets that skews the current trade-off to-
wards the needs of common business users. DataDroplets provides additional
consistency guarantees and higher level data processing primitives that ease the
migration from current RDBMS. In order to provide higher level data processing
primitives, DataDroplets extends first generation remote storage services data
models with tags and multi-tuple access that allow to efficiently store and retrieve
large sets of related data at once. Multi-tuple operations leverage disclosed data
relations to manipulate sets of comparable or arbitrarily related elements. Addi-



tionally we present a detailed comparison of existing solutions and DataDroplets
regarding their data model and API, architecture, and trade-offs.

Finally, we have evaluated DataDroplets with a realistic environment and
workload based on Twitter [26]. The results show the benefit of DataDroplets
enhanced data model and API; the minimal cost of synchronous replication; and
attest the scalability of DataDroplets.

The remainder of the paper is organized as follows. Section 2 presents emerg-
ing Cloud based tuple stores and DataDroplets. Sections 3, 4, and 5 present, re-
spectively, a detailed comparison of existing solutions and DataDroplets regard-
ing: data model and programming interface; architecture; and design trade-offs.
Section 6 presents a evaluation of the performance of DataDroplets. Section 7
concludes the paper.

2 Tuple Stores

The need for elastic and scalable distributed data stores for managing very large
volumes of structured data is leading to the emergence of several Cloud based
tuple stores.

Major companies like Google, Amazon, Yahoo! and Facebook are competing
for a lead in this model. In the following, we briefly present four available tuple
stores and DataDroplets. The chosen tuple stores are the most representative
and, although several open source projects exist, they are mostly implementa-
tions of some of the presented here.

Amazon’s Dynamo [8] is a highly available key-value storage system. It has
properties of both databases and distributed hash tables (DHTs). Although it
isn’t directly exposed externally as a web service, it is used as a building block
of some of the Amazon Web Services [1], such as S3. Dynamo assembles several
distributed systems concepts (data partitioning and replication, Merkle trees,
load balancing, etc.) in a production system.

PNUTS [6] is a massively scalable, hosted data management service that
allows multiple applications to concurrently store and query data. Its shared
service model allows multiple Yahoo! applications to share the same resources
and knowledge. PNUTS is a component of the Yahoo!’s Sherpa, an integrated
suite of data services. Sherpa is composed of Yahoo!’ Message Broker (YMB), a
topic based publish-subscribe system and PNUTS.

Google’s Bigtable [5] is a distributed storage system for structured data that
was designed to manage massive quantities of data and run across thousands of
servers. Besides being used internally at Google for web indexing, Google Earth
and Google Finance, it is also used to store Google’s App Engine Datastore
entities. The Datastore API [13] defines an API for data management in the
Google’s App Engine (GAE) [12]. GAE is a toolkit that allows developers to
build scalable applications in which the entire software and hardware stack is
hosted at Google’s own infrastructure.

Cassandra [17] is a distributed storage engine initially developed by Facebook
to be used at the Facebook social network site and is now an Apache open source



project. It is a highly scalable distributed database that uses most of the ideas
of the Dynamo [8] architecture to offer a data model based on Bigtable’s.

DataDroplets, is a key-value store targeted at supporting very large volumes
of data leveraging the individual processing and storage capabilities of a large
number of well connected computers. It offers a simple application interface pro-
viding the atomic manipulation of key-value tuples and the flexible establishment
of arbitrary relations among tuples.

3 Data Model and API

The emergence of Cloud computing and the demand for scalable distributed
tuple stores are leading to a revolution on data models. A common approach
in all recent large scale tuple stores is the replacement of the relational data
model by a more flexible one. The relational data model was designed to store
very highly and statically structured data. However, most Cloud applications
do not meet these criteria, which results in poorer maintainability than with a
more flexible data model. Additionally, the cost of maintaining its normalized
data model, by the enforcement of relations integrity, and the ability to run
transactions across all data in the database make it difficult to scale.

Therefore, most of existing tuple stores use a simple key value store or at
most variants of the entity-attribute-value (EAV) model [19]. In the EAV data
model entities have a rough correspondence to relational tables, attributes to
columns, tuples to rows and values to cells. Each tuple is of a particular entity and
can have its own unique set of associated attributes. This data model allows to
dynamically add new attributes that only apply to certain tuples. This flexibility
of the EAV data model is helpful in domains where the problem is itself amenable
to expansion or change over time. Other benefit of the EAV model, that may
help in the conceptual data design, is the multi-value attributes in which each
attribute can have more than one value.

Furthermore, cloud based tuple stores rather than using a global data model
and operations across the entire universe define disjoint partitions of data that
can’t be queried together, making them easier to scale. The relational data model
has no abstraction for partitions and the application designers must only later
considering how it might be reasonably sharded. In the following we describe the
data model and API of the tuple stores presented in Section 2 and then motivate
and describe the data model and API of the proposed DataDroplets.

3.1 Current tuple stores

In this subsection we provide a detailed description of the data model and pro-
gramming interface for each of the tuple stores. Dynamo uses a simple key-value
data model while others use some variant EAV. Another design choice in the
data models is either it leads to row-based or column-based storage. Bigtable
and Cassandra are column based while the others are row based. In order to
ease the comparison, for each tuple store we provide a standard representation



of their data model and API. The notation has the following symbols: a) A×B,
product of A and B; b) A+B, union of A or B; c) A∗, sequence of A; d) A ⇀ B,
map of A to B; and e) PA, set of A

Dynamo is modeled as:
K ⇀ (V × C) .

Each tuple has a key associated to it and a context, represented by C, which
encodes system metadata such as the tuple’s version and is opaque to the appli-
cation. Dynamo treats both the key and the tuple, K and V , as opaque array
of bytes.

P(V × C) get(K key)
put(K key, C context,V value)

Fig. 1. Dynamo’s API

Dynamo offers a simple interface, Figure 1. The get operation locates the
tuple associated with the key and returns a single tuple or a list of tuples with
conflicting versions. The put adds or updates a tuple also by key.

In PNUTS data is organized into tables, identified by a string, of tuples
with dynamic typed attributes and tuples of the same table can have different
attributes,

String ⇀ (K ⇀ P(String × V )) .

Each tuple can have more than one value for the same attribute. The type for
the attributes, V , and for the key, K, can be typical data types, such as integer,
string, or the ”blob” data type for arbitrary data. The type for the attributes is
dynamically defined per attribute.

P(String × V ) get-any(String tableName,K key)
P(String × V ) get-critical(String tableName,K key, Double version)
P(String × V ) get-latest(String tableName,K key)
put(String tableName,K key,P(String × V ) value)
delete(String tableName,K key)
test-and-set-put(String tableName,K key,P(String × V ) value, Double version)
K ⇀ P(String × V ) scan(String tableName,PK selections,PString projections)
K ⇀ P(String × V ) rangeScan(String tableName,(K ×K) rangeSelection,PString projections)
String ⇀ (K ⇀ P(String × V )) multiget(P(String ×K) keys)

Fig. 2. PNUTS’s API

In PNUTS as tables can be ordered or hashed the available operations per ta-
ble differ, Figure 2. All tables support get-*, put, delete, and scan operations.
However, only ordered tables support selections by range: rangeScan operation.
While selections can be by tuple’s key, scan, or specify a range, rangeScan, up-
dates and deletes must specify the tuple’s key. PNUTS supports a whole range
of single tuple get and put operations with different levels of consistency guar-
antees, varying from a call where readers can request any version of the tuple,
having highly reduced latency, to a call where writers can verify that the tuple
is still at the expected version. Briefly, the get-any operation returns a possibly
stale version of the tuple, get-critical returns a version of the tuple that is at
least as fresh as the version, get-latest returns the most recent copy of the



tuple, test-and-set-put performs the tuple modification if and only if the ver-
sion of the tuple is the same as the requested version. Additionally, a multiget

is provided to retrieve multiple tuples from one or more tables in parallel.
Bigtable is a multi-dimensional sorted map,

K ⇀ (String ⇀ (String × Long ⇀ V )) .

The index of the map is the row key, column name, and a timestamp. Column
keys are grouped into column families and they must be created before data
can be stored under any column key in that family. Data is maintained in lex-
icographic order by row key where each row range is dynamically partitioned.
Each cell in BigTable can have multiple versions of the same data indexed by
timestamp. The timestamps are integers and can be assigned by Bigtable, or by
client applications. The type of the row key, K, and the value for columns V , is
a string.

put(K key,String ⇀ (String × Long ⇀ V ) rowMutation)
String ⇀ (String × Long ⇀ V ) get(K key,String ⇀ String columns)
delete(K key,String ⇀ String columns)
K ⇀ (String ⇀ (String × Long ⇀ V )) scan(K startKey,K stopKey,String ⇀ String columns)

Fig. 3. Bigtable’s API

The Bigtable API, Figure 3, provides operations to write or delete tuples
(put and delete), look up for individual tuples (get) or iterate over a subset of
tuples, scan. For all operations, the string representing the column name may
be a regular expression. Clients can iterate over multiple column families and
limit the rows, columns, and timestamps. The results for both get and scan

operations are grouped per column family.
Cassandra data model, is an extension of the Bigtable data model,

K ⇀ (String ⇀ (String ⇀ (String × Long ⇀ V ))) .

It exposes two types of column families: simple and super. Simple column families
are the same as column families in Bigtable and super column families are fami-
lies of simple column families. Cassandra sorts columns either by time or name.
In Cassandra the type for rows key, K, is also a string with no size restrictions.

put(K key,String ⇀ (String ⇀ (String × Long ⇀ V )) rowMutation)
String ⇀ (String ⇀ (String × Long ⇀ V )) get(K key,String ⇀ (String ⇀ String) columns)
K ⇀ (String ⇀ (String ⇀ (String × Long ⇀ V ))) range(K startKey,K endKey,

String ⇀ (String ⇀ String) columns)
delete(K key,String ⇀ (String ⇀ String) columns)

Fig. 4. Cassandra’s API

The Cassandra API, Figure 4, is almost the same of Bigtable API except
for the scan operation. The results of get are grouped both per super column
family and column family and ordered per column. Additionally, the current
version, 0.6, of the Cassandra open source project also supports an additional
range operation.



None of the presented tuple stores distinguish between inserts and updates.
The put operation stores the tuple with its unique key, and previous tuple that
has that key gets overwritten.

3.2 DataDroplets

In very recent proposals, contrary to RDBMS, there is no standard API to
query data in tuple stores. Most of existing Cloud based tuple stores offer a
simple tuple store interface, that allows applications to insert, query, and remove
individual tuples or at most range queries based on the primary key of the tuple.
Regardless of using a simple key value interface or flavors of the EAV model, thus
disclosing more details on the structure of the tuple, previous systems require
that more ad-hoc and complex multi-tuple queries are done outside of the tuple
store using some implementation of the Map Reduce[7] programming model:
Yahoo’s PigLatin [20], Google’s Sawzall [21], Microsoft’s LINQ [18].

Although this opens up the possibilities of what can be done with data, it has
negative implications in terms of ease of use and in the migration from current
RDBMS based applications. Even worse, if the tuple store API hasn’t enough
operations to efficiently retrieve multiple tuples for the ad-hoc queries they will
have a high cost in performance. These ad-doc queries will mostly access a set
of correlated tuples. Zhonk et al. have shown that the probability of a pair
of tuples being requested together in a query is not uniform but often highly
skewed [29]. They also have shown that correlation is mostly stable over time for
real applications. Furthermore, it is known that when involving multiple tuples
in a request to a distributed tuple store, it is desirable to restrict the number of
nodes who actually must participate in the request. It is therefore more beneficial
to couple related tuples tightly, and unrelated tuples loosely, so that the most
common tuples to be queried by a request would be those that are already tightly
coupled.

Therefore, an important aspect of our proposal, DataDroplets, is the multi-
tuple access that allows to efficiently store and retrieve large sets of related data
at once. Multi-tuple operations leverage disclosed data relations to manipulate
sets of comparable or arbitrarily related elements. Therefore, DataDroplets ex-
tend the data model of previous tuple stores with tags that allow to establish
arbitrary relations among tuples,

String ⇀ (K ⇀ (V × PString)) . (1)

In DataDroplets, data is organized into disjoint collections of tuples identified by
a string. Each tuple is a triple consisting of a unique key drawn from a partially
ordered set, a value that is opaque to DataDroplets and a set of free form string
tags. It is worth mentioning that the establishment of arbitrary relations among
tuples can be done even if they are from different collections. 1

1 We are working on extending it to an EAV data model, by allowing each tuple to have
dynamic typed attributes but allowing tuples of the same collection to have different
attributes. Additionally, each tuple may have more than one value for the same
attribute. Briefly, the current opaque value V will be replaced by P(String × V ).



put(String collection,K key, V value, PString tags)
V get(String collection,K key)
V delete(String collection,K key)
multiPut( K ⇀ (V × PString) mapItems)
K ⇀ V multiGet(P(String ×K) keys)
K ⇀ V getByRange(K min, K max)
K ⇀ V getByTags(PString tags)

Fig. 5. DataDroplets’ API

The system supports common single tuple operations such as put, get and
delete, multi-tuple put and get operations (multiPut and multiGet), and set
operations to retrieve ranges (getByRange) and equally tagged tuples (getByTags),
Figure 5 .

4 Architecture

Tuple stores target settings of a distributed setting with hundreds or thousands
of machines in a multi-tenant scenario and must be able to store and query
massive quantities of structured data. At this scale, machines’ failures are fre-
quent and therefore tuple stores must replicate data to ensure dependability.
Enabling distributed processing over this kind of massive-scale storage poses sev-
eral new challenges: problems of data placement, dependability and distributed
processing. Given these challenges and their different design requirements, all
the systems under consideration came up with different architectures.

These architectures may be categorized in three types: fully decentralized,
hierarchical and hybrid. In the fully decentralized type physical nodes are kept
organized on a logical ring overlay, such as Chord [24]. Each node maintains com-
plete information about the overlay membership, being therefore able to reach
every other node. Dynamo and Cassandra fall in this category, Figures 6(c))
and 6(a).
In the hierarchical type, a small set of nodes is responsible for maintaining
data partitions and coordinate processing and storage nodes. Both Bigtable and
PNUTS (Figures 6(b) and 6(e)) follow this type and organize tuples into tablets,
horizontal partitions of tuples. Bigtable is composed of three different types of
servers: master, tablets, and lock servers. Master servers coordinate the tablets
servers by assigning and mapping tablets to them, and redistributing tasks as
needed. The architecture of PNUTS is composed of regions, tablets controllers,
routers, and storage units. The system is divided into regions where each region
has a complete copy of each table. Within each region, the tablets controllers
coordinate the interval mapping that maps tablets to storage units.
DataDroplets uses a hybrid architecture [27] with two collaborating layers, a soft
and a persistent state, of distinct structural and functional characteristics. At
the top, a soft-state layer is responsible for 1) the client interface, 2) data parti-
tioning, 3) caching, 4) concurrency control, and 5) high level processing. Nodes
in the soft-state layer are organized in a logical ring overlay as nodes of the fully
decentralized type. Stable storage is provided by the persistent-state layer. Nodes



in this layer form an unstructured network overlay, in which nodes are not (a
priori) structured but are probabilistically managed. Each layer tackles different
aspects of the system, thus making specific assumptions over the computation
model and exploiting different techniques to data management and propagation.
With these two layers architecture we are able to clearly separate and address
the concerns of, on one hand ensuring a strong consistent data storage and, on
the other to leverage a massive and highly dynamic infrastructure.

Despite having different architectures, all of the presented tuple stores share
common components like request routing and storage and use common depend-
able and distributed systems techniques such as partition and replication. Fig-
ure 6, shows the architecture of each system and highlights which layer is re-
sponsible for each component. In the following, we focus on those components
highlighting the similarities and differences on how each component is realized
in each data store.

The characterization of the architecture is directly related to the way each
system realizes data partitioning, an aspect of major importance. While in tu-
ples stores using a fully decentralized or hybrid architectures the data partition
is done in a fully decentralized manner through consistent hashing, in the hier-
archical based architectures a small set of nodes is responsible for maintaining
the data partitions. In PNUTS data tables are partitioned into tablets - by the
tablet controller - by dividing the key space in intervals. For ordered tables, the
division is at the key-space level while in hashed tables it is at the hash space
level. Each tablet is stored into a single storage unit within a region. In Bigtable
the row range is dynamically partitioned into tablets distributed over different
machines.

While existing tuple stores do data partitioning taking into account only a
single tuple, randomly or in an ordered manner, DataDroplets also supports a
data partition strategy that takes into account tuple correlations. Currently, it
supports three data partition strategies: random placement, ordered placement,
and tagged placement that handle dynamic multi-dimensional relationships of
arbitrarily tagged tuples. The partition strategy is defined on a per collection
basis.

Another mandatory aspect of these tuple stores is replication, which is used
not only to improve performance of read operations by means of load balancing
but also to ensure dependability. In Cassandra, Dynamo and DataDroplets repli-
cation is done by the node responsible for the data, as determined by consistent
hashing, by replicating it to the R-1 successors - with a replication degree of R.
However, while Cassandra and Dynamo use quorum replication, DataDroplets
also allows the use of synchronous primary-backup offering stronger tuple con-
sistency. In PNUTS the message broker assures inter-region replication, using
asynchronous primary-backup, while in Bigtable it is done at the storage layer by
GFS [11]. In DataDroplets, the replication in the synchronous primary-backup is
complemented with replication at the persistent state layer. A tuple is assumed
to be safely stored once it is stored in m nodes (which become the entry points
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for the tuple at the soft-layer). For the sake of fault-tolerance more replicas of
the tuple are created.

Besides replication, all studied tuple stores use a persistency component to
ensure that writes are made durable. While Dynamo and Cassandra rely on local
disks for persistency, PNUTS, Bigtable and DataDroplets use a storage service.
However, while Bigtable uses it blindly, PNUTS and DataDroplets maintain
information about the mapping from tuples to storage nodes. PNUTS main-
tains the tablets to storage nodes mapping. In DataDroplets tuples stored in the
persistent-state layer are massively replicated through gossiping and each node
at the soft-state layer maintains a mapping of its tuples into a set of nodes in
the underlying persistent-state layer.

Due to the multiple nodes used and the partition of data, every time a request
is issued to the tuple store, that request has to be routed to the responsible node
for that piece of data. In DataDroplets and Cassandra any incoming request can
be issued to any node in the system. Then, the request is properly routed to
the responsible node. In PNUTS, when a request is received, the router deter-
mines which tablet contains the tuple and which storage node is responsible for
that tablet. Routers contain only a cached copy of the interval mapping that is
maintained by the tablet controller. In Dynamo, the routing is handled by the
client (i.e. the client library is partition aware) directly sending the request to
the proper node. Bigtable also needs a client library that caches tablet locations
and therefore clients send the requests directly to the proper tablet server.

5 Design and Implementation Trade-offs

Cloud based tuple stores must adapt to multiple tenants with diverse perfor-
mance, availability and dependability requirements. However, in face of the im-
possibility stated by the CAP theorem of providing at the same time: network
partitions tolerance, strong consistency and availability; cloud based tuple stores
must establish reasonable trade-offs.

Looking at the considered tuple stores, all provide two major trade-offs: no
table joins and single tuple consistency. The reason all share this first trade-off
is that making a relational join over data, which is spread across many nodes,
is unbearable, because every node would have to pull data from all nodes for
each tuple. Regarding the second trade-off, offering full database consistency
through global transactions would restrict scalability, because nodes would have
to achieve global agreement.

Although all tuple stores have in common those trade-offs, depending on the
internal design requirements each tuple store also establishes specific trade-offs.
As a result, in the following we present them and show how they focus on a
specific narrow regarding consistency, availability and migration cost. Then, we
describe how DataDroplets aims at shifting them towards the needs of common
business users. At the end, Table 1 presents a brief comparison of current tuples
stores and DataDroplets.



5.1 Trade-offs of current tuple stores

The data model type of a tuple store, in addition to determine its expressiveness,
also impacts the way of storing data. In a row based (Dynamo and PNUTS)
the tuples are stored contiguously on disk. While in a column oriented storage
(Bigtable and Cassandra) columns may not be stored in a contiguously fashion.
For that reason, column oriented storage is only advantageous if applications
only access a subset of columns per request.

The API of tuple stores is not only highly coupled with their data model,
but also with the supported data partition strategies. Single tuple operations
are highly related to the data model, but the availability of a range operation
is dependent on the existence of an ordered data partition strategy. Therefore,
Dynamo doesn’t offer a range operation like the other approaches.

Another important trade-off is the optimization either for read or write oper-
ations. A key aspect for this is how data is persistently stored. In write optimized
storage, Bigtable and Cassandra, records on disk are never overwritten and mul-
tiple updates to the same tuple may be stored in different parts of the disk.
Therefore, writes are sequential and thus, fast, while a read is slower because
it may need multiple I/Os, to retrieve and combine several updates. Dynamo is
also optimized for writes because the conflict resolution is done in reads ensuring
that writes are never rejected.

As previously stated, all tuple stores offer only single tuple consistency. How-
ever, they differ from each other in the consistency given per tuple and how they
achieve it through replication. Dynamo exposes data consistency and reconcili-
ation logic issues to the application developers, which leads to a more complex
application logic. Moreover, the application must tune the number of tuple repli-
cas N, read quorum R and write quorum W. Therefore, stale data can be read and
conflicts may occur, which must be tackled by the application. The conflict res-
olution can be syntactic or semantic based on the business logic. As multiple
versions of the same data can coexist, the update of some tuple in Dynamo
explicitly specifies which version of that tuple is being updated. PNUTS also
chooses to sacrifice consistency. Its consistency model lays between single tuple
atomicity and eventual consistency. Although every reader will always see some
consistent version of a tuple, it may be outdated. The proper consistency guar-
antees depend on the specific calls made to the system. Therefore, the burden
of strong consistency is left to the application that must reason about updates
and cope with asynchrony. In Bigtable every read or write under a single tuple is
atomic. However, every update on a given column of the tuple specifies a times-
tamp and therefore, creates a new version. Cassandra’s consistency is similar to
Dynamo with the value’s timestamp defining its version.

More on replication, in order to tolerate data center outages, tuple stores
must replicate tuples across data centers. Bigtable isn’t data center aware. Dy-
namo is configured such that each tuple is replicated across multiple data cen-
ters. PNUTS’s architecture was clearly designed as a geographically distributed
service where each data center forms a region and a message broker provides



replication across regions. Cassandra supports a replication strategy that is data
center aware, using Zookeeper.

5.2 DataDroplets

As previously stated, current tuple stores focus on a specific narrow trade-off
regarding consistency, availability and migration cost that fits tightly their in-
ternal very large application scenarios. Particularly, all current tuple store’s API
provide only single tuple operations or at most range operations over tuples of
a particular collection. Moreover, while availability is commonly assumed, data
consistency and freshness is usually severely hindered.

As explained in Section 3.2, for some applications single tuple and range
operations are not enough. These applications have multi-tuple operations that
access correlated tuples. Therefore, DataDroplets extends the data model of cur-
rent tuple stores with tags, allowing to establish arbitrary relations between tu-
ples, which allows to efficiently retrieve them through a tag based data partition
strategy.

As previously shown, current tuple stores offer varying levels of tuple con-
sistency but only PNUTS and Bigtable can offer tuple atomicity. However, in
both the burden is left to the application that must deal with multiple tuple’s
versions. In DataDroplets if an application needs atomic guarantees per tuple,
it simply configures synchronous replication and it will obtain it transparently
without having to maintain and deal with multiple tuple’ versions.

Table 1. Comparison of tuple spaces

Dynamo PNUTS Bigtable Cassandra DataDroplets
Data Model key value, row

store
EAV, row store column store column store key value +

tags, row store
API single tuple single tuple

and range
single tuple
and range

single tuple
and range

single tuple,
range and cor-
related tuples

Data Partition random random and
ordered

ordered ordered random and
ordered; tuples
correlation

Optimized for writes reads writes writes reads
Consistency eventual atomic or stale

reads
atomic eventual atomic or stale

reads
Multiple Versions version version timestamp timestamp none
Replication quorum async message

broker
file system quorum sync or async

Data Center
Aware

yes no yes yes no

Persistency local and plug-
gable

storage service
and cus-
tom/MySQL

replicated and
distributed file
system

local and cus-
tom

storage service
and pluggable

Architecture decentralized hierarchical hierarchical decentralized hybrid
Client Library yes no yes no no



6 Experimental Results

We ran a series of experiments to evaluate the performance of DataDroplets, un-
der a workload representative of applications currently exploiting the scalability
of emerging tuple stores.

As there is neither an available version of most of considered tuple stores nor
enough available machines to run them, in the following we present performance
results for DataDroplets, in particular the enhanced data model and additional
consistency guarantees. Moreover we present performance results for the effects
of scale by substantially increasing the number of nodes.

6.1 Test workload

For the evaluation of DataDroplets we have defined a workload that mimics the
usage of the Twitter social network.

Twitter is an online social network application offering a simple micro-blogging
service consisting of small user posts, the tweets. A user gets access to other user
tweets by explicitly stating a follow relationship, building a social graph.

Our workload definition has been shaped by the results of recent studies on
Twitter [15,16,3] and biased towards a read intensive workload based on dis-
cussions that took place during Twitter’s Chirp conference (the Twitter official
developers conference). In particular, we consider just the subset of the seven
most used operations from the Twitter API [25] (Search and REST API as of
March 2010): statuses user timeline, statuses friends timeline,
statuses mentions, search contains hashtag, statuses update,
friendships create and friendships destroy. Each run of the workload con-
sists of a specified number of operations. The next operation is randomly chosen
and, after it had finished, the system waits some pre configured time, think-time,
and only afterwards sends the next operation. The probabilities of occurrence
of each operation and a more detailed description of the workload can be found
in [26].

6.2 Experimental Setting

We evaluate our implementation of DataDroplets using the ProtoPeer toolkit [10]
to simulate 100 and 200 nodes networks. ProtoPeer is a toolkit for rapid dis-
tributed systems prototyping that allows switching between event-driven sim-
ulation and live network deployment without changing any of the application
code.

From ProtoPeer we have used the network simulation model and extended
it with simulation models for CPU as per [28]. The network model was config-
ured to simulate a LAN with latency uniformly distributed between 1 ms and
2 ms. For the CPU simulation we have used a hybrid simulation approach as
described in [23]. All data has been stored in memory, persistent storage was not
considered. Briefly, the execution of an event is timed with a profiling timer and
the result is used to mark the simulated CPU busy during the corresponding



period, thus preventing other event to be attributed simultaneously to the same
CPU. A simulation event is then scheduled with the execution delay to free the
CPU. Further pending events are then considered. Each node was configured
and calibrated to simulate one dual-core AMD Opteron processor running at
2.53GHz.

For all experiments presented bellow, the performance metric has been the
average request latency as perceived by the clients. A total of 10000 concurrent
users were simulated (uniformly distributed by the number of configured nodes)
and 500000 operations were executed per run. Different request loads have been
achieved by varying the clients think-time between operations. Throughout the
experiments no failures were injected.
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Fig. 7. System’s response time.

6.3 Evaluation of DataDroplets

Figure 7(a) depicts the response time for the combined workload. Overall, the use
of tags in DataDroplets to establish arbitrary relations among tuples consistently
outperforms the system without tags with responses 40% faster.



When using tags, DataDroplets may use the data partition strategy that
takes into account tuple correlations and therefore, stores correlated tuples to-
gether. As the workload is composed of several operations that access correlated
tuples, the access latency when using tags is lower than without tags, as only
other data partition strategies that only take into account a single tuple may be
used.

6.4 Evaluation of node replication

Data replication in DataDroplets is meant to provide fault tolerance to node
crashes and improve read performance through load balancing. Figure 7(b) shows
the results of the combined workload when data is replicated over three nodes.

Despite the impact replication inevitably has on write operations, the overall
response time is improved by 27%. Moreover, we can see that despite the ad-
ditional impact synchronous replication inevitably has on these operations, the
overall gain of asynchronous replication is up to 14% which would not, per se,
justify the increased complexity of the system. It is actually the dependability
facet that matters most, allowing to provide seamless fail over of crashed nodes.

6.5 Evaluation of the system elasticity

To assess the system’s response to a significant scale change we carried the
previous experiments over the double of the nodes, 200. Figure 7(c) depicts the
results.

Here, it should be observed that while the system appears to scale up very
well providing almost the double of throughput before getting into saturation,
for a small workload, up to 2000 ops/sec with 200 nodes there is a slightly higher
latency. This result motivates for a judicious elastic management of the system
to maximize performance, let alone economical and environmental reasons.

7 Conclusion

Cloud computing and unprecedented large scale applications, most strikingly
social networks such as Twitter, challenge tried and tested data management
solutions. Their unfitness to cope with the demands of modern applications have
led to the emergence of a novel approach: distributed tuple stores.

In this paper, we presented a detailed comparison of the most representa-
tive distributed tuple stores regarding their data model and API, architecture
and design and implementation trade-offs. This comparison shows that despite
having similar requirements each system offers different data modeling and op-
erations’ expressiveness and establish specific trade-offs regarding consistency,
availability and migration cost.

Moreover, we introduce DataDroplets, a distributed tuple store, that aims
at shifting the trade-offs established by current tuple stores towards the needs
of common business users. It provides additional consistency guarantees and



higher level data processing primitives smoothing the migration path for existing
applications. Specifically, DataDroplets fits the access patterns required by most
current applications, which arbitrarily relate and search data by means of free-
form tags.

The results show the benefit, in request latency, of DataDroplets enhanced
data model and API; the minimal cost of synchronous replication; and attest
the scalability of DataDroplets. Our results are grounded on a simple but real-
istic benchmark for elastic tuple stores based on Twitter and currently known
statistical data about its usage.
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