
Deriving Animations from Recursive Definitions

Alcino Cunha, José Barros, and João Saraiva

Departamento de Informática, Universidade do Minho
4710-057 Braga, Portugal

Tel: +351253604470, Fax: +351253604471
{alcino,jbb,jas}@di.uminho.pt

Abstract. This paper describes a generic method to derive an anima-
tion from a recursive definition, with the objective of debugging and
understanding this definition by expliciting its control structure. This
method is based on a well known algorithm of factorizing a recursive
function into the composition of the producer and the consumer of its
call tree. We developed a systematic method to transform both the re-
sulting functions in order to draw the tree step by step. The theory of
data types as fixed points of functors, generic recursion patterns, and
monads, are fundamental to our work and are briefly presented. Using
polytypic implementations of monadic recursion patterns and an applica-
tion to manipulate and generate graph layouts we developed a prototype
that, given a recursive function written in a subset of Haskell, returns a
function whose execution yields the desired animation.

1 Introduction

The importance of computers and the urge to produce software to assist crucial
parts of our everyday tasks have led us to the existence of huge amounts of useful,
indispensable, but undocumented programs. This fact emphasizes the need to
invest in tools and methods of understanding legacy software.

Refinement techniques usually start from a clear and inefficient specification
to reach an obscure and (hopefully) efficient program. One of these techniques is
called deforestation [21], for it avoids the construction of intermediate tree-like
structures. This is usually achieved by coding these structures in the control flow
of the program.

The reverse abstraction process tries to get a more understandable specifica-
tion from a given piece of code. Inspired by deforestation, a possible technique
for this process could be forestation, aiming at factorizing explicitly recursive
definitions into the composition of producers/consumers of tree-like structures,
thus expliciting the control structure through these data structures.

This process has many possible applications. In this paper we use it to develop
a mechanism for debugging and animating recursive definitions. The novelty of
this approach lies in the fact that the control structure of a program is seen as
a data structure – the call tree of the program. This structure corresponds to
the runtime recursive invocations of functions and differs from the (static) call

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634347?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

graph of a program. Take, for instance the usual recursive definition of factorial
function (fact). Its call graph has just one node and one arc, whereas, for a
given argument n, the call tree of fact n is a list of n+1 nodes (for example,
the call tree of fact 4 is presented on the right side of figure 1). If we take a
bi-recursive function, like for instance the standard definition of the fibonacci
function, the call tree is no longer a list but a binary tree (for example, on the
left side of figure 1 is the call tree for fib 4).

4

2

3

1

Fig. 1. Call trees of fib 4 and fact 4

From a debugging point of view this approach is substantially richer than
the traditional break-point strategy where a single node of the call trace is
inspected at a time, forgetting the whole of its context in the graph (for a
survey of debugging and tracing systems for lazy functional languages see [3]).
For example, GHood [18] is a graphical visualization tool for tracing Haskell
programs, that uses a simple tree layout algorithm to draw step by step the data
structures being produced. In our approach we focus on the control structure of
the program, and we do not intend to draw the produced data structures but to
animate step by step how they are recursively produced.

All of our work makes intensive use of generic functions that capture typi-
cal patterns of recursion (such as the foldr). The use of these generic control
structures is becoming important for several reasons [19]:

– Abstraction. They allow the specification of algorithms independently of the
types of the data structures they should operate on.

– Genericity. They allow the statement, proof and use of generic theorems.
– Structure. Besides understanding and maintainability, in the case of func-

tional languages the use of explicit structure, instead of an implicit one, eases
the application of transformation rules.

These recursion patterns arise naturally in a categorical approach to func-
tional programming. In section 2 we will briefly review the theory behind this
approach. These presentation will be accompanied by examples and polytypic
implementations using Haskell [1] and Generic Haskell [7].

In section 3 we will present a forestation algorithm previously developed by
Hu el al [8], and give examples on how it can be used to decompose a recursive
function into the composition of a function that builds the call tree and an-
other one that “consumes” it, in order to achieve the desired result. These two
functions are instances of generic recursion patterns presented in the preceding
section. In section 4 we present the theoretic machinery needed to incorporate
the animations into the factorized definition of the recursive function. This will
be achieved by defining monadic versions of the recursion patterns. The ani-
mation technique is then presented in section 5. Finally, some conclusions are
presented in section 6.

2 Data types as fixed points of functors

Given an endofunctor F on a category C, an F -algebra is a strict function of
type F A→ A, and an F -coalgebra is a, not necessarily strict, function of type
A → F A. The set A is called the carrier of the algebra. An F -homomorphism
is a function h : A → B from an F -algebra ϕ : F A → A to an F -algebra
ψ : F B → B that makes the following diagram commute.

A

h

��

F A
ϕoo

F h

��
B F B

ψ
oo

Given an endofunctor F we can construct a category ALG(F), whose ob-
jects are F -algebras and whose arrows are F -homomorphisms. Dually we have
F -cohomomorphisms and the category COALG(F). In order to guarantee the
soundness of some of the recursion patterns presented bellow, we will work in the
category CPO of complete partial orders with continuous functions. An impor-
tant fact about this category is that the carriers of the initial algebras and final
coalgebras coincide. The initial (final) object in ALG(F) (COALG(F)), whose
carrier is denoted by µF , is called the data type defined by the endofunctor F .
The initial algebra is denoted by inF : F (µF)→ µF and the final coalgebra by
outF : µF → F (µF).

A polynomial functor is either [2]:

– the identity functor I;
– a constant functor A for a given type A;
– the pointwise product or coproduct of other polynomial functors, defined by

(F +G) h = F h+G h

(F ×G) h = F h×G h

– the composition of other polynomial functors.

Given a polynomial functor F , the initial object in the category of F -algebras
is guaranteed to exist [12] (more precisely, the category must have colimits and
countable chains, which is the case of CPO). The most common data types can
be expressed as fixed points of polynomial functors, as can be seen in figure 2.

Data Type Functor

Natural numbers 1 + I
Lists of type A 1 +A× I
Non-empty lists of type A A+A× I
Binary shape trees 1 + I × I
Binary leaf trees of type A A+ I × I
Binary trees of type A 1 +A× I × I

Fig. 2. Some functors of common data types

As shown for example in [14, 9], with Haskell, we can implement data types
explicitly as fixed points of functors quite straightforwardly. For example, for
the case of lists and binary shape trees we have

newtype Mu f = In {out :: f (Mu f)}

data FList a x = Nil | Cons (a,x)
instance Functor (FList a) where

fmap f Nil = Nil
fmap f (Cons (x,y)) = Cons (x, f y)

type List a = Mu (FList a)

list :: List Int
list = In (Cons (1, In (Cons (2, In Nil))))

data FTree x = Leaf | Branch (x,x)
instance Functor FTree where

fmap f Leaf = Leaf
fmap f (Branch (x,y)) = Branch (f x, f y)

type Tree = Mu FTree

The initiality of inF in ALG(F) means that for any F -algebra g : FA→ A,
there exists a unique F -homomorphism h : µF → A such that h ◦ inF = g ◦Fh.
This homomorphism is called a catamorphism (cata) and is denoted by (|g|)1.
That is, (|g|) is the only function that makes the following diagram commute.

1 Sometimes we will append the underlying functor of a recursion pattern explicitly
in subscript. In this particular case we would state (|g|)F .

µF

(|g|)
��

F (µF)inoo

F (|g|)
��

A FAg
oo

In Haskell, if we adhere to the definition of types as explicit fixed points of
functors, we can have a single and straightforward (kind of) polytypic definition
of a cata.

cata :: Functor f => (f a -> a) -> (Mu f -> a)
cata g = g . fmap (cata g) . out

Using this function, we can now define, for example, the sum of a list and the
depth of a tree as follows:

sum :: List Int -> Int
sum = cata g where

g Nil = 0
g (Cons (a,r)) = a+r

depth :: Tree -> Int
depth = cata g where

g Leaf = 1
g (Branch (l,r)) = 1+(max l r)

Dually to catamorphisms, the finality of outF in COALG(F) means that
for any F -coalgebra g : A → FA, there exists a unique F -cohomomorphism
h : A → µF such that outF ◦ h = Fh ◦ g. This homomorphism is called an
anamorphism (ana) and is denoted by [(g)]. That is, [(g)] is the only function that
makes the following diagram commute.

A

[(g)]

��

g // FA

F [(g)]

��
µF

out
// F (µF)

The Haskell definition of ana and of a function that generates a list with all
numbers from a given parameter toward zero follows.

ana :: Functor f => (a -> f a) -> (a -> Mu f)
ana g = In . fmap (ana g) . g

downto :: Int -> List Int
downto = ana g where

g 0 = Nil
g (n+1) = Cons (n+1, n)

An hylomorphism (hylo) is just the composition of a catamorphism and an
anamorphism.

[[g, h]] = (|g|) ◦ [(h)]

The definition of hylo and, for example, of the fibonacci function is presented
bellow.

hylo :: Functor f => (f b -> b) -> (a -> f a) -> (a -> b)
hylo g h = (cata g) . (ana h)

fib :: Int -> Int
fib = hylo g h where

h 0 = Leaf
h 1 = Leaf
h (n+2) = Branch (n+1, n)
g Leaf = 1
g (Branch (l,r)) = l+r

Generic Haskell [7] is an extension of Haskell that allows us to explicitly define
polytypic functions2. With this extension we no longer need to explicitly define
the maps for the functors, because it is possible to define a generic polytypic
map function for polynomial functors (in fact, it is already implemented in the
standard distribution as gmap in the Map library). Using Generic Haskell the
definition of cata becomes

cata {| f :: * -> * |} :: (f a -> a) -> (Mu f -> a)
cata {| f |} g = g . gmap {| f |} (cata {| f |} g) . out

Note that now the definition is parametrized explicitly by the functor f that gen-
erates the data type. The term gmap {| f |} represents the particular instance
of the map function to the functor f. Using this version of cata, the function
depth can be defined as

depth :: Tree -> Int
depth = cata {| FTree |} g where

g Leaf = 1
g (Branch (l,r)) = 1+(max l r)

where cata {| FTree |} represents the instance of cata to the type Tree.

3 Deriving hylos from recursive definitions

For polynomial functors it is possible to derive automatically hylomorphisms
from explicit recursive definitions of functions [8]. This derivation will factorize

2 We will not present the details of Generic Haskell since we only use it in a very
simple and straightforward way, and we believe that our examples are clear given
the prior context.

a recursive function into the desired producer (ana) and consumer (cata) of its
call tree. The algorithm proposed by these authors is not limited to recursive
functions inducting over a single data structure. The language used to describe
recursive functions is presented on figure 3. Recursive function calls can not
be nested and can only occur in the terms of the alternatives in the definition
body. In order to simplify the presentation, the authors restricted themselves to
single-recursive datatypes and functions without mutual recursion. A work with
similar objectives had already been developed by Launchbury and Sheard [11],
but only for recursive definitions that can be specified in build-cata forms.

decl ::= v = b function definition
b ::= λvs. case t0 of r definition body
vs ::= v|(v1, . . . , vn) argument
r ::= p1 → t1; . . . ; pn → tn alternatives
t ::= v variable
| (t1, . . . , tn) term tuple
| vt function application
| Ct constructor application

p ::= Cp pattern
| (p1, . . . , pn) pattern tuple
| v variable

Fig. 3. A language of recursive definitions

For example, using a subset of Haskell similar to the language defined in
figure 3, the standard recursive definition of the fibonacci function is

fib = \n -> case n of 0 -> 1
1 -> 1
x -> plus (fib (sub (x,1)), fib (sub (x,2)))

where plus and sub are uncurried versions of operators + and -.
The derivation algorithm transforms the right hand side of a typical recursive

definition
f = λvs. case t0 of p1 → t1; . . . ; pn → tn

into the form of φ ◦ Ff ◦ ψ, so that f = [[φ, ψ]]. The trick is to transform each
term ti into a suitable git′i, in order to extract the functions gi out and obtain a
compositional description of f .

f = [g1, . . . , gn] ◦ (λvs. case t0 of p1 → (1, t′1); . . . ; pn → (n, t′n))

Additionally, if each gi can be expressed as φi ◦ Fif , where Fi is some functor,
we obtain

f = [φ1, . . . , φn]◦ (F1 + . . .+Fn) f ◦ (λvs. case t0 of p1 → (1, t′1); . . . ; pn → (n, t′n))

which is equivalent to

f = [[[φ1, . . . , φn], λvs. case t0 of p1 → (1, t′1); . . . ; pn → (n, t′n)]]

The core of the algorithm consists in determining a function φi, a functor Fi,
and a new term t′i from each term ti, so that ti = (φi ◦ Fi f) t′i. Informally, for
each ti, the algorithm proceeds as follows:

1. Identify all occurrences of recursive calls to f in ti: f ti1 , . . . , f til .
2. Identify all free variables in ti, but do not look in ti1 , . . . , til : vi1 , . . . , vik .
3. Define t′i by tupling the free variables obtained in the previous step, and

all the terms that are arguments of the recursive calls obtained in step 1:
t′i = (vi1 , . . . , vik , ti1 , . . . , til).

4. Define Fi as
Fi = Γ (vi1)× . . .× Γ (vik)× I1 × . . .× Il

where I1 = . . . = Il = I and Γ returns the type of the given variable.
5. Define φi by abstracting all recursive function calls in ti as

φi = λ(vi1 , . . . , vik , v
′
i1 , . . . , v

′
il

) . ti[f ti1 7→ v′i1 , . . . , f til 7→ v′il]

where v′i1 , . . . , v
′
il

are fresh variables introduced to replace the occurrences
of f ti1 , . . . , f til .

This algorithm is the main step of an automatic transformation system
named HYLO [16], which performs fusion transformation in a calculational ap-
proach based on the acid rain theorem [20].

The polytypic versions of the recursion patterns are very well suited to be
used in conjunction with this algorithm, because it also derives the functor that
generates the data type of the call tree. For example, the explicitly recursive
definition of the fibonacci function could be automatically transformed into the
following equivalent hylo, where F is the functor that defines the intermediate
data type D that models the call tree:

data F x = C1 | C2 | C3 (x,x)
type D = Mu F

fib = hylo {| F |} g h where
g = \p -> case p of C1 -> 1

C2 -> 1
C3 p3 -> (\(v1,v2) -> plus (v2,v1)) p3

h = \n -> case n of 0 -> C1
1 -> C2
x -> C3 (sub (x,2),sub (x,1))

Let us compare it with the definition presented in the previous section. The
main difference is the existence of two kinds of leaves in the intermediate shape
tree due to the existence of two base cases in the recursive definition.

4 Monadic recursion operators

After being proposed by Moggi [15], monads were introduced in functional pro-
gramming by Wadler [22] as a means to structure programs that produce ef-
fects. In this context a monad is usually defined by a so-called Kleisli triple
(M, unit,−?) over a category C, where M : Obj(C) → Obj(C) is the restric-
tion of a functor M to objects, unit : I .→ M is a natural transformation, and
−? is a extension operator that, given f : A → MB yields f? : MA → MB,
such that the following equations hold: unit?A = idMA, f? ◦ unitA = f , and
f? ◦ g? = (f? ◦ g)?.

Assuming that a computation that produces a value of type A has type MA,
unit is a function that transforms a value into a computation that returns that
value without producing effects, and the operator −? allows one to compose
monadic functions passing the effect around. Given f : A → MB and g : B →
MC, we define the monadic composition g•f as g?◦f . The above mentioned laws
allow one to form a Kleisli category CM , with the same objects as C, monadic
functions as morphisms, unit as identity, and − • − as composition.

Monadic catas where introduced by Fokkinga [5] after lifting most of the
concepts presented in section 2 for the Kleisli category (see [13] for a more
practical approach). First, we need to define the lifting of a function f : A→ B

as f̂ = unit◦f . Then, we also need to define how to lift a functor F to the Kleisli
category. This lifting is called monadic extension of F , and will be denoted by
F̂ .

The operation of F̂ on objects is equal to that of F . Given a monadic func-
tion f : A → MB it yields a function F̂ f : FA → M(FB). The problem of
determining the monadic extension F̂ : CM → CM is equivalent to the determi-
nation of a natural transformation δF : FM .→ MF , that distributes a monad
over a functor: F̂ f = δF ◦ Ff and δF = F̂ id. For polynomial functors δF can
be defined by induction on the structure of F , provided that a mechanism to
distribute the monad over the product is given [5].

Given a monadic F -algebra g : FA→ MA, there exists a unique homomor-
phism h : µF →MA that satisfies the following equation:

h • înF = g • F̂ h

This homomorphism is called a monadic cata and is denoted by (|g|)MF . The
existence and uniqueness of h follows from the fact that the previous equation
can be reduced to the following homomorphism between to normal algebras.

h ◦ inF = (g ◦ δF) ◦ Fh

This equivalence also states that every monadic cata is just a special case of a
cata, hence

(|g|)MF = (|h • δF |)F
Once again, using Generic Haskell we can define the monadic cata straight-

forwardly, because, as mentioned above, the monadic extension of a functor (or

monadic map) can be defined inductively on its structure. Two versions of the
monadic map are implemented in the library MapM: one that evaluates the prod-
ucts left-to-right (mapMl) and another that evaluates them right-to-left (mapMr).
Technically, if the monad is strong and commutative both yield the same result,
but in general that is not the case. Equipped with a polytypic monadic map, the
definition of the monadic map is

mcata {| f :: * -> * |} :: (Functor m, Monad m) =>
(f a -> m a) -> (Mu f -> m a)

mcata {| f |} g =
g @@ (mapMl {| f |} (mcata {| f |} g)) @@ (return . out)

where @@ is an infix operator that implements the Kleisli composition − • −.
Monadic anas and monadic hylos where extensively studied by Pardo [17].

The main problem with monadic anas is that the lifting of normal anas to the
Kleisli category does not yield unique solutions, and thus, given a monadic F -
coalgebra g : A→M(FA), the monadic ana [(g)]MF : A→MµF is defined as the
least monadic homomorphism between g and ôutF . This homomorphism can be
obtained as the least fixed point of the following function:

λf . înF • F̂ f • g

This least fixed point can be defined in Generic Haskell as follows:

mana {| f :: * -> * |} :: (Functor m, Monad m) =>
(a -> m (f a)) -> (a -> m (Mu f))

mana {| f |} g =
(return . In) @@ (mapMl {| f |} (mana {| f |} g)) @@ g

In [17], Pardo presents two possible definitions of a monadic hylo. The first,
and most general of both, is just the expected Kleisli composition of a monadic
cata and a monadic ana. That is, given a monadic algebra g : FA→MA and a
monadic coalgebra h : B →M(FB), a monadic hylo is defined as

[[g, h]]MF = (|g|)MF • [(h)]MF

The problem with this definition is that it can not always be transformed into
a function that avoids the construction of the intermediate data structure, as is
the case with normal hylos. With some monads the effects produced separately
during the construction and the destruction of the intermediate data structure
would become interleaved. In order to overcome this problem, Pardo introduced
a new definition of monadic hylo as a composition of a monadic ana and the
lifting of a cata. Given an algebra g : FA→ A and a monadic coalgebra g : B →
M(FB) this restricted version of a monadic hylo is defined as

〈|g, h|〉MF = M(|g|)F ◦ [(h)]MF

With this definition it is possible to define a factorization law, that transforms an
hylo into a single function. If M is a strictness-preserving functor then 〈|g, h|〉MF

is equal to the least fixed point of

λf . ĝ • F̂ f • h

However, none of these definitions of monadic hylo is general enough to rep-
resent the animations that we will derive in the next section. Specifically, what
we need is a factorized version similar to the previous one, but with effects both
before and after the recursive call of the function. For the monads where that is
possible, what we need is the factorized version of [[g, h]]MF . This kind of monadic
hylo will be denoted by [|g, h|]MF , and, given a monadic algebra g : FA → MA
and a monadic coalgebra h : B →M(FB), is equal to the least fixed point of

λf . g • F̂ f • h

This definition for monadic hylo has been already used by other authors, as for
example in [4]. Its definition in Generic Haskell is

mhylo {| f :: * -> * |} :: (Functor m, Monad m) =>
(f b -> m b) -> (a -> m (f a)) ->
(a -> m b)

mhylo {| f |} g h =
g @@ (mapMl {| f |} (mhylo {| f |} g h)) @@ h

5 Animating recursive functions

The derivation of animations for recursive functions proceeds according to the
following steps:

– First, given a recursive definition of a function expressed in the syntax of
figure 3 we derive an hylomorphism [[g, h]]F using the algorithm of section 3.

– Then we will define an appropriate monadM and lifting functions α : (FA→
A) → (FA → MA) and β : (A → FA) → (A → M(FA)) that will encode
the desired effects of animation. In particular we developed an animation
using Graphviz [6], a collection of tools for manipulating graph structures
and generating graph layouts.

– Finally, the derived hylo will be transformed into the monadic hylo

[|α(g), β(h)|]MF

whose execution yields the animation of the calculation process for a given
parameter.

The animation in Graphviz is implemented by a script that we developed in
its internal language lefty [10]. This script needs two files with the following
information:

– The first file has all the information needed in order to draw, step by step,
the intermediate data structure produced by the anamorphism. For each
node generated the file must contain its unique identifier, the value of the
parameter that originated it, the value that is contained in it, and, if ap-
plicable, the identifier of its parent node (needed to draw an arrow linking
both nodes). The nodes are drawn in the order presented in the file. First
the node is labeled with the parameter used to generate it, and afterwards
that label is replaced by the value in it.

– The second file records the “consumption” of that data structure during the
catamorphism. For each visited node it must contain its unique identifier
and the outputed value. Once again, the animation proceeds according to
the order of the file. For sake of clarity, instead of eliminating each node as
the computation proceeds, we opted instead to redraw them with a different
color and replace the label by the outputed value.

In order to perform IO and simultaneously carry a state around while travers-
ing the intermediate data structures, we need a monad that combines both
functionalities. This can be achieved through the monad transformer StateT
as shown in [9], that parametrizes a state monad by any other inner monad,
that in our case will be the monad IO. The definition of StateT is

newtype StateT s m a = StateT { runStateT :: s -> m (a,s) }

The state of the monad has the following components:

– seed is used to generate unique identifiers to name the nodes in the trees.
– path stores the path along the tree departing from the root node. This path

must be recorded in order to enable one to access, at each node, the identifier
of its parent.

– graph and moves are handles to the two files mentioned above.

Its Haskell definition is

data MyState = MyState { seed :: Int, path :: [Int],
graph :: Handle, moves :: Handle }

Given this monad, the transformer of the anamorphism proceeds as follows:

1. Lift the result of applying the gene to the monad.
2. Determine an unique identifier to the current node, by appealing to the seed

stored in the state, and increment this seed (function incSeed).
3. Write to the file used to draw the intermediate structure the requested in-

formation. The identifier of the parent is located at the head of the path.
The function showValue returns a textual representation of the value that
should be contained in the node. Currently, we are using a generic function
that besides representing the value contained in the node, also represents
the parameters that will be used to generate the node’s subtrees delimited
by vertical bars.

4. Adjust the path before returning, by inserting the identifier at the head of
the path (function pushNode).

In Haskell this transformer is implemented as follows:

beta :: Show a => (a -> f a) -> (a -> StateT MyState IO (f a))
beta g = \x -> do y <- return (g x)

i <- gets seed
modify incSeed
h <- gets graph
liftIO (hPutStrLn h (show i))
liftIO (hPutStrLn h (show x))
liftIO (hPutStrLn h (showValue y))
p <- gets path
liftIO (hPutStrLn h (if (null p)

then ""
else (show (head p))))

modify (pushNode i)
return y

The transformer of the catamorphism performs the following actions:

1. Lift the result of applying the gene to the monad.
2. Determine the unique identifier of the current node, stored at the head of

the path.
3. Write to the file that records the consumption of the intermediate data

structure this identifier and the outputed value at this point.
4. Adjust the path before returning, by eliminating the identifier at the head

of the path (function popNode).

In Haskell this transformer is implemented as follows:

alpha :: (Show a) => (f a -> a) -> (f a -> StateT MyState IO a)
alpha g = \x -> do y <- return (g x)

i <- gets (head . path)
h <- gets moves
liftIO (hPutStrLn h (show i))
liftIO (hPutStrLn h (show y))
modify popNode
return y

The need to use a factorized version of the monadic hylo is due only to the
need of recording the path from the root node. Since the IO operations use
different files in the ana and in the cata, their order would be preserved if we
used the first definition of monadic hylo. Figures 4 and 5 present the step by
step animation produced by our prototype for the recursive fibonacci function
presented in section 3, when supplied with the parameter 4.

Fig. 4. Anamorphism of fib 4

6 Conclusions and future work

Based on well known concepts of the theory of data types as fixed points of
functors, generic recursion patterns, and monads, and based on a straightfor-
ward implementation of these concepts using Generic Haskell, we developed a
very simple mechanism to animate the calculation process of recursive functions.
Our mechanism has the advantage that one does not need to rewrite the original
program in order to include explicit debugging instructions. Since that the an-
imation implementation is contained only on the (co)algebras’ transformers, it
is very simple to develop new kinds of animations. For example, we could easily
develop a text based tracing system or animations for other visualization tools
other then Graphviz.

Our technique relies heavily on the algorithm presented in [8] to derive hy-
lomorphisms from recursive definitions. Therefore, we intend to improve this
algorithm in order to cover a wider class of recursive programs, possibly by
allowing non-polynomial data types as intermediate structures.

We also need to improve the animation mechanism in order to cover hylomor-
phisms whose algebras or coalgebras are also defined recursively. For example,
the insertion sort algorithm when represented by an hylo has an algebra that is
a cata (whose role is to insert an element in an ordered list). One can not un-
derstand very well its behavior if this algebra is not animated too. We intend to

Fig. 5. Catamorphism of fib 4

deal with this kind of situations by developing a more interactive animation tool
that allows one to see the calculation process of a specific node by clicking on
it. In order to increase the understanding of the input function, we will also try
to apply the acid rain theorem [20] backwards to the resulting hylomorphism,
splitting it in the composition of (hopefully) simpler hylos that communicate
through intermediate data structures.

References

1. L. Augustsson, D. Barton, B. Boutel, W. Burton, J. Fasel, K. Hammond, R. Hinze,
P. Hudak, T. Johnsson, M. Jones, J. Launchbury, E. Meijer, J. Peterson, A. Reid,
C. Runciman, P. Wadler, S. Jones (editor), and J. Hughes (editor). Haskell 98: A
non-strict, purely functional language. Technical report, 1998.

2. Richard Bird and Oege de Moor. Algebra of Programming. Prentice Hall, 1997.
3. Olaf Chitil, Colin Runciman, and Malcolm Wallace. Freja, Hat and Hood – a

comparative evaluation of three systems for tracing and debugging lazy functional
programs. In M. Mohnen and P. Koopman, editors, Proceedings of the 12th Inter-
national Workshop on Implementation of Functional Languages, volume 2011 of
LNCS, pages 176–193. Springer-Verlag, 2001.

4. Tyng-Ruey Chuang and Shin-Cheng Mu. Out-of-core functional programming
with type-based primitives. In Proceedings of the 2nd International Workshop on
Practical Aspects of Declarative Languages, 2000.

5. Maarten Fokkinga. Monadic maps and folds for arbitrary datatypes. Memoranda
Informatica 94–28, University of Twente, June 1994.

6. Emden Gansner and Stephen North. An open graph visualization system and its
applications to software engineering. Software - Practice and Experience, 1999.

7. Ralf Hinze. Polytypic values possess polykinded types. In Roland Backhouse and
José Nuno Oliveira, editors, Mathematics of Program Construction (proceedings of
MPC’00), volume 1837 of LNCS, pages 2–27. Springer-Verlag, 2000.

8. Zhenjiang Hu, Hideya Iwasaki, and Masato Takeichi. Deriving structural hylomor-
phisms from recursive definitions. In Proceedings of the ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP’96), pages 73–82. ACM
Press, 1996.

9. Mark P. Jones. Functional programming with overloading and higher-order poly-
morphism. In J. Jeuring and E. Meijer, editors, First International Spring School
on Advanced Functional Programming Techniques, number 925 in LNCS, pages
97–136. Springer-Verlag, 1995.

10. Eleftherios Koutsofios. Editing Pictures with lefty, 1996.
11. John Launchbury and Tim Sheard. Warm fusion: Deriving build-catas from recur-

sive definitions. In Proceedings of the ACM Conference on Functional Programming
Languages and Computer Architecture, pages 314–323, 1995.

12. Grant Malcolm. Data structures and program transformation. Science of Computer
Programming, 14(2–3):255–279, October 1990.

13. Erik Meijeir and Johan Jeuring. Merging monads and folds for functional pro-
gramming. In J. Jeuring and E. Meijer, editors, First International Spring School
on Advanced Functional Programming Techniques, number 925 in LNCS, pages
228–266. Springer-Verlag, 1995.

14. Erik Meijer and Graham Hutton. Bananas in space: Extending fold and unfold to
exponential types. In Proceedings of the 7th ACM Conference on Functional Pro-
gramming Languages and Computer Architecture (FPCA’95). ACM Press, 1995.

15. Eugenio Moggi. Notions of computation and monads. Information and Computa-
tion, 93:55–92, 1991.

16. Yoshiyuki Onoue, Zhenjiang Hu, Hideya Iwasaki, and Masato Takeichi. A calcula-
tional fusion system HYLO. In Proceedings of the IFIP TC 2 Working Conference
on Algorithmic Languages and Calculi, pages 76–106. Chapman & Hall, 1997.

17. Alberto Pardo. Fusion of recursive programs with computational effects. Theoret-
ical Computer Science, 260(1–2):165–207, June 2001.

18. Claus Reinke. Ghood - graphical visualisation and animation of haskell object ob-
servations. In Ralf Hinze, editor, Proceedings of the 2001 ACM SIGPLAN Haskell
Workshop, volume 59 of ENTCS. Elsevier, 2001.

19. Tim Sheard and Leonidas Fegaras. A fold for all seasons. In Proceedings of the
6th Conference on Functional Programming Languages and Computer Architecture,
pages 233–242, 1993.

20. Akihiko Takano and Erik Meijer. Shortcut deforestation in calculational form. In
Proceedings of the 7th ACM Conference on Functional Programming Languages
and Computer Architecture (FPCA’95), pages 306–313. ACM Press, 1995.

21. Philip Wadler. Deforestation: Transforming programs to eliminate trees. In Pro-
ceedings of the European Symposium on Programming, number 300 in LNCS, pages
344–358. Springer Verlag, 1988.

22. Philip Wadler. Comprehending monads. Mathematical Structures in Computer
Science, 2:461–493, 1992.

