
On Stacks and Russian Dolls: Mobile Objects inCon�gurable Communication ProtocolsJos�e Orlando Pereira Rui Oliveirajop@di.uminho.pt rco@di.uminho.ptDepartamento de Inform�aticaUniversidade do Minho, PortugalAbstract. This paper introduces Groupz, a novel development frame-work for group communication protocol. Groupz merges advantages oftraditional communication protocol support environments with objectmobility, proposing multiple nested mobile objects as the natural evo-lution of layered protocols. By shifting the focus of protocol develop-ment from data messages to mobile objects, it makes possible to buildcon�gurable and adaptable system software, suited for problematic en-vironments such as world-wide networks and mobile computers, withoutoverlooking e�ciency.1 IntroductionProgramming reliable distributed systems is certainly a complex task. Much ofthe di�culties are usually tackled by developing communication protocols thatprovide powerful abstractions, such as view synchronous process groups andtotally ordered multicasts.Usually, communication protocols and their applications are loosely coupledby an interface which provides generic message passing primitives and isolatesthe application programmer from the details and complexities of the underlyingcommunication sub-system.Nonetheless, two arguments call for the integration of application and pro-tocol development to allow more control over communication resources. First,there are demanding applications, such as distributed shared memory and dis-tributed object systems, that require �ne grained control and customization ofcommunication sub-systems to achieve good performance. Second, is the broad-ening of the computing base where support for reliable communication protocolsis desired, such as mobile hosts and wide-area networks, which exhibit frequentpartial failures, are highly heterogeneous, are dynamic and must scale gracefullyto thousands of nodes.This wide range of requirements calls for a distributed programming frame-work that is simultaneously appealing to the communication protocol developerand at least, customizable by the application developer, for whom key issues arethe possibility to recon�gure the system both at compile time and run-time andto reuse existing components as often as possible.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634339?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


In order to ful�ll these requirements, this paper introduces Groupz, a noveldistributed development framework that merges advantages of traditional com-munication protocol support environments with a 
exible component architec-ture.In Groupz, object mobility is used to shift the focus of the system developerfrom protocols to messages, trading data messages by nested mobile objects,which can enormously improve the opportunities for protocol customization byapplications, while retaining the architectural advantages that made layered pro-tocols popular.This paper is organized as follows. In Section 2, four paradigmatic approachesto communication protocol development are brie
y presented and discussed. InSection 3, a general component architecture is described and in Section 4 it isshown how it can be used in the development of communication protocols. InSection 5, a reliable communication service that takes advantage of the describedarchitecture is presented. Section 6 concludes the paper.2 Protocol development survey2.1 Protocol stacksThe most widely used architecture for communication protocol development isthe layered approach, as seen in the x -Kernel [12] and Horus [25]. These systemsprovide support for protocol development in the form of an object-based modelfor layer composition and a library of utility routines providing a set of sharedabstractions.Protocols are structured as stacks of modules which implement a single uni-form interface. Each message traverses the protocol stack downwards if beingsent or upwards if being received. Depending on the semantics of each layer,messages can be stored, delayed, or even dropped. Typically messages are mod-i�ed, by adding or removing headers, and sent to the next layer.This system structure has proven to be quite e�ective in modularizing pro-tocol code in separate and interchangeable layers while allowing a performancelevel as good as what is achieved with monolithic implementations, which makesit particularly suited for system programmers.Other advantage of this structure for large scale and heterogeneous networksis the possibility of building gateways at di�erent levels of abstraction, either tohide complexity or to translate between functionally identical protocols.On the other hand, the uniform interface is often complex and tied to aparticular set of protocols. The di�erent needs of di�erent layers also mean thatthe interface is the aggregation of several distinct services (e.g. remote invocationand message passing in x -Kernel [6], or membership and message passing inHorus [26]) which seldom are all implemented in the same layer.Attempts to use layers as �ne-grained protocol components have also metsome problems, resulting in violation of independence between layers and otherproblematic workarounds [16].



2.2 Event-driven micro-protocolsAs protocol layers tend to be rather large components, event-driven micro-protocols have been proposed as a complementary approach to further subdividecommunication protocols [11, 3].In this model, composite protocol layers are structured as some shared dataand a set of micro-protocols. Each of these is a collection of event handlersthat operate on shared data and messages, register and deregister other event-handlers and �re-up events. Events can either be system de�ned, such as thearrival of a new message, or tailored for communication between speci�c micro-protocols.This allows the implementation of independent abstract properties as sepa-rate software modules, that can be composed into meaningful protocols, whichis a big advantage to application programmers wishing to build customized com-munication sub-systems [9, 10].2.3 Protocol classesAn object-oriented alternative to protocol layering is the specialization and ex-tension by inheritance of protocol classes, as used in BAST [5].Protocols are implemented as di�erent classes corresponding to di�erent rolesin a particular distributed protocol. These classes provide di�erent interfaces fordi�erent roles such as point-to-point peers, multicast peers, remote invocationservers and clients or agreement initiators and participants.The system provides a collection of generic classes that can be used eitherdirectly or as base classes for special purpose protocols required by each applica-tion. An example of this is the specialization of an abstract agreement protocolinto either an atomic commitment or a totally ordered multicast protocol.This system structure is particularly appealing to application programmers,as it allows communication related and application speci�c code to be tightlycoupled.Nonetheless, using inheritance to extend protocol classes also has some prob-lems. For instance, it makes the separate reuse of protocol extensions di�cultbecause extensions become tied to their base classes and can not be reused toextend other functionally similar base classes without re-compilation. Composi-tion and delegation have been proposed as appropriate methods to address thisand other problems [4].2.4 Active networksThe concept of active networks emerges from the possibility of con�guring com-putations done by network nodes on packets on a per user basis [22]. This capa-bility is intimately related to the inclusion of mobile code in packets themselves,which can be installed and executed on foreign nodes.An extreme approach is the usage of capsules [23] or messengers [15, 24]where every message is a program to be executed, moving most of protocol code



to messages themselves. This is roughly the equivalent of migrating a thread fromthe sender to the receiver for every message, carrying along related code and data.As such, they are particularly suited to special purpose protocols which makeuse of code mobility or when dynamic recon�guration of the communicationprotocols is a must.Although these are certainly the most 
exible of all the architectures dis-cussed, they impose some overhead on messages making it hard to implementdi�erent aspects of the same protocol, such as reliability and order in processgroups, as separate software modules.Low-level interfaces between messages and hosts may also compromise thepossibility of evolving the network infrastructure by creating new kinds of nodes,such as an unanticipated gateway, without rewriting mobile code.2.5 DiscussionAll these di�erent structuring methods re
ect speci�c targets in modularity forreuse or con�gurability, and as such should be carefully evaluated before shapinga new system.For instance, some of them target the integration of di�erent services into acoherent whole, as is the case of layered protocols, while others aim to ease thetask of building a single service, like micro-protocols.It is also important to distinguish con�gurability of communication sessionsfrom protocols that are con�gurable on a per message basis, which only messen-gers and capsules can do.Finally, con�guration of protocols can be dynamic, which is an importantissue when upgrading large installed bases of users and applications and whichis supported only in the context of active networks.However, these approaches are not mutually exclusive and it should be pos-sible to take advantage of the best features o�ered by each of them, trying toapply each where it �ts best. This should overcome the problems faced with eachof them separately.3 Component framework3.1 OverviewIn order to take advantages of all protocol development practices described,Groupz is based on a simple object-oriented component architecture. This frame-work includes a set of guidelines, interfaces and utility classes that help theprogrammer to build compliant components and use them together in complexsystems.The Groupz component framework is designed to be both easy to use ande�cient when performing those tasks which are expected to be needed in com-munication protocols. Its use is not however restricted to protocols and shouldbe applicable to other problem domains.



(b) (c) (d)(a)

A

A’ A’B’ B’

B’

B

BAB

A

B

Fig. 1. Interfaces, features and components. (a) Two interfaces; (b) a component ex-porting two features, both a service and a dependency on interface A; (c) features withdi�erent interfaces on one component; (d) multiple features with the same interface ona single component.3.2 ComponentsIn Groupz, programs and data are partitioned and encapsulated in componentsand their functionality is abstracted as a set of related and cooperating services.In order to perform its function, a component may also have some dependencieson services provided externally. Exported services and external dependenciesare together called the features of the component. Features are syntacticallyde�ned by interfaces, and thus the de�nition of a component is given by its setof interfaces.A component may, as necessary, exhibit any number of features. This meansthat a component can have several features with the same interface and thatfeatures can be added and removed dynamically as appropriate.Being an object-oriented framework, inheritance can be used to extend andspecialize components, either by adding new features or by rede�ning existingservices.A dependency can be ful�lled by a matching service, creating a link betweentwo components. Logically, two interfaces match if they are identical or if theservice interface is an extension of the dependency interface. The link re
ectsa client-server relationship between two components and is itself described bythe interface associated with the satis�ed dependency. Other than these explicitinter-component relationships, which are properly documented as features, com-ponents must be fully self-contained.Besides providing well de�ned and self-documenting software components,this standardization of relationships makes it possible to build higher level genericcomponents, that include and manipulate sub-components.3.3 GraphsAs a consequence of the variable number of features on components, each onecan be connected to a variable number of other components. This means that a



(a) (b)Fig. 2. Links and graphs. (a) Two components and a link; (b) a composite componentexporting one service and one dependency.complex system can be seen as a graph where components and links are nodesand edges, respectively.Component graphs are themselves regarded as components. As such, re-curring sub-graphs in complex systems can be encapsulated and transparentlyreused. Essential to the success of this strategy, is the possibility to export se-lected features of sub-components as features of the complex component itself.Depending on the speci�c composition strategy used, the internal structureof these components can be de�ned in several ways, eg.:{ simple static collections of sub-components, which support mix-in style com-position by delegating di�erent features on di�erent sub-components;{ static graphs, structured as a prede�ned set of components and links, usefulto hide complexity and separate di�erent levels of abstraction;{ dynamic graphs, that create and destroy components and links on demandfrom a template description;{ incomplete graphs, which are completed with components dynamically pro-vided as necessary.All these composite components can also be generic or speci�c, in the sensethat their internal structure is fully programmable or re
ects roles in a designor architectural pattern. Components that allow their internal structured tochange dynamically often advertise this possibility as an exported service of thecomposer itself. This allows a controller component to be linked to this servicein order to manipulate the graph.3.4 Applying the frameworkIn order to apply the general component architecture described above to a spe-ci�c problem domain, three tasks have to be performed:i. de�ne a set of interfaces that capture the syntax of client-server relationshipsbetween the entities in the considered problem domain;ii. build a set of, possibly abstract, components corresponding to the entitiesidenti�ed, using the appropriate interfaces to shape the exported features;



Data-
ow Speci�es a data-
ow target. It is used both for data-
owbetween protocol layers as well as for event delivery.Control-
ow Speci�es that the object is runnable. Examples of usageare timers, device drivers and mobile components. In Javathis is just the java.lang.Runnable interface.Dictionary The original java.util.Dictionary class provides accessto lookup tables.Table 1. Common service interfaces for protocol development.iii. identify recurring graphs or di�erent abstraction levels and implement themas composite components.The resulting domain speci�c framework can then be used by an applicationdeveloper, who will con�gure graphs as needed, possibly using new or extendedapplication speci�c components.4 Protocol framework4.1 OverviewThe basic assumption of the Groupz protocol framework is that all entities,including protocols and messages, are components as de�ned by the componentframework.This fact is the single most important feature of the proposed architecture,as it lays the foundation for shifting complexity from statically con�gured proto-cols to message carriers that can be dynamically selected and parameterized bythe client application. The abstraction of messages as components is made pos-sible by the implementation in the Java programming language, which providesseamless object [19, 21] and code mobility [14].Multiple nested message carriers are proposed as the preferred architecturefor developing con�gurable complex communication protocols, unifying mostof the advantages of traditional protocol development environments with newfeatures introduced by object mobility.4.2 Protocols as componentsExtending the concept of protocol stacks to component graphs, connected by thesmall set of simple interfaces presented in Table 1, obviates most of the di�cultiesfound when reusing layered protocols, such as hidden dependencies, which arelargely related to their complex uniform interfaces and large granularity.



Multiple simple interfaces result in small self-contained software modules.As a consequence, protocol abstraction layers can be themselves fragmentedinto graphs of simple components, instead of being monolithic layers. As thesesmall components tend to solve recurring abstract problems, they are reusablein more situations than more complex protocol layers, regardless of the uniforminterface of the later, because there are no hidden dependencies between them.On the other hand, the reuse of complex layers themselves is eased by thefact that multiple features per component specify as many services and explicitdependencies as necessary. As such, what would be a hidden dependency be-tween two layers to comply with an uniform interface becomes an explicit andseparately manageable feature of the component.4.3 Messages as componentsThe implications of also abstracting messages as components are certainly moreprofound. Network data formats and bu�er management, which traditionallyare big concerns in protocol development, become irrelevant. Adding headersis abstracted as object composition and serialization is done all at once by adedicated node in the protocol graph, that accepts serializable components andproduces byte sequences.Traditional protocols operate on non-encapsulated data, so headers insertedby a protocol layer must be read only by the same layer. Since, in Groupz bothmessages and protocols are components related only by complementary sets ofexported features, protocols do not need to be aware of the internal structure ofmessages and independent implementations of both can be developed.As a consequence, it is possible to move most of the complexity from proto-col implementations to the messages themselves. A protocol layer becomes justthe provider of some features that messages use. Di�erent implementations formessages can then be assembled independently of the protocol layer, as long asthe agreed interfaces are respected.In short, a speci�c protocol is implemented by a generic protocol host compo-nent and a set of message carrier components, related by their complementaryfeatures. An application willing to send a message (see Figure 3), wraps it withan adequate carrier and sends it directly to the lower network layer. When itarrives at its destination, the carrier is linked to the host component so thedelivery can be negotiated.The negotiation between the host and the carrier may involve a series oftransactions, depending on the system being implemented. The success of thisstrategy depends on the features of both carriers and hosts, as they have to begeneric enough to support a range of implementations, while being e�cient atleast when performing the most common protocols. As such, it is important thatthey describe abstract services provided and requested by carriers and hosts andnot implementation details which will restrict the possibilities of evolution.



Data

Carrier

Data

Data

Data

Carrier

Data

Carrier

Host

P
ro
to
co
l

A
p
p
lic
at
io
n

N
et
w
o
rk

Sender Receiver

(1)

(2)

(3)

(5)

(4)

(6)

Fig. 3. An application willing to send a message (1), wraps it with an adequate carrier(2) and sends it directly to the network (3). When it arrives at its destination (4),the carrier is linked to the host component so the delivery can be negotiated (5) andeventually happens (6).4.4 Nested carriersThe need to de�ne interfaces between carriers and hosts that are both genericand e�cient can be addressed by separately enforcing di�erent aspects of a pro-tocol. Consequently, host components do not need to support every conceivableprotocol and most optimization strategies that are known from monolithic pro-tocol implementations can be reused with success.This decomposition is notably similar to the process of partitioning tradi-tional protocols as layers and also results in a stack of components. Consequently,an application willing to send a message, has to use multiple nested carriers towrap it (see Figure 4). When arriving at the destination, the outer layer willbe connected to the lower host component and will eventually release its loadafter the required negotiation. The delivered component is the carrier that willproceed to next protocol host which is exactly one layer up. An analogy can bemade to a russian matrioshka doll being opened, layer by layer, until the lastone is reached.In addition, as happens with traditional layered architectures, developerscan take advantage of partitioning to build large hierarchical networks by usinggateways to connect individual sub-networks at di�erent levels. This possibilityis essential for e�cient protocols in the context of wide-area networks.



(a) (b)

Layer n

Layer 2

Layer 1

P
ro

to
co

l
N

et
w

o
rk

A
p

p
lic

at
io

n

Message with headers Nested message carriers

Nested carrier factories

Host n

Host 2

Host 1

Fig. 4. Layered protocols and nested carriers. (a) Layered protocol stack generating amessage with protocol speci�c headers; (b) protocol hosts export public interfaces for\russian doll" carriers, built at application level.4.5 DiscussionIt is interesting to examine how this architecture uses proven concepts from ex-isting protocol development environments and architectures, besides the obvioussimilarities with layered protocols.Event-driven micro-protocols and protocol classes, resemble two di�erenttechniques that have been used with success to build and extend carrier and hostcomponents. In fact, it is a straightforward process to convert micro-protocolsto carriers, by aggregating event-handlers by message and not by protocol.A carrier can also be considered an hybrid solution between messengers orcapsules and �xed messages, as protocols can also be customized on a per mes-sage basis but no code migration is done by default. However, if dynamic recon-�guration is necessary the object-oriented framework proposed is easily extendedby class carriers, which make use of the underlying Java infrastructure in codemobility and security to remotely install carrier implementations.Groupz emphasizes an object-oriented design and implementation of complexcommunication protocols, by concentrating on the development of carrier tohost interfaces regardless of the kind of protocol being implemented. A key issuefor this is the possibility of nesting carriers and layering hosts to allow thedecomposition of complex interactions in generic services.In fact, given appropriate serialization layers, Groupz can be used for a widerange of protocols. For instance, an active networking system can be devel-



oped by using a serialization layer that appends appropriate code for classesbeing sent. Even protocols compatible with traditional implementations, such asTCP/IP, can be developed by using a serialization layer that maps objects tostandardized packet structures.A di�erent way to look at Groupz is to point out that it opens the imple-mentation [13] of protocols to application programmers by separating policy andmechanism and allowing the de�nition of the former by carrier components.5 Case Study5.1 OverviewThe Groupz project aims at building a set of communication protocols for reli-able distributed application development for large-scale networks based on pro-cess groups [2]. Communication services based on this abstraction usually o�erreliable multicast services, message ordering services and group management ser-vices [8] providing dependable message delivery and consistent failure reporting.To show how the protocol framework is used, two aspects of a reliable com-munication system are examined. It is shown how to take advantage of a gen-eralized protocol graph to con�gure a virtual unreliable multicast network andit is shown how a con�gurable dependable delivery protocol can be built usingmessage carrier and host components.5.2 EnvironmentWide-area networks pose several challenges when compared to local-area net-works due to both geographical separation and number of sites [1]. Geographicallarge scale networks are unreliable in the sense that they introduce unpredictabledelays and may drop or duplicate messages. Link failures may also occur, leavingthe network partitioned for noticeable periods of time. Numerical large scale isanother challenge, as applications may require groups including a large numberof members. These networks also tend to be highly heterogeneous, encompassingnodes of various manufacturers and computational power, ranging from hand-held portables to large servers.To address these challenges, the developer must be able to state the minimumrequirements of the application as accurately as possible, in order not to incurin unnecessary overhead. For instance, requiring reliable message delivery in thepresence of frequent and long lasting network partitions, results in having tostore messages for retransmission for possibly long periods of time. In orderto minimize the amount of storage required, it should be possible to discardmessages that become obsolete while waiting for retransmission.Some proposals in this area exist [7, 20]. However, they tend to be customizedto particular applications. The architecture introduced by Groupz allows appli-cations to integrate these and other solutions and select which is appropriate foreach individual message.



5.3 Unreliable multicastThe fundamental service to build a group communication protocol is the ab-straction of an unreliable multicast network, spreading messages to whoever islistening on the appropriate channel. This is an example of a service that doesnot need to be customized for each message, and as such, does not make use ofcarriers. It is nonetheless con�gurable by choosing an appropriate structure forthe graph from a set of existing components.For instance, if a true multicast network is not available, it is simulated ontop of point-to-point networks by using an approximate membership for thegroup. It is even possible to con�gure the system as a combination of both, asany multicast service, real or simulated, can be used as a single connection underthe simulated multicast component.Being the lower layer of the system, in Groupz it must also perform objectserialization and packaging as network data units. Depending on the network,this may require fragmenting and reassembling.In addition, site failure suspicion as is required by some distributed algo-rithms is done at this layer, by inserting some extra messages in the network.This is done in one of two di�erent ways, either by monitoring regular heart-beats from every site or by challenging sites that are suspected to be down orunreachable.5.4 Dependable deliveryThe dependable delivery service is expected to perform bu�ering and retrans-mission as appropriate to ensure ideally exactly-once atomic delivery. As thecost of doing this in large-scale networks is prohibitive, the requirements haveto be relaxed, and as such, control has to be given to the application throughthe use of custom message carriers.In order to know if a message is to be delivered to a host component, a carrierrequires information about the location where it is and about what messages havealready been delivered both locally and remotely. This information is also usedto decide if they need to retransmit or discard themselves.Although location information is static, information about message deliveryis dynamic and has to be updated at di�erent locations. As this involves commu-nication, it is also done by carrier components, that are generated by messagecarriers when appropriate. This is analogous to the use of acknowledge messagesin traditional protocols.With these tools it is quite easy to supply di�erent qualities of service just bymodifying carrier components, speci�cally, changing the conditions upon whichthey retransmit or discard themselves and deliver their load based on availableinformation. Currently, reliable delivery to a group, either safe or not, is imple-mented along with stubborn and selective overlapping messages, which by fakingacknowledges as necessary, allow respectively all or some their predecessors todiscard themselves.



An interesting message carrier is the one associated with group membershipchanges under a virtually synchronous environment. This event often meansthat some messages are discarded from retransmission bu�ers, even if not fullydelivered. To accomplish this, traditional group protocols usually have speci�ccontrol operations, which either circumvent the uniform protocol interface or arecontained in it, making it more complex. In Groupz this is not necessary, as thegroup membership change message, itself, acts as an universal acknowledge fromfailed sites when reaches the dependable delivery host, discarded messages thatare no longer needed.6 ConclusionsIn the paper, we argue that existing protocol development tools, in isolation,are unsatisfactory for the development of complex highly con�gurable protocols.As a result, Groupz combines most of the advantages of traditional protocoldevelopment environments with new features introduced by object mobility intoa coherent and 
exible protocol framework. This framework helps the program-mer to describe the relationships between protocol components as services anddependencies, making them separately reusable while encouraging interface andclass inheritance where appropriate for extension and customization.We show that it is a valid assumption to consider both protocols and mes-sages as opaque components. The abstraction of messages as components is infact the single most important feature of the proposed architecture, as it lays thefoundation for shifting most of the complexity from statically con�gured proto-cols to the messages themselves. Multiple nested message carriers are proposedas an adequate extension of the architecture for structuring con�gurable com-plex communication protocols. This strategy allows applications to dynamicallyselect and parameterize complex communication services.The Groupz component and protocol frameworks [17, 18] have been im-plemented in the Java programming language and are currently being used tosupport a set of reliable communication protocols based on the process groupabstraction over large-scale networks. In addition to the virtual network and de-pendable delivery layers, Groupz includes ordering and membership layers andan agreement service, o�ering a complete range of con�gurable group communi-cation services.References1. �O. Babaoglu and A. Schiper. On group communication in large-scale distributedsystems. In Proceedings of the 6th SIGOPS European Workshop, September 1994.2. Kenneth Birman. The process group approach to reliable distributed computing.Communications of the ACM, 1993.3. Henrique Jorge da Fonseca. Ambientes de suporte para modulariza�c~ao, con-cretiza�c~ao e execu�c~ao de protocolos de comunica�c~ao. Master's thesis, UniversidadeT�ecnica de Lisboa, Instituto Superior T�ecnico, 1994.



4. R. Guerraoui et al. Strategic research directions in object oriented programming.ACM Computing Surveys, 28(4):691.5. B. Garbinato, P. Felber, and R. Guerraoui. Protocol classes for designing reliabledistributed environments. In Proceedings of ECOOP'96, July 1996.6. Network Systems Research Group. x-Kernel Programmers Manual. Dept. of Com-puter Science, University of Arizona, January 1996. Version 3.3.7. R. Guerraoui, R. Oliveira, and A. Schiper. Stubborn communication channels.Technical report, LSE, EPF Lausanne, December 1996.8. V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant broadcasts andrelated problems. Technical Report TR 94-1425, Computer Science Department,Cornell University, 1994.9. M. Hiltunen and R. Schilchting. Understanding membership. Technical ReportTR95-07, Dept. of Computer Science, University of Arizona, 1995.10. M. Hiltunen and R. Schlichting. A con�gurable membership service. Technicalreport, Department of Computer Science, University of Arizona, 1994.11. Matti Aarno Hiltunen. Con�gurable Fault-Tolerant Distributed Services. PhD the-sis, Department of Computer Science, The University of Arizona, Tucson, Arizona85721, July 1996.12. N. Hutchinson and L. Peterson. The x-Kernel: An Architecture for Implement-ing Network Protocols. IEEE Transactions on Software Engineering, 17(1):64{76,January 1991.13. G. Kiczales and Xerox Parc. Beyond the black box: Open implementation. IEEESoftware, 13(1):8{11, January 1996.14. T. Lindholm and F. Yellin. The Java Virtual Machine Speci�cation. The JavaSeries. Addison-Wesley, 1996.15. G. Di Marzo, M. Muhugusa, C. Tschudin, and J. Harms. The messenger paradigmand its implications on distributed systems. In Proceedings of ICC'95 Workshopon Intelligent Computer Communication, 1995.16. S. Mishra, L. Peterson, and R. Schlichting. Consul: A communication substratefor fault-tolerant distributed programs. Distributed Systems Engineering Journal,1(2):87{103, December 1993.17. Jos�e Orlando Pereira. Groupz component framework. Technical report, Univer-sity of Minho, Departamento de Inform�atica, Campus de Gualtar, 4710 Braga,Portugal, June 1997. http://gsd.di.uminho.pt/~jop/#tr.18. Jos�e Orlando Pereira. Groupz protocol framework. Technical report, University ofMinho, Departamento de Inform�atica, Campus de Gualtar, 4710 Braga, Portugal,June 1997. http://gsd.di.uminho.pt/~jop/#tr.19. R. Riggs, J. Waldo, A. Wollrath, and K. Bharath. Pickling state in the Java sys-tem. Usenix Computing Systems, 9(4):291{312, Fall 1996.20. L. Rodrigues and P. Ver��ssimo. How to avoid the cost of causal communicationin large-scale systems. In Proceedings of the 6th SIGOPS European Workshop,September 1994.21. Sun Microsystems, 2550 Garcia Avenue, Mountain View, CA 94043. Java ObjectSerialization Speci�cation, December 1996. 1.2.22. D. Tannenhouse, J. Smith, W Sincoskie, D. Wetherall, and G. Minden. A surveyof active network research. IEEE Communications, 35(1):80.23. D. Tannenhouse and D. Wetherall. Towards an active network architecture. Com-puter Communication Review, 26(2), April 1996.



24. C. Tschudin, G. Di Marzo, M. Muhugusa, and J. Harms. Messenger-based oper-ating systems. Cahier du Centre Universitaire d'Informatique, July 1994. RevisedSeptember, 1994.25. R. van Renesse, K. Birman, B. Glade, K. Guo, M. Hayden, T. Hickey, D. Malki,A. Vaysburd, and W. Vogels. Horus: A 
exible group communications system.Technical Report TR95-1500, Cornell University, Computer Science Department,March 23 1995.26. Robbert van Renesse. The Horus uniform group interface. Technical report, Cor-nell University, 1996.

This article was processed using the LATEX macro package with LLNCS style


