
SemanticallyReliable Multicast Protocols

JośePEREIRA

Universidadedo Minho

jop@di.uminho.pt

Luı́sRODRIGUES
�

UniversidadedeLisboa

ler@di.fc.ul.pt

Rui OLIVEIRA

Universidadedo Minho

rco@di.uminho.pt

Abstract

Reliablemulticastprotocolscanstronglysimplifythede-
signof distributedapplications.However, it is hard to sus-
tain a highmulticastthroughputwhengroupsare largeand
heterogeneous.In an attemptto overcomethis limitation,
previouswork has focusedon weakening reliability prop-
erties. In this paperwe introducea novel reliability model
thatexploitssemanticknowledgeto decidein which specific
conditionsmessagescan be purged without compromising
applicationcorrectness.This modelis basedon the con-
ceptof messageobsolescence:A messagebecomesobsolete
whenits contentor purposeis overwrittenby a subsequent
message. We showthat message obsolescencecan be ex-
pressedin a genericwayandcanbe usedto configure the
systemto achievehighermulticastthroughput.

1. Intr oduction

Theissueof achieving high andstablethroughputin re-
liablemulticastprotocolshasbeenaddressedby severalre-
cent researchefforts[4, 18, 2]. Two main impairmentsto
supportasustainedhighthroughputin this typeof protocols
have beenidentified: i) someprotocolscanbe inherently
non-scalable;ii) heterogeneousgroupsrepresentan hos-
tile environmentwhereany single slow-receiver can, due
to the flow control mechanisms,becomethe bottleneckof
thewholesystem.

The first problemhasbeenaddressedby the designof
more scalableprotocols that implementefficient mecha-
nismsto disseminatemessagesandcollect stability infor-
mation[10]. Thesecondproblemis moredifficult to tackle
sinceno protocol can force a nodeto executefasterthan
its own resourcesallow. Theproblemcanbecircumvented
by relaxingthe reliability of multicast,for instance,by not
delivering all messagesto processesthat are significantly
slower than the majority of group members[4]. Unfortu-
nately, whenstrongreliability is lost,mostof thesimplicity�

This work waspartially supportedby the 234/J4Franco/Portuguese
Grantandby Praxis/C/ EEI/ 12202/1998,TOPCOM.

thatwasgainedat theapplicationlevel is alsolost.
In thispaperweproposeadeterministicreliability model

thatmakesuseof messagesemanticsto allow messagesto
be purged without compromisingapplicationcorrectness.
The model is basedon the conceptof message obsoles-
cence: A messagebecomesobsoletewhen its contentor
purposeis overwrittenby a subsequentmessage.We show
with practicalexamplesthat that obsolescencecanbe ex-
pressedin a genericwayandusedin differentcontexts.

The papershows that a reliablemulticastprotocol that
purgesobsoletemessagescansustainhigherthroughputand
discusseshow the patternof obsolescencethat an applica-
tion exhibits is relatedto differentsystemparameters.

The paperis structuredasfollows: In Section2 we ad-
dressthe issueof multicastflow control andits role in the
performanceof heterogeneousmulticastgroups.Section3
introducestheconceptof messageobsolescenceandshows
how it can be expressedby the applicationat the proto-
col interface.Section4 addressesour semanticallyreliable
multicastprotocol and, using both analyticaland simula-
tion models,shows how theprotocol’sperformancecanbe
assessedandrelatedto traffic characteristicsandsystempa-
rameters.Section5 illustratestheprotocolusingaconcrete
application. Section6 comparesour protocolwith related
work andSection7 concludesthepaper.

2. Moti vation

Theproblemof achieving andsustaininghigh multicast
throughputis intrinsically relatedto flow control in multi-
castprotocols.A multicastsystem,composedof a source,
intermediatenetwork links and routers,andsinks, canbe
describedas a pipeline. Eachstageof the pipeline hasa
maximumcapacity, determinedby characteristicssuchas
processingpower, memoryor bandwidth.If input continu-
ally exceedsthecapacityof any givenstage,thatstagebe-
comesoverloadedandits performancedegrades,affecting
the entiremessageflow. For instance,whenoverloaded,a
network canexhibit a muchlower bandwidththanits max-
imum capacity[12]. Workstationandserver performance
alsosuffer severedegradationwhenmemorycapacityis ex-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634321?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

0

200

400

600

800

1000

500 1000 1500 2000 2500

T
hr

ou
gh

pu
t (

m
sg

/s
ec

)

�

Delay (usec/msg)

(a) Throughput.

0

20

40

60

80

100

500 1000 1500 2000 2500

B
uf

fe
r

oc
cu

pa
nc

y
(%

)

�

Delay (usec/msg)

sender
fast receiver

slow receiver

(b) Buffer occupancy.

0

20

40

60

80

100

500 1000 1500 2000 2500

C
.O

.V
. (

%
)�

Delay (usec/msg)

sender
fast receiver

slow receiver

(c) Inter-message variability (C.O.V. is
the coefficient of variation, i.e., the ratio
of the standard deviation to the mean).

Figure 1. Behavior of reliab le multicast under load: One element of the group slo ws down by sleeping
an increasing amount of time (� axis) between messa ge deliveries.

ceed,a phenomenonknown asthrashing[7].

Flow control mechanismsin network protocolsensure
that the sourcedoesnot producemoremessagesthanany
recipientor network componentcanhandle,thusenabling
full but safeuseof availableresources.This is commonly
achieved by dynamically evaluating resourceavailability
andadaptingto it, for instanceusingtheclassicalwindow-
basedmechanismas in TCP/IP[5]. Specifically, individ-
ual stagesof thepipelinetoleratetransientdegradationpe-
riodsof posteriorstagesby temporarilybufferingmessages.
Whenstoragespacebecomesexhaustedthey propagatethis
information to the previous stage. Eventually, the source
is reachedand forced to diminish its sendingrate. Back-
pressureon theprecedingstagecanbeestablishedthrough
explicit messagesor implicitly, for instanceby notacknowl-
edgingthereceptionof previousmessages.

In thecontext of multicastcommunicationall recipients
andlinks to recipientsarepartof acommonpipeline,rooted
at the multicast source. Regardlessof the specific flow
controlmechanismused,a singleslow recipienteventually
forces the sourceto slow down, degradingoverall group
performance.

To illustrate this behavior, we have simulateda simple
reliablemulticastprotocol,usinga small constantnumber
of elementsandan extensionto multicastof the classical
window-basedmechanism[11]. This scenarioallows usto
concentrateon degradationdueto flow control,without in-
terferencefrom phenomenasuchasack implosion[8] that
would surfacein large groups. Furtherinformationabout
experimentalconditionscanbefoundin Section4.4.

Specifically, we use one elementof the group as the
sender, producingmessagesat a constantrate. Oneother
elementis a fastreceiver, consumingmessagesassoonas

they areavailable. The third is the slow receiver, delayed
by constantamountof timeat theapplicationlevel between
two messagedeliveries.

Figure1ashows theaveragethroughputin messagesper
second(� axis)asmeasuredleaving thesenderfor different
delaysintroducedat theslow receiver (� axis). Noticethat
when the delayat the receiver is too big to keepup with
the sender, flow control forcesthe senderto wait, thereby
decreasingits throughputandaffectingall receivers.

Figure 1b illustratesanotherinconvenientof the situa-
tion, showing averagebuffer ocupancy at thesenderandat
eachreceiver raisingwhenthe delayat the receiver forces
the senderto slow down. In thesecircumstancestransient
performancedegradationconditionswithin asinglestageof
thepipelinewill immediatelyaffect thewholesystem.For
instance,the variability of the interval betweenmessages
growsbecauseit becomesdependenton theretransmission
mechanism.Consequently, variability of inter-arrival times
at fastreceiversis alsoaffected,asdepictedin Figure1c.

Naturally, if reliability is strictly required,i.e., if all re-
cipients must eventually deliver all messages,either the
senderadjuststo the slowest receiver or messagesindefi-
nitely accumulatefor deliverywithin thesystem.Thus,the
only definitivesolutionto this problemwould beto replace
the slowest componentwith a fasterone. Unfortunately,
transientproblemsby different machinesmay inducethe
samebehavior asaconsistentlyslow singlenode[3].

An alternative pathto addresstheproblemis to weaken
reliability requirements,sothatslower receiversarenot re-
quiredto deliver all messagesandthusdo not needto slow
down the sender. However, pureunreliableprotocols,that
randomlydropmessages,areof little useto many applica-
tions.Evenif somemechanismis implementedto notify the

receiver thatsomemessageshave beendropped,theappli-
cationmightbeunableto takeany correctivemeasuresince
it hasno knowledgeof thatmessage’scontent.

This hasleadto furtherresearchon providing someuse-
ful informationto theapplicationaboutmessagesthathave
beenlost. For instance,it hasbeenproposedtheparalleluse
of two multicastprotocols:An unreliableprotocolusedfor
payloadand a reliable protocol usedto convey meta-data
describingthecontentof datamessagessenton thepayload
channel[16]. Usingthis information,thereceivermayeval-
uatethe relevanceof lost messagesandexplicitly request
retransmissionwhenneeded.

Our approachis inspiredon this principle, but exploits
the semanticknowledgeat the sendersideinstead.As we
will explainlaterin thetext, thisallowsusto makethesame
optimizationswithoutrequiringthemaintenanceof twopar-
allel communicationchannelsandwithout requiringthein-
volvementof theapplicationin managingretransmissions.

3. Messageobsolescence

The basic idea behind our approachis that in a dis-
tributed applicationsomemessagesoverwrite the content
andpurposeof other messagessent in the past, therefore
makingthemirrelevant.If obsoletemessageshavenotbeen
yet deliveredto the application,they canbe safelypurged
without compromisingtheapplication’s correctness.In or-
der to usethis conceptwe must: i) identify which applica-
tions exhibit messageobsolescence;and ii) show that it is
possibleto expressthis propertyin a genericform. In the
remainingof this sectionwewill addressthesetwo issues.

3.1. Applications with messageobsolescence

Applicationsembodyingoperationswith overwrite se-
mantics, in particular, applicationsmanagingread-write
itemsarethemostobviousexampleof applicationsthatex-
hibit messageobsolescence.In theseapplications,any up-
dateof a given item is madeobsoleteby subsequentup-
dateoperations.Recognizingthis fact, someapplications
deal with obsolescencedirectly. For instance,distributed
file-systems,such as NFS, cachewrite operationsin the
client to minimize network traffic [19]. Other examples
includeweakly consistentdistributedsharedmemorysys-
tems,wherememoryoperationsareboundedby synchro-
nizationprimitivesto delaydistributionof updates[17].

However, it is not always possibleto implementthese
optimizationsat theapplicationlevel. If thedistribution of
updatesis unpredictableand its disseminationhastiming
constraints,the applicationshouldforward the updatesto
thenetwork assoonaspossible.At thatpoint, themessage
becomesout of reachof theapplicationandcannotbedis-
cardedeven if shortly after it becomesobsolete. Typical

examplesareapplicationssuchason-line tradingsystems,
wherenew quoteshave to becontinuouslydisseminatedto
alargenumberof recipients(aconcreteexamplein givenin
Section5).

Not only applicationswith read-writesemanticsexhibit
the obsolescenceproperty. For instance,many distributed
algorithmsarestructuredin logical roundsand,when the
algorithmadvancesto the next roundmessagesfrom pre-
vious roundsbecomeobsolete.Recognizingthis property,
Oliveiraet al. [9] have formalizedthenotionof � -stubborn
channel;a channelwherereliability hasto be ensuredjust
for the last � messages(notethat the numberof roundsis
not known a priori). The sameauthorshave shown how
the fundamentalproblemof distributed consensus[9, 13]
can be solved in asynchronousdistributed systemsaug-
mentedwith failure detectorsand � -stubbornchannels.A� -stubbornchannelcanbeseenhasa particularcaseof ob-
solescence.

3.2. Expressingobsolescence

In order to be useful for a wide rangeof applications,
obsolescencemustbeexpressedat theprotocolinterfacein
a genericway. Furthermore,the interfacemustnot be tied
to messagecontent,to ensurethatprotocolandapplication
implementationscanbekeptseparate.

We formalize obsolescenceas a relation on messages.
For eachpair of messages�
	��	���� in the relation,we say
that the first, 	 , is obsoletedby the second,	�� . The in-
tuitive meaningof this relation is that if �
	��	���� is in the
relationandif thesystemeventuallydelivers 	�� , theappli-
cationis correctregardlessof 	 beingdeliveredor not. We
assumethat this relation is transitive, anti-symmetricand
coherentwith causalorderof events.Oneway to propagate
obsolescenceinformation is to tag eachmessagewith the
identifiersof all messagesthataremadeobsolete.

The expressivenessof this definition can be illustrated
by a few examples.In a strictly reliablechannel,no mes-
sagecan be discardedand the relation is empty. On the
otherextreme,a relationwhereeverymessageobsoletesall
precedingmessagesresultsin a ��� stubbornchannel[9]. A
morecomplex exampleis presentedin Section5.

This definition is also genericas the messagecontent
needsnot be known by the protocol implementation. It
sufficesto annotateeachmessageuponmulticastwith the
identifiersof previousmessagesthatit obsoletes.

4. Semanticallyreliable protocol

Using information conveyed by the obsolescencerela-
tion, it is possibleto modify a reliablemulticastprotocolin
orderto purgeobsoletemessageswhenthe systemis con-
gested.In thissectionweestablishwhatis theexpectedper-

formanceof suchprotocolby presentingasimpleanalytical
modelfor the efficiency of the purging procedureandtest
it by meansof simulation. The analyticalmodelcanthen
beusedto deriverulesto properlyconfiguretheprotocolin
orderto obtainthemaximumpossiblethroughput.

4.1. Purging obsoletemessages

Theprotocolto purgeobsoletemessagesis actuallyquite
simple. The idea is that messagescarry control informa-
tion regardingtheobsolescencerelation.To preventfurther
overhead,whenthesystemis not overloadedthis informa-
tion is not taken into accountby the protocolandall mes-
sagesarereliably deliveredto theapplication.

Messageobsolescenceis only applied to prevent con-
gestion.Whenbuffer occupancy raisesabove a high-water
mark the protocolscansthe buffers for obsoletemessages
and purges them. Buffers are only parsedfor obsolete
messageswhen a large numberof messagesis storedlo-
cally, thusincreasingtheprobabilityof findingrelatedmes-
sagesandeffectively reducingbuffer occupancy. As soon
asbuffer occupancy lowers, the protocol resumesreliable
operation.

Over time, if enoughmessagescanbe purgedthe pro-
tocol will oscillatebetweenreliable and congestedmode
without exercising back-pressure. If not, purging some
messagesatleastensuresthatback-pressureis weaker, min-
imizing upstreamcongestion. Note that thepurging algo-
rithm is activatedfirst at the slower stageof the pipeline,
the one whosebuffers reachthe high-water mark sooner.
This may prevent other stagesfrom becomingcongested,
strongly reducingthe probability that alternatingtransient
problematicreceivers permanentlycongestall stagesup-
stream.

Giventhesimplicity of theprotocol,theinterestingopen
issueis to understandwhich arethesystemparametersthat
affect theeffectivenessof theapproachandhow thesesys-
temsparameterscanbe relatedwith the obsolescencepat-
ternof the application’s traffic. Our purposeis to obtaina
modelthat allows the applicationdesignerto easilycheck
whetherour semanticallyreliable protocol allows higher
throughputsto besustained.

4.2. Analytical model

In order to assessthe performanceof our protocol, in
termsof how different throughputscanbe accommodated
within the samegroup, we considera simplified system
modelconstitutedby a singlesender, a fastreceiver anda
slow receiver (seeFigure2).

The senderproducesmessagesat rate ��� . For eachre-
ceiver, messagesareplacedin a buffer with capacityfor �
messages.If a messagecannotbe insertedin one of the

Slow Receiver (Tr)

Fast Receiver (inf)Buffer (N)

Buffer (N)

Sender (Ts) T

T

T’

Figure 2. Simplified system model.

buffers,thesenderblocksuntil buffer spacebecomesavail-
able. A fast receiver removesmessagesfrom its buffer as
soonasthey becomeavailable.On theotherhand,theslow
receiver removesmessagesfrom its buffer at rate ��� . Con-
sidering ��������� , theslow receiver’sbuffer eventuallyfills
up. When this happens,the protocol searchesthe buffer
for obsoletemessages,freeingspaceto storearriving mes-
sages.If thesystemremainsoverloadedfor a long period,
thebuffer will eventuallybefilled just with unrelatedmes-
sages. Therefore,new messagescan only be acceptedif
they obsoleteoneof themessagesin thebuffer.

Theestimationof performancethusdependsonknowing
thedistancein the input streambetweenrelatedmessages.
Unlessobsolescenceis strictly periodic, this is a random
variable.Let bethedistancebetweeneachmessageand
the latestmessageobsoletedby it, and ! �"�#�%$'&(� $)�#�
theprobabilitymassfunctionof . Value ! �
*+� is assumed
to betheprobabilityof notexistingany obsoletedpredeces-
sormessage.

The probability of a messagebeingobsoletedby a new
messageis thusgiven by ,.- $0/�1�243 ! �"�#� , which is an
estimateof maximumratio of messagesthatcanbepurged
by theprotocolundercontinuedcongestion.However, this
is not a goodestimateof how the protocolwould behave,
asit implicitly assumesan unboundedamountof previous
bufferedmessages.

Knowing thatwhenthe systemis congestedbuffersare
full, amorereasonableassumptionis to considerthatbuffer
sizedeterminesthemaximumdistancebetweentwo related
messagessuch that one of them can be discarded. To-
tal probability of an obsoletedpredecessorexisting in the
buffer is thus , $ /6518793 ! �
�#� , where � is the maximum
numberof messagesbufferedfor eachreceiver. This gives
an estimateof the ratio of messagesthat can be purged
by the protocolundercontinuedcongestion.Using , and
givenmaximumsenderandreceiverthroughputs� � and � � ,
it is possibleto derive the effective throughputs� and � �
(seeFigure2):

��$6:<;>=9�"���?� � ��@� , � (1)

� � $6:<;>=9�"�A�� � � (2)

Naturally, if probabilityaccumulatesatlow valuesof dis-

0

200

400

600

800

1000

500 1000 1500 2000 2500

T
hr

ou
gh

pu
t (

m
sg

/s
ec

)

�

Delay (usec/msg)

sender (r=1)
sender (r=2)
sender (r=3)
sender (r=4)

slow receiver

(a) Throughput.

0

20

40

60

80

100

500 1000 1500 2000 2500

M
es

sa
ge

s
pu

rg
ed

 (
%

)

Delay (usec/msg)

r=1
r=2
r=3
r=4

(b) Messages purged.

Figure 3. Despite the increasingl y slo w re-
ceiver , thr oughput at the sender remains un-
affected for as long as obsolescence allo ws
enough messa ges to be pur ged.

tance,i.e., if the probability of a messagebeingmadeob-
soleteby a closesubsequentmessageis high, the purging
procedureis very effective. On the otherhand,if the dis-
tanceis large,it is likely that thebuffersbecomeexhausted
beforeany messagehasthe chanceto becomeobsolete.It
is alsoclearthat,for thesameobsolescencedistribution,the
algorithmperformsbestfor largerbuffer sizes.

4.3. Applying the model

To exercisethe model we have selectedthe following
patternof messageobsolescence:Messagetraffic consists
of two distincttypesof messages:i) independentmessages
thatdo not make othermessagesobsoleteandthat arenot
madeobsoleteby any othermessage;andii) overwritemes-
sagesthatobsoletetheirpredecessorsandaremadeobsolete
by theirsuccessorwith agivenprobability. Thedistribution
is characterizedasfollows:

0

200

400

600

800

1000

5 10 15 20 25 30 35

T
hr

ou
gh

pu
t (

m
sg

/s
ec

)

�

Parameter N

r=1
r=2
r=3

(a) Buffer size sensitivity to B (CED�FHG).

0

200

400

600

800

1000

5 10 15 20 25 30 35

T
hr

ou
gh

pu
t (

m
sg

/s
ec

)

�

Parameter N

d=10
d=20
d=30

(b) Buffer size sensitivity to C (BIDJF).
Figure 4. Depending on the obsolescence pat-
tern of traffic, here determined by parameter sK and L , buff er size � must be adjusted in
order to obtain maxim um thr oughput.

!M�N O �
�#�E$
P �@� 3� Q �R$6*3� �S�@� 3�TO � 1VU�3 3�TO Q �XWY* (3)

TheparameterK modelstherelativedistributionof inde-
pendentandoverwritemessages:Ontheaverage,oneeveryK messageshasoverwritesemantics.Thus, K directlyestab-
lishesanabsoluteupperboundon purging. TheparameterL representsthe diversity of overwrite messages,dictating
theprobabilityof two overwritemessagesbeingrelatedand
thussensitivity to buffer size � . With this distribution we
canexploreboundaryconditionsthatlimit theperformance
of ourprotocol.

For instance,Figure 3 shows several aspectsof proto-
col performancefor this traffic patternaspredictedby our
model. In particular, Figure3ashows theexpectedbehav-
ior of a group whereone elementis increasinglyslower
but wheretraffic is distributedaccordingto !M�N 3 usinglarge
buffers.Thisresult,shouldbecomparedtoFigure1a,where

0

200

400

600

800

1000

500 1000 1500 2000 2500

T
hr

ou
gh

pu
t (

m
sg

/s
ec

)

�

Delay (usec/msg)

r=1
r=2
r=3
r=4

reliable

(a) Throughput with CEDZF and [\D�]^G .

0

20

40

60

80

100

500 1000 1500 2000 2500

M
es

sa
ge

s
pu

rg
ed

 (
%

)

Delay (usec/msg)

r=1
r=2
r=3
r=4

(b) Messages purged with C_D`F and[\D�]^G .

0

200

400

600

800

1000

5 10 15 20 25 30 35

T
hr

ou
gh

pu
t (

m
sg

/s
ec

)

�

Parameter N

r=1
r=2
r=3

(c) Buffer size sensitivity to B with CED�FHG
and acbdDRefG^G .

0

200

400

600

800

1000

5 10 15 20 25 30 35

T
hr

ou
gh

pu
t (

m
sg

/s
ec

)

�

Parameter N

d=10
d=20
d=30

(d) Buffer size sensitivity to C with BAD\F
and acbdD�efG^G .

Figure 5. Simulation results.

global throughputis limited by theslower receiver. Figure
3b explains why different throughputsare accommodated
by depictingtheamountof messagesthatarepurged. Fig-
ure4 showsthesensitivity to differentbuffer sizesof differ-
entcombinationsof parametersK and L in asituationwhere� � $g�h*c*�* msg/secand � � $jic*�* msg/secandthusmes-
sagesmustbepurgedin ordernot to impactoverall perfor-
mance.

Thissimpleanalyticalmodeldoesnottakeinto consider-
ationseveral issuesthatmayaffect theefficiency of theal-
gorithm.To startwith, it doesnot considertheeffectof the
purging procedureitself in thecontentof thebuffer, which
meansthat even if only � messagesare stored,they are
likely not to bethelast � messages.Furthermore,existing
networksarenot fully reliableandmaydeliver packetsout
of order. Thus, the actualdistribution of messagesin the
recipient’s buffers is evenmoreunpredictablethanconsid-
eredabove,whereweassumethatall messagesarereceived
in FIFO order. Thusthebuffer might hold any � previous
messagesor evensomeposteriormessages.

Additionally, in a real systemwe do not have a single
buffer for eachpair of sender-receiver nodes. Instead,we

have two buffers,oneat thesenderandtheotherat the re-
cipient,wherepurging maybeapplied.Naturally, if obso-
lete messagesare purged in the sender’s buffer, thereare
lesschancesthat obsoleteinformation reachesrecipients.
On theotherhand,thereis lessloadimposeddownstream.

Although a detailedanalytical model could be devel-
oped,simulationshave shown that this simplerandeasier
to usemodelprovidesa goodapproximationof thesystem
behavior, asdescribedbelow.

4.4. Simulation

In orderto verify thevalidity of theanalyticalmodeland
to studytheimpactof practicalissuesof protocoldesign,we
resortedto simulation. In contrastto the analyticalmodel,
simulationallows us to considerthe effect of messagere-
orderingandnon-contiguousbuffers.

Weuseadiscreteeventsimulationmodelusingrealcode
for theprotocolandarandommodelfor theapplicationand
the network. This setupallows a precisesimulationof the
componentsof interestby usinga highly accuratetimer to
measurethedurationof therelevantevents.Thecomplexity

0

20

40

60

80

100

500 1000 1500 2000 2500

B
uf

fe
r

oc
cu

pa
nc

y
(%

)

�

Delay (usec/msg)

sender
fast receiver

slow receiver

(a) Buffer occupancy.

0

20

40

60

80

100

500 1000 1500 2000 2500

C
.O

.V
. (

%
)�

Delay (usec/msg)

sender
fast receiver

slow receiver

(b) Variability.

Figure 6. Simulation sho ws that both buff er
occupanc y and variability at the sender re-
main low despite cong estion at the receiver .

of theremainingsystemis abstractedasarandommodelfor
eventduration.Thisapproachhasbeenshown to accurately
representreal-timecharacteristicsof thesystembeingsim-
ulatedwhile allowing centralizedfailure injectionandom-
niscientobservation[1].

A full-fledged reliable multicast protocol requiresthe
combinedusedof severalmechanisms.For instance,some
form of negative or positive acknowledgementhas to be
usedto mark messagesasdelivered. Inappropriateuseof
thesemechanismsmay lead to problemssuchas ack im-
plosion[8]. In this paperwe areinterestedin assessingthe
impactof messageobsolescenceandflow control,without
beingobfuscatedby otheraspectsof protocoldesign.Thus,
in theseinitial simulationswe have chosena small group
of just threeelements,suchthatbuffer overflow is theonly
limiting factorin theprotocolperformance.

No processfailuresareassumedandthusnomechanism
is usedto changethemembershipof thegroup. Local net-
work failureis alsonotconsidered.However, receiveomis-
sion failuresdueto unavailability of buffer spacearecon-

0

20

40

60

80

100

500 1000 1500 2000 2500

M
es

sa
ge

s
pu

rg
ed

 (
%

)

Delay (usec/msg)

at sender
at receiver

total

(a) Simulation.

0

20

40

60

80

100

500 1000 1500 2000 2500

Lo
ss

 (
%

)k

Delay (usec/msg)

N=10
N=20

(b) Analytical.

Figure 7. Comparison of pur ging rates in a
system configured with two buff ers of size�l$m�8* with expected analytical results both
for �n$o�8* and �p$6qV* .

sideredandusedasanimplicit back-pressuremechanismin
theimplementationof window-basedflow-control.

Simulationsshown in this sectionusetraffic generated
with constantintervals, mainly becausejitter introduced
by buffer overflow becomeseasierto illustrate.1Destination
processesconsumemessagesfrom the receiver queuealso
at a constantrate. In addition, the obsolescencepattern
of the traffic is generatedaccordingto the distribution in-
troducedin the previous sectionanddescribedby !V�HN O �
�#�
(Equation3), enablingdirectcomparisonof results.

Figure5 presentssimulationresultsdirectly comparable
to thoseof Figure4. The observedpurging ratewith high
valuesof � and L is higher than expected. This can be
attributedto purgedmessagescontributing to approximate
relatedpairsof messagesthatotherwisewouldbetoo far to
befoundwithin thesamebuffer.

In addition,Figures6aand6b canbecomparedto their

1Later in Section5 we show simulationsusingtraffic generatedwith
exponentiallydistributedintervals.

counterpartsin Figure1, showing thatin theinterval where
purging is effective (i.e., approximatelybetween�h*c*�*Vr sec
and �8s�*�*�r sec)buffer occupancy andjitter at thesenderre-
main low. Semanticallyreliablebroadcasteffectively de-
couplesfastcomponentsfrom slow componentsin termsof
congestion.

We now illustrate the differencebetweenapplying the
purge procedurejust at the recipientor both at the recipi-
entandat thesender. Figure7 shows simulationresultsfor
a scenariowhereboth the senderandtherecipientshave a
buffer size of �t$u�8* and purging is performedat both
ends. Notice that, sincecongestionpropagatesbackfrom
thebottleneck,purging is first performedexclusively at the
receiver until the buffer fills up with unrelatedmessages.
After that, back-pressureis exercisedand messagesstart
beingpurgedalsoat the senderside. The resultis approx-
imately equivalent to a contiguousbuffer when eachhalf
aloneresultsin substantialpurging. If not, the resultsare
lower. Nonetheless,purgingatbothendsmightstill beuse-
ful for toleratingbottlenecksin differentcomponentsof the
system.

4.5. Systemconfiguration

Theseresultssupportthat whenmessageobsolescence
is taken into accounthigherthroughputscanbe sustained.
The improvementis alsodirectly relatedwith themessage
obsolescencepatternandtheamountof bufferingaccessible
duringpurging.

Completecharacterizationof the application’s obsoles-
cencepatterncanbe achieved by profiling the application
andderiving the probability massfunction of from ob-
servedfrequencies.

Takinginto considerationotherfactorssuchasavailable
storageandimpactin end-to-enddelay, buffer sizecanthen
be determinedin orderto maximizethe estimatedpurging
rateunderloadgivenby , . Furthermore,this alsopermits
evaluationof what is the maximumprocessingdelay that
canbetoleratedbeforethesourceis affectedby congestion.

5. Case-study

This sectionillustratesthe configurationof the seman-
tically reliablemulticastto a concreteexample. We show
how our analyticalmodelcanbeusedto predictthesystem
behavior and configuresystemparameterssuchas buffer
sizes.Finally weshow simulationdatafor theresultingsys-
tem.

5.1. On-line trading system

As a casestudywe useanon-line tradingsystem,more
specifically, we studythepublishingsystemthat is usedto

Numberof Stocks: 25 100 750 Total: 875
Frequency: 50% 40% 10%

Table 1. Profiling inf ormation on updates: A
small number of stoc ks is responsib le for a
large number of operations.

disseminateinformationaboutoperationsandquotesto the
traders’s workstations.This systemneedsto sustaina high
throughputto a largenumberof members[15].

Both thetimelinessandthereliability of theupdatesare
extremely importantin this context. Reliability is impor-
tant becausetraderdecisionsaremadebasedon available
dataandunreliablemulticastmayleadto thelossof critical
informationby sometraders.Timelinessis alsoimportant
becauseall traders,for fairness,shouldhave the samein-
formationat approximatelythe sametime. Unfortunately,
whenoneof the recipientsis congested,flow control can
degradethe performanceof the completesystem. This is
not acceptableandmay force the exclusionof slow mem-
bers[15].

Thus,thisapplicationis agoodexampleof a casewhere
thereliability constraintsconflictwith othersystemrequire-
ments(in this casetimeliness)leading,in the worst case,
to a completedenial of serviceduring load peaks,ironi-
cally, whenserviceis mostvaluable. The notion of mes-
sageobsolescencemayprovide themeansto achievea rea-
sonabletradeoff in this setting. Insteadof introducingan
arbitrarylossof messages,that could leadto sometraders
completelymissinginformationaboutsomestocks,obso-
lescenceallows to introducea selective purgeof messages
duringcongestionperiods.

In the following, we assumethat two consecutive mes-
sagescontaininginformationfor thesamestockarerelated,
as the secondobsoletesthe first. This meansthat every
traderalwaysobtainsthemostup-to-dateinformationabout
every stock,suchasprice andtradedvolume. Also, since
purgingof obsoletemessagesis performedfirstatthesource
of congestion,receiverswith enoughresourcesto sustain
the throughputreceive all operationsdespitethe presence
of somecongestedmembersin thegroup.

5.2. Obsolescencemodelof stock-trading

Thedistributionof tradingoperationsby stockshasbeen
reportedto be highly skewed, suchthat a small subsetof
total stocksis accountablefor a largesubsetof operations.
Table1 shows frequency datausedin thedesignof a stock
tradingsystem[14]. Assumingthat successive operations
areindependent,the probability massfunctionof the dis-
tancecanbemodeledusingthegeometricaldistribution for

� 10 20 30
analytical 0.11 0.20 0.27

simulationwith N 0.11 0.20 0.27

Table 2. Anal ytical and sim ulation results.

0

20

40

60

80

100

70 80 90 100 110 120 130 140 150

E
nd

-t
o-

en
d

la
te

nc
y

(x
)

Delay (%)

congestion (rel)
congestion (sem. rel.)

N=10
N=20
N=30

Figure 8. Results of sim ulation with diff erent
buff er sizes: Larger buff ers sizes tolerate big-
ger delays without cong estion at the receiver
but result in greater end-to-end latenc y.

eachfrequency class.Theresultingdistribution is:

&(� $��#�E$ *wv qcsq�s �S�@� *xvysqcs � 1�U43Ez *wv>�8{�h*�* �S�A� *xv i�h*c* � 1�U43Iz*wv *w�| sV* �S�@� *xv}�| s�* � 1�U43
It shouldbenotedthatin arealsystem,operationsonthe

samestock tendto appearin bursts,even for infrequently
tradedstocks,dueto fixation of the sametrigger valuefor
severaloperationsandbatchingof smalloperationsby mar-
ket operators.If informationaboutthesamestockappears
in burststhisaugmentstheopportunityfor purgingobsolete
information. However, we considerthat eachoperationis
independentandignorethis effect, resultingin a conserva-
tivepredictionof efficiency.

5.3. Systemconfiguration

Given the obsolescencedistribution describedabove, it
is now necessaryto find the ideal buffer size,considering
boththeoptimizationof throughputandend-to-endlatency
under load. Besidesusing traffic generatedaccordingto
the previous distribution andwith exponentialinter-arrival
times,experimentalconditionsarethesameasin theprevi-
oussection.

Although the applicationeventuallyreceivesa message
that overwritesevery purgedmessage,this information is

received with someadditionaldelay. We namethe inter-
val betweenthesendingof a messageandthereceptionof
that messageor someothersubsequentmessagethat con-
veys thesameinformationsemanticlatencyanduseit asa
measureof quality of service. The final decisionon what
buffer sizeis chosenshouldtake semanticlatency into ac-
count. Normally, if the systemis not congested,latency is
limited only by transmissionoverheadand acceptanceby
thereceiver. Whenthesystemis congested,buffersarefull
andthusany messagemight have to wait for all preceding
messagesin the buffer to be delivered,makingbuffer size
relevantin semanticlatency.

Resultsshown in Table2 confirm the predictionsof the
analyticalmodel:Purgingismoreeffectivefor higherbuffer
sizes.In Figure8 we presentsemanticlatency, i.e., interval
betweenpricefixationandsubsequentnotificationof aslow
receiver. The figure plots latency in termsof multiplesof
the averageinter-arrival time (� axis) againstreceiver per-
turbationin percentof the sameaverageinter-arrival time
(� axis)andshowsonly stablesystemconfigurations,which
arethosethatdonot resultin throughputdegradationor ex-
clusionof slow members.Noticethatstrictreliability would
notallow stableconfigurationswhereany receiver is slower
than the sender(i.e. to the right of the solid line) as the
groupwould slow down or memberswould have to beex-
cluded. For semanticreliability, the congestionpointsare
depictedasa solid dotswherepurging is no longerenough
to completelyisolatetheeffectof slow receivers.

With abuffer sizeof �n$o�h* anincreaseof theprocess-
ing delayin theorderof 10%is tolerated;with abuffer size
of �~$�qV* , 30%increaseis tolerated;finally, a buffer size
of �p$6�c* , allowsanincreaseof theprocessingdelayin the
orderof 40%. Notice that for the samereceiver delay, the
semanticlatency increaseswith the buffer size,asincreas-
ingly older messagesare selectedfor purging. However,
this delay is a mild inconveniencewhen comparedwith
theunpredictabledelaysthatwould resultfrom throughput
degradationat thesender.

6. Relatedwork

To our knowledge,multicastprotocolsthat addressthe
issueof balancinghigh efficiency with adverseconditions
such as congestion,variable messagedelaysor network
omissionsrely on a mixtureof acceptingmessagelossand
exploiting application-level semanticknowledge[4, 6, 2,
18].

The specificproblemof ensuringstablethroughputof
reliablemulticasthasbeenaddressedby Birman et al. [4].
The proposedsolution, Bimodal multicast, offers proba-
bilistic reliability guarantees.In contrast,our approachis
not probabilistic. Instead,we requirethe senderto selec-
tively markwhich messagescanbepurgedby theprotocol

in overloadconditions.Bimodalmulticastdoesnot require
thesenderto makethisselectionbut requiresthereceiverto
takecorrectivemeasurewheneveramessageis deliveredto
only somemembersof thegroup. If the losscompromises
correctnessthereceivermaybeforcedto excludeitself from
the groupandrejoin later in orderto get a correctcopy of
thestate.

Application Level Framing[6] (ALF) requiresthe re-
ceiverto explicitly requestretransmissionsof lostmessages
thatareconsideredrelevant.As wehavenotedin Section2,
it maybehardto assesstherelevanceof adroppedmessage
whenits contentis unknown. In thecontext of reliablepro-
cessgroupsALF seemsto force too muchcomplexity into
applications,compromisingthe simplicity of theprogram-
mingmodel.

Our work is alsoinspiredin the � -causal[2] anddead-
line constrained[18] causalprotocols.Theseprotocolsuse
time to defineobsolescencerelationsamongmessagesal-
lowing timing constraintsto bemetat thecostof discarding
delayedmessages.

7. Conclusionsand futur e work

In thepaperwehavemotivatedandillustratedtheadvan-
tagesof using the notion of messageobsolescencein the
designof protocolsfor high throughputapplications.The
resultingprotocolselectively purgesmessagesthatarecon-
sumingimportantsystemresourceswithout compromising
applicationcorrectness.

The paperhasproposeda simpleanalyticalmodel that
enablesreasoningaboutthe efficiency of the protocoland
theconfigurationof systemparametersaccordingto theob-
solescencefunction of the target application. This model
wasvalidatedthroughsimulation.Whenappliedto a traffic
profile of an on-line tradingsystem,our protocol is easily
configuredto allow a receiver to exhibit processingdelays
40% higherthanthoserequiredto processall messagesin
duetime withoutdisturbingthesender.

We draw theconclusionthatsemanticreliability is a vi-
ableapproachto ensureglobalperformancein thepresence
of perturbedgroupmembers.We arecurrentlyextending
this work to studyhow thenotionof messageobsolescence
interactswith otheraspectsof reliablecommunication,such
asorderingconstraintsandmembership.

References

[1] G. AlvarezandF. Cristian. Applying simulationto thede-
sign and performanceevaluationof fault-tolerantsystems.
In Symposiumon ReliableDistributedSystems, pages35–
42,1997.

[2] R. Baldoni, R. Prakash,M. Raynal,andM. Singhal. Effi-
cient � -causalbroadcasting.InternationalJournalof Com-

puter SystemsScienceand Engineering, 13(5):263–269,
Sept.1998.

[3] K. Birman. A review of experienceswith reliable mul-
ticast. Software Practice and Experience, 29(9):741–774,
July1999.

[4] K. Birman, M. Hayden,O. Ozkasap,Z. Xiao, M. Budiu,
andY. Minsky. Bimodal multicast. ACM Transactionson
ComputerSystems, 17(2):41–88,1999.

[5] D. Clark.RFC813:Window andacknowledgementstrategy
in TCP. IETF Requestfor Comments,July1982.

[6] D. Clark andD. Tennenhouse.Architecturalconsiderations
for a new generationof protocols. In SIGCOMM Sym-
posiumon CommunicationsArchitectures and Protocols,
pages200–208,Philadelphia,PA, Sept.1990.ACM.

[7] P. Denning.Theworking setmodelfor programbehaviour.
Communicationsof theACM, 11(5),May 1968.

[8] A. Erramilli andR. Singh.A reliableandefficient multicast
for broadbandbroadcastnetworks. In Proceedingsof the
ACM workshopon Frontiers in ComputerCommunications
Technology, pages343–352,Aug. 1998.

[9] R.Guerraoui,R.Oliveira,andA. Schiper. Stubborncommu-
nicationchannels. TechnicalReport98-278,Département
d’Informatique,ÉcolePolytechniqueFéd́eraledeLausanne,
1998.

[10] K. Guo. ScalableMessage Stability DetectionProtocols.
PhD thesis, Cornell University, ComputerScience,May
1998.

[11] T. Hickey and R. van Renesse. Incorporatingsystemre-
sourceinformation into flow control. Technical Report
TR95-1489,CornellUniversity, ComputerScienceDepart-
ment,Feb. 1995.

[12] V. Jacobson.Congestionavoidanceandcontrol.ACM Com-
puterCommunicationReview; Proceedingsof theSigcomm
’88 Symposiumin Stanford, CA, August,1988, 18(4):314–
329,1988.

[13] R. Oliveira. Solvingconsensus:From fair-lossychannels
to crash-recoveryof processes. PhDthesis,ÉcolePolytech-
niqueFéd́eraledeLausanne,Feb. 2000.

[14] P. Peinl, A. Reuter, and H. Sammer. High contentionin
a stock trading database:A casestudy. ACM SIGMOD
Record, 17(3):260–268,Sept.1988.

[15] R. PiantoniandC. Stancescu.ImplementingtheSwissEx-
changeTrading System. In Proceedingsof The Twenty-
SeventhAnnualInternationalSymposiumon Fault-Tolerant
Computing(FTCS’97), pages309–313.IEEE,June1997.

[16] S. RamanandS. McCanne. Generalizeddatanamingand
scalablestateannouncementsfor reliablemulticast.Techni-
cal ReportCSD-97-951,Universityof California,Berkeley,
June1997.

[17] M. RaynalandM. Mizuno. How to find his way in thejun-
gle of consistency criteria for distributedsharedmemories
(or How to escapefrom Minos’ Labyrinth). In Proc.of the
IEEE Int. Conf. on Future Trendsof DistributedComputing
Systems, pages340–346,Lisboa(Portugal),Sept.1993.

[18] L. Rodrigues,R. Baldoni, E. Anceaume,and M. Raynal.
Deadline-constrainedcausalorder. In The3rd IEEEInterna-
tional Symposiumon Object-orientedReal-timedistributed
Computing, Mar. 2000.

[19] M. Satyanarayanan.A survey of distributed file systems.
AnnualReviewsof ComputerScience, (4):73–104,1990.

