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ABSTRACT 
This paper is concerned with support for the process of usability 
engineering. The aim is to use formal techniques to provide a 
systematic approach that is more traceable, and because it is 
systematic, repeatable. As a result of this systematic process some 
of the more subjective aspects of the analysis can be removed. 
The technique explores exhaustively those features of a specific 
design that fail to satisfy a set of properties. It also analyzes those 
aspects of the design where it is possible to quantify the cost of 
use. The method is illustrated using the example of a medical 
device.  While many aspects of the approach and its tool support 
have already been discussed elsewhere, this paper builds on and 
contrasts an analysis of the same device provided by a third party 
and in so doing enhances the IVY tool. 

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program Verification – 
model checking. D.2.2 [Software Engineering]: Design Tools 
and Techniques – user interfaces. H.5.2 [Information Interfaces 
and Presentation]: User Interfaces – theory and methods.  

General Terms 
Design, Reliability, Human Factors, Verification. 

Keywords 
Formal Methods, model-based usability analysis. 

1. INTRODUCTION 
The aim of usability analysis is to predict problems that might be 
barriers to the use or effectiveness of an interactive device early in 
the design process. By being effective in the early stages of design 
it can forestall the costs of redesign. This paper is concerned with 
formal techniques that provide early feedback about the design of 
an interactive system before expensive decisions have been made. 
Usability analysis is usually intended for use by human computer 
interaction experts. They operate on an informal representation of 
the design, which can be more readily changed, for example a 
storyboard or a draft of the user manual. A primary aim of this 
analysis is to achieve usability improvement while at the same 

time minimizing the cost of application. 

Because typical usability evaluation methods are informal it is 
sometimes difficult and tedious to perform them systematically 
and accurately.  They rely on application by those who have 
sufficient expertise to apply them correctly, for example 
interpreting any questions that are asked of the design 
appropriately. Although the aim of these methods is that they 
should be cheap to apply, the cost and the benefit of application 
depends on the expertise of the analyst. A common concern is that 
the influence of expert judgment is such that the evaluation of a 
specific device is not repeatable [2,11].  

This paper explores the process and tool support for a particular 
formal approach to systematic analysis and extends work reported 
in [5]. While the approach has already been discussed in the 
context of an automobile air conditioning system, the paper 
explores the whole process of usability evaluation in more detail 
using the IVY tool. It also recognizes and accommodates 
properties of a device that relate to user effort. These properties 
were used to analyze the same device in [21]. To repeat the 
analysis performed in [21], new property patterns were 
incorporated into the IVY tool relevant to the additional properties 
checked. This comparative analysis justifies the use of a relatively 
small example. However it should be said that there is a large 
class of designs of interactive devices similar in complexity to this 
example, and evidence shows they are not free from usability 
problems. 

While the focus of the analysis performed using the IVY tool in 
[5] was to find usability problems that arise because a property 
akin to a usability heuristic is broken, the comparable analysis of 
[21] on the same device focuses on a different kind of issue. That 
analysis is concerned with the “cost” of using an interface. It is 
argued in [21] that cost can be addressed by looking at the model 
as a graph and considering user effort as defined in terms of the 
number of steps that have to be taken to follow different kinds of 
path within the graph. This paper applies both styles of analysis 
and, as a result, enhances the process originally discussed.  

The paper makes a number of contributions: 

• It revisits the analysis process proposed in [5] and describes 
the complete architecture of the IVY tool designed to support 
it. The IVY tool makes the process of usability evaluation 
more repeatable and therefore brings more objectivity to the 
evaluation process.   

• It expands on the type of reasoning that can be supported by 
IVY. To this end, a number of new property patterns are 
introduced. 
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• It applies the tool to a model and verification requirements 
defined by a third party. This illustrates the flexibility and 
power of the tool, and represents an effort to repeat and 
thereby validate an analysis done elsewhere. 

2. RELATED WORK 
Most of the techniques aimed at identifying usability requirements 
or applying usability analysis have relatively well elaborated 
processes. For example the stages of cognitive walkthrough [19] 
and heuristic evaluation [17] are clear described and adhered to by 
analysts using the techniques. Relatively few of these techniques 
however benefit from tool support. Even in the context of 
techniques of human reliability assessment (which have strong 
affinities with the techniques described here) where evidence of 
the dependability of the system is a primary focus, few tools have 
been developed that support the whole process. Consider the 
examples of ATHEANA [8] and CREAM [13], the ability to trace 
the application of the technique and to provide evidence of how 
the method is applied is an important requirement of regulators. 

The focus of the IVY tool is analysis and central to this analysis is 
a model checking approach [7]. Hence key features of the design 
are concerned with aiding the construction of properties based on 
usability patterns and the analysis of the traces that are generated 
as counter examples when the properties break. For this reason a 
notation was used with a precise semantics to make it relatively 
straightforward to map to a standard model checking tool. 
Previous work [14] has used statecharts with much more complex 
semantics.  Model checking has been used elsewhere in the 
analysis of user interfaces, for example [1]. The difference here is 
to use model checking as the core of an approach to the systematic 
analysis of interactive systems. 

Those tools that do exist in human computer interaction are more 
concerned with representation than with analysis. Hence Petshop 
[16] is concerned to aid the development and animation or 
prototyping of ICO based models. There are also a number of 
tools designed to support the construction of tasks (see, for 
example [18]). In general these tools are not designed to support 
usability analysis as such, rather to aid the organization and 
structuring of a model of the design of the interactive system. 
These approaches use formal notations to specify interaction or 
task to map to implementation or to provide animations of the 
design. The animations in [16,18] are based on Petri nets or CTT 
models, the animation in this work is based on the traces that are 
generated as counterexamples when properties break. 

3. THE PROCESS 
Analysis can be performed at different points in the development 
process, and with different purposes. The kind of model used 
varies with the type and purpose of the analysis. The concern in 
the IVY process is formative, to produce design feedback at the 
early stages of development. The goal is that models that capture 
specific aspects of the system might be quickly developed and 
analyzed using tool support (see Figure 1). 

Four important representations are described in this process. The 
model captures key features of the device. It is developed at a 
level of abstraction that emphasizes these features while at the 
same time making it possible to reason about the system, 
providing an analysis that will form the basis for the design. A 
trace is a sequence of states that (for these purposes) breaks a 

property and forms the basis for the analysis. The trace is 
generated by the model checker that underlies the IVY tool. 
Models and traces are directly related to two other representations. 
The prototype reflects the characteristics of the model and can be 
used to explore what the system is like. This can be achieved 
producing a more or less functional version of the device.  The 
scenario is a narrative describing a context in which the device is 
used based on the trace. Hence the prototype and the scenario can 
be seen as bringing context and texture to the more abstract 
models and traces. Tool support can be used to extract a model 
from a prototype or to develop a prototype from the model. This 
makes it easier to move between levels of abstraction. 

 

 
Figure 1. Analysis in the development process  

(adapted from [12]) 

A collection of properties are used to analyze the device. These 
properties are based on standard patterns and are applied 
systematically to the design. When a property cannot be verified, 
a device behavior is returned illustrating a behavior that made the 
property false. This behavior is described using a trace. It 
identifies a potential problem and must then be examined for 
plausibility. In this case cognitive plausibility plays a major role. 
The results of this examination can lead to the design of the model 
being refined if a genuine problem is identified. Alternatively it 
could highlight a flaw in the model (for example, inadequacy of 
abstractions used), or a possible but not relevant behavior (maybe 
because it is not cognitively plausible). 

These representations and properties are combined using the IVY 
process. The designer produces a model based on a design. In the 
early stages of design this model could be based on a storyboard 
reflecting anticipated use. The model might be animated by the 
developer to obtain a look and feel of the envisaged design. This 
animation could be explored and extended through an initial co-
operative evaluation. Once the model is developed it could be 
analyzed by applying a set of property patterns to the model. 
These property patterns (which are based on usability heuristics) 
are applied systematically to the model. The application of these 
properties either yields the fact that the device supports them or 
produces a trace where the property is broken. This trace can then 
be rendered as a scenario – describing a narrative in which the 
property is broken so that further analysis can be carried out by a 
usability expert. 

The only remaining feature of this iterative process is that the 
process of enquiry, perhaps using a variety of techniques, may 
lead to additional properties perhaps relating to the experience of 
the users of the device that can be formulated and expressed using 
a tool to aid the generation of properties [12]. 



 

Figure 2. Graseby 9500 (from [16]) 

4. THE EXAMPLE 
The central analysis of the paper concerns the Graseby 9500 
syringe pump (see Figure 2). The device is set up by a nurse or 
anesthetist and injects drugs into patients over a period of hours or 
even days. It can be used on demand by a patient for pain 
management. Controlling these devices can involve detailed 
patient models (for example inputting the weight of the patient). 
The Graseby 9500 can be worn or carried around by the patient. It 
delivers calibrated doses of drugs on demand within parameters 
set up by the nurse. The value of this example is that, in addition 
to being a safety critical application, it has already been analyzed 
using a comparable technique in [21]. These two analyses can 
therefore be compared. 

5. THE IVY WORKBENCH 
The process described in Section 3 is supported by the IVY tool 
(see Figure 3). The tool has six components that support these 
activities (a seventh is mentioned as a desirable component). 

(1) A model editor is designed to help the designer to create a 
model. The model enables the creation of MAL interactor 
models. 

(2) A reverse engineering component takes the code of a 
prototype of the device and generates a model from it. 

(3) A model animator takes a model and produces a prototype 
from it. 

(4) A property editor eases the expression of appropriate 
usability related properties. It generates the logical formulae 
that might be verified by the model checker. 

(5) A compiler (i2smv) translates these models into the model 
checker’s input language. 

(6) A trace visualizer / analyzer aids the analysis of traces. 
(7) A scenario generator creates a scenario from a trace. 

 
Figure 3. IVY Architecture 

 

Table 1. setting up the effect on states 

Infusing On 

Bolus Infusion_suspended 

 
stop 

Infusion_suspended On 

 

All but one of these elements have been completed and are at a 
prototype stage, while one (the scenario generator) remains to be 
completed. While many of these features have been explored 
elsewhere in different contexts the contribution is that these tools 
are integrated into a single system based around a model checking 
approach. 

The IVY workbench’s plugin framework (IPF) is at the core of 
the architecture, and acts as a broker, providing all plugins with 
the ability to store and query interactor information. Two basic 
types of information can be stored: the MAL models, and the 
traces resulting from the verification step. Plugins are provided 
with an API that enables them to both store and query that 
information. Typical examples of the information that can be 
queried are the attributes and actions of an interactor, or the 
attribute values of a given state in a trace.  

The next sections show how the proposed architecture supports 
the analysis of the Graseby 9500 syringe pump user interface. 

5.1 The model editor 
Models are developed in the MAL interactor language [4,5,9]. A 
MAL interactor is defined by:  a set of typed attributes that define 
the interactor’s state; a mapping of the interactor’s state to some 
presentation medium; a set of actions that define operations on the 
interactor’s state; a set of axioms written in MAL (Modal-Action 
Logic) that define the semantics of the actions in terms of their 
effect on interactor’s state. 

In the current case, modeling the system is trivial since it is based 
on the model used in [21]. This model is available as a state 
transition table, and can be obtained from: 
http://www.cs.swan.ac.uk/~csharold/presson/. The table captures 
how the system state changes in response to different actions. 
Table 1 presents three rows for illustrative purposes. What it 
shows is that pressing the Stop button when the system is in either 



Infusing or Infusing suspended mode makes it go into the On 
state, while pressing Stop when in Bolus mode makes it go into 
Infusion suspended mode. Hence, the model mainly captures the 
moding of the system. 

To express the model in MAL it is necessary to define an attribute 
that captures the state and to encode the state transitions as MAL 
axioms. 

This state attribute is of type GPstate: 

interactor main 
   attributes 
   [vis] state: GPstate 

Type GPstate is defined as an enumerated type, with one value for 
each possible system state. There are 54 possible values in 
GPstate. Table 1 illustrates four of them: Infusing, On, Bolus, and 
Infusion_suspended. 

The actions of the system must be defined. The state transition 
table identifies a total of 11 actions, 2 of which are internal to the 
system. This gives rise to the following action definition in the 
MAL model: 

   actions 
     [vis] down, enter key, off, purge, start, stop, on, up  
     lock, timeout 

The first nine actions are user actions and are thus marked with 
the [vis] modality. The two additional actions (lock and timeout) 
are internal actions. 

Finally, the behavior of the device must be defined. For each row 
in the table, a modal axiom is defined expressing the state change 
it describes. The axioms relating to table 1 are: 

  state=Infusing -> [stop] state'=On                             
  state=Bolus -> [stop] state'=Infusion_suspended       
  state=Infusion_suspended -> [stop] state'=On          

Each axiom defines the effect (expression to the right of the [ ] 
operator) of an action (identified in the [ ] operator), when the 
condition to the left of the [ ] is true. Hence if the state of the 
device is Infusing and the stop button is pressed then the new 
value of state will be On.  

In addition to modal axioms the notation allows the representation 
of invariants – for example that an “on-off” light will always be 
on when the device is in the On state. It also allows the 
representation of deontic axioms defining under which conditions 
an action is permitted or obligatory. 

The transition table in [21] defines all the behavior of the system 
and therefore provides the basis for the MAL axioms used in this 
analysis. Besides the modal axioms described above, there is the 
need to state that only those behaviors described in the transition 
table are possible. For each action a permission axiom is defined 
restricting behavior to those conditions for which a row is defined. 
For the stop action case for example: 

per(stop) -> state in {Infusing, Bolus, Infusion_suspended}                                                                     

Hence, the stop action only causes an effect when the state is one 
of “Infusing”, “Bolus” or “Infusion_suspended”.  

In the current case a specific given model has been used. In the 
general case a developer only has to identify what the key 
attributes of the state are from the point of view of the interaction 
and then to identify how these attributes are affected by the 
possible actions. A model is constructed by composing interactors 
in a hierarchical form. Hence a model can always be represented 
by a state machine, where the states are defined by the attribute 
values and the transitions are labeled by the actions that cause 
changes to the attributes. 

 

 
 

Figure 4. IVY Model Editor 

The editor (Figure 4) supports the editing of interactor models in 
two modes. The first mode allows the developer to visualize and 
manipulate the overall structure of the model. The model structure 
is reflected as a hierarchy of objects. The graphical notation used 
in graphical mode is inspired by UML class diagrams [3]. 
Interactors are represented as classes, and interactor aggregation 
and specialization are represented in the usual UML way. UML 
has the advantage of being a widely known modeling language, 
hence adopting its notational conventions facilitates 
comprehension of the model’s representation. In graphical mode, 
besides the graphical representation of the model, a number of 
inspector panes are provided, enabling editing of different aspects 
of the model (types, attributes, actions and axioms of the currently 
selected interactor; aggregations; etc.).  

Textual mode, on the contrary, allows direct editing of the text of 
the model. It provides typical text editing facilities. This mode 
provides a more effective approach to editing and fine tuning an 
already existing model. More experienced users of the tool are 
able to edit the model more quickly as a result, looking for aspects 
to change directly in the text instead of in the inspector panes of 
the graphical mode, while still being offered a degree of 
assistance. Less expert users, on the other hand, can choose the 
graphical mode, where they are offered more guidance. 

5.2 Reverse Engineering Prototypes (GUI 
Surfer) 
This component extracts elements of a model from a Java / Swing 
program using a slicing function [20]. It isolates the Swing sub-
program from the entire Java program. A small set of abstractions 
are defined for the interactions between user and system: user 
input, user selection, user action and output. The names of the 



attributes in the interactor model are derived from the names of 
the widget variables in the code. The axioms are inferred firstly by 
determining the initial state of the code in terms of the attributes 
that are extracted. An analysis of the potential changes in the user 
interface, caused by the available user actions is then performed.  

The analysis of code is restricted to user interface code. Hence, 
generated models tend to have a high degree of non-determinism. 
The IVY editor is used to complete the axioms.   

In the current example there was no need to use this component. 
[21] provides a prototype based on the finite state model. 

5.3 The Property Editor 
The purpose of the property editor (see Figure 5) is to apply 
property patterns systematically to the device model. The 
properties for verification are written in CTL (Computational Tree 
Logic) [7]. The IVY user can select, from a number of patterns, 
the property that best suits the analysis needs, and instantiate it 
with actions and attributes from the model. The correct CTL 
property for verification is generated by the property editor. A 
number of patterns are available for application, for example 
Feedback, Behavioral Consistency, Undo, Reversability, as well 
as the Dwyer patterns [10]. For more detail about property 
patterns see [5]. 

 

 
Figure 5. IVY property editor 

The system supports quantification of these properties over the 
state attributes that have been defined in the model. Properties 
with quantified variables act as meta-formulae that, when 
instantiated, give rise to a number of concrete valid CTL formulae 
for verification.  This approach provides an increased level of 
expressiveness. Hence, for example, the visibility pattern can be 
applied systematically to all actions by writing a single property. 
Verification results are provided for each concrete instantiation of 
the property (i.e., in this case, on an action by action basis). 

In the next section the existing patterns will be used to support 
some of the analysis proposed in [21]. In the process some new 
patterns will also be required. 

5.4 Animating Models (AniMAL) 
The AniMAL plugin enables user interface prototyping from 
MAL models (see Figure 6). Currently, prototypes can be 

animated to present the sequence of events recorded by a fail 
trace, providing a more textured indication of what went wrong. 

AniMAL uses interactor models published by the Model Editor, 
as well as traces provided by the Traces Analyser. It collects 
information about all prototype relevant attributes and actions in 
the model (those with a modality). These are made available as a 
basis to construct a prototype.  It is then possible to drag available 
elements to the view port to create a visual representation of the 
interactor attributes and actions as appropriate. Furthermore, 
automatic prototype generation can be requested, rendering all 
elements using default components. 

 

 
Figure 6. The AniMAL plugin animating the Graseby 9500 

Each interactor is represented by a panel, grouping the interactor’s 
attributes and action representations. Interactor composition is 
represented by the nesting of their panels. Once rendered, 
elements are placed hierarchically, using the main interactor's 
panel as the root on the view port.  

Attributes should be rendered flexibly. An attribute may need to 
be rendered with one of several components, to have its values 
represented more realistically or conveniently (for example, to 
include an explanatory label next to an input field). There are 
several data types for storing values (for instance, Boolean 
attributes require different components than integer attributes). 
The process of rendering attributes during animation requires 
synchronization with the data model. The approach used requires 
each widget to implement a set of interfaces, making it possible to 
write new widgets and use them to represent attributes without 
requiring changes to the plugin. For simplicity's sake, actions are 
currently rendered as toggle buttons.  

The prototype is built around the known Hierarchical Model-
View-Controller (HMVC) pattern, using the Tikeswing framework 
(http://sourceforge.net/projects/tikeswing (27 February 2009)).  
Interactor panels are represented by a Model-View-Controller 
(MVC) set. The View aggregates graphical elements, like child 
interactors' views, as well as attribute and action widgets. The 
Controller handles view events, like mouse drags and keyboard 
events as well as View-Model synchronization. Finally, a 
centralized Model stores attribute and action values.   



Using the HMVC pattern, values are transparently synchronized 
between model and view, eliminating the need for complex event 
handling and dependent value updates of user interface 
components. Therefore, a change to an attribute's value in the 
model is automatically reflected in the view represented in the 
corresponding widget. 

To adapt the prototypes to different situations, AniMAL enables 
the user to select different customizations, creating a more 
realistic user interface. Currently, three levels of customization are 
possible: changing the layout management algorithm; changing 
the widget associated with the given attribute; and changing the 
rendering properties of a given widget. 

Each fail trace includes a set of values for each attribute and 
actions for each state. Animating a fail trace is done by changing 
the data model to match each state sequentially in the trace. By 
using the HMVC design pattern, only the data model needs to be 
changed, while graphical elements are automatically updated, due 
to View-Model synchronization. 

5.5 Verifier 
The verification step is performed by the NuSMV [6] model 
checker. To make the verification possible, MAL interactor 
models are compiled to the SMV language by the i2smv compiler. 
When a given property is not verified, SMV provides a behavior 
of the model (a trace) that demonstrates that the property in 
question is false. A trace consists of a sequence of states of the 
model that violates the property under scrutiny. The states can be 
analyzed with the Trace Visualizer component described next. 

This section focuses on verification performed on the Graseby 
device. As discussed in the introduction, two contrasting analyses 
were performed. The first type of property is concerned with 
analyzing features of the interactive behavior of the device to 
explore situations where usability properties fail. These properties 
are applied successively over the possible values of the state 
attributes as quantified in the property template. The second type 
of property is concerned with the user effort associated with 
achieving different activities. Here the concern is with graph 
properties of the device. The discussion that follows shows how 
the IVY tool can support much of the latter style of analysis. The 
properties analyzed are developed in the same order as they 
appear in [21].  

5.5.1 Reachability properties 
These can be verified using existing IVY property templates. In 
particular, the Reachability pattern:  

AG(state=x -> EF(state=y)) 

where x and y are variables that range over the possible states of 
the system.  

CTL does not allow variables to be quantified over states but, as 
discussed above, the IVY tool can be used to instantiate the 
property as required with all the possible values for x and y 
ranging over state. Since there are 54 possible states, this 
generates 2,916 different properties. The tool quickly checks the 
full set. All instantiated properties hold true. It can be concluded 
therefore that the model is strongly connected. If the property had 
failed, the counter examples would show which states are not 
reachable from which other states. If reachability of states from 

one particular state is of interest (as is discussed in [21]) then it is 
straightforward to instantiate the particular value of x and write: 

AG(state=on -> EF(state=y)) 

to check that all states are reachable from this particular state. 
Alternatively, the same property can be checked using the 
Possibility pattern, while defining On as the initial state of the 
model: 

AG(EF(state=x)) 

The Possibility pattern instantiates 54 properties. These are all 
quickly proved.  

The next analysis performed by [21] is concerned to “determine 
the set of states that can reach selected states”. This can also be 
achieved using the Reachability pattern. For example, checking 
the subsets of states that reach the Infusing state can be achieved 
by using: 

AG(state=x -> EF(state=Infusing)) 

The required subset is composed of those states for which the 
verification succeeds. In the present case, since the model is 
strongly connected, all properties succeed. 

5.5.2 Eccentricity 
In [21] the notion of eccentricity is used to define the diameter 
and radius of the graph. This enables the identification of its 
periphery and center and is considered to be a measure of the user 
effort required by the interface. Calculating eccentricities can be 
done using a pattern that has been added to the IVY tool, the 
Eccentricity pattern  

AG(state=x -> !EF(state=y)) 

Eccentricity is determined by the longest path between x and y 
returned by the model checking step. Calculating the eccentricity 
of the state On can be achieved by: 

AG(state=on -> !EF(state=y)) 

The result of this analysis is to conclude that its eccentricity is 5. 
This approach works because the model checker returns the 
shortest path between state On and state y (for every possible y). 
At the moment, determining the longest path must be done by 
visual inspection using the trace visualizer plugin. Automating the 
process will be easy to achieve. 

5.5.3 Completeness 
Completeness refers to the ability to reach all possible states with 
one action. It can be verified with the following pattern (which is 
added to the IVY template battery as Completeness): 

AG(state=x -> EX(state=y)) 

Instantiating this pattern produces 2,916 more properties. In this 
case the verification takes longer (over one hour on a Mac Book 
with an 2.2GHz Intel Core 2 Duo processor and 4GB of memory). 
It is concluded that the dialog is not complete. The counter-
examples identify those pairs of states for which there are no 
single step transitions. Notice that extending this to consider a 
multi-step path would amount to simply increasing the number of 
EX operators in the formula. 



5.5.4 Undo 
Undo is a standard property analyzed by the previous IVY 
process. To analyze “undo equivalents” an undo pattern can be 
used. To test whether stop and start are undo equivalent the 
“Undo (by specific action)” pattern is used. It fails for: 

AG (state = Infusion_suspended -> AX (action = stop ->  
              (EX action = start & AX (action = start -> state = 
                                                           Infusion_suspended))))  

That is, when the system is in the infusion suspended state, and 
stop is pressed, pressing start does not undo the stop effect.  

A trace is produced that highlights the problem. The trace 
analyzer shows that when in Infusion_suspended mode, pressing 
stop and start puts the system in infusing mode (not infusion 
suspended mode).  Considering that start undoes the effect of stop 
in all other circumstances points to a potential usability problem.  

To demonstrate the issue with an end user the AniMAL plugin 
can be used to create a simulation of the system and run the 
problem trace (see Figure 6). This will help validate the likelihood 
of the situation being a real usability concern. 

Because undo equivalence need not be symmetric, the pattern is 
instantiated for the start-stop combination also. This analysis 
succeeds only when the system is in the On or 
Infusion_suspended states. 

The above analysis makes it possible to verify whether two given 
actions are undo equivalent. To determine undo equivalent pairs, a 
new pattern is defined (Undo Equivalent pairs):  

AG(state=x -> AX(Q -> !EX(state=x & !R)))  

where Q is the action to undo and R a set of actions that are not to 
be considered. This will produce traces, each identifying one 
action, not in R, that undoes Q. 

Using this pattern, it becomes possible to determine which actions 
are undo equivalent. However, the pattern “fails” silently (in fact, 
the verification will succeed) if an action has no undo equivalent. 
Using the Undo pattern quickly determines which actions are 
undoable and under which conditions. At the same time it is 
possible to determine the minimal cost of undoing an action using: 

AG(state=x -> AX(ac1 -> !EF(state=x)). 

With this information, it becomes possible to calculate the undo 
cost of the system as defined in [21]. 

5.5.5 Other costs 
Determining overrun cost is possible, but it must be defined 
explicitly through the sequence of actions to be analyzed. This can 
be done using AX operators in a formula similar to the one above. 

Reset recovery cost can be calculated by the following pattern 
(Reset recovery): 

AG(state=x -> AF(state=Q & !EF(state=x))) 

where Q is the reset state.  

Instantiating the pattern, with x ranging over all possible states, 
generates properties whose verification produces traces 
identifying minimal paths from each state to Q (for example, off) 
and back to the original state. 

5.5.6 Topological properties 
The relation of a number of graph properties, like edge 
connectivity and minimum cuts, to usability is also explored in 
[21]. These are topological properties of the graph which are 
complementary to the behavioral analysis illustrated above. Model 
checking is not appropriate in that case. 

5.6 The results of the verification 
The next stage involves analysis of the behavioral traces resulting 
from the verification step. The visualization component aims to 
ease recognition, helping to determine what the problem is that is 
being pointed out by a trace, helping to discover possible 
solutions to it. In developing the IVY tool four different formats 
of traces were explored: a tabular representation similar to the 
existing SMV representation, part of the Cadence Labs tool 
(www.kenmcmil.com); a Physical States representation showing a 
graphical representation of the trace states; a Logical States 
representation which is similar to the physical states 
representation but the trace states are pre-processed to eliminate 
artificial states introduced by the compilation process; an Activity 
Diagram representation which is centered on actions described by 
Activity Diagrams (UML 2.0  [3]). 

5.6.1 Tabular 
In this representation (see Figure 7) the information is presented 
in a table, in the style of Cadence SMV tables [14]. The headings 
in the columns show state numbers. The beginning of a cycle is 
shown using an asterisk. 

One cell with a colored background indicates that the attribute’s 
value in the current state has changed when compared with the 
same attribute’s value in the previous state. When the value 
remains from one state to another, the white background is used 
(in the case of Figure 7, all cells are colored). This idea, adopted 
from [14], aims to allow rapid recognition of when the interactor’s 
attributes change state. 

 

 
Figure 7. Tabular visual representation 

5.6.2 Physical States 
This representation (see Figure 8) is inspired by state transition 
diagrams. Each interactor is represented in a column which shows 
the states that the interactor goes through in the trace. The global 
state, with all the interactor’s variables, is also represented to 
provide the analyst with an index of the state attributes.  This 
index can be used to see, at each step, the global state formed by 
the states of each individual interactor. In this global state a green 
arrow indicates the beginning of a loop, with another arrow 
indicating its end in the last state.  

The interactor’s attributes are either shown next to each state or 
can be toggled off to provide a more compact view. In that case, 
attributes are not represented in the diagram, but can be consulted 
by placing the mouse over each state. The fact that information 
does not appear all the time on the screen (with pop-ups activated) 
helps the user diminish the amount of information that it is 
necessary to analyze in order to discover the problem highlighted 



by the trace. Actions are shown as labels in the arrows between 
two consecutive states.  These arrows are only shown if a 
transition exists for the given interactor in that particular state.  
When the arrow is not shown, this indicates that the state of the 
particular interactor has not changed even though the system has 
continued to progress through the transition of other interactors. 

While this representation is effective, states are represented at the 
same level of abstraction as the SMV code. This issue is dealt 
with in the logical representation.  

 

Figure 8. Physical States visual representation 

5.6.3 Exploring the traces 
To facilitate the analysis of the traces, the visualizer allows the 
possibility of marking states depending on the criteria defined 
over the state attributes. In this case the criteria are defined in a 
panel that is in the main window (see Figure 9). The criteria are 
defined using relations (=, >, <) between attribute pairs or 
between attributes and values. To each criterion is associated a 
color. All the states that verify a given criterion are annotated with 
this color. 

 
Figure 9. Analysis of the example in the Logical States 

representation using markers 

In the case of comparison between attributes, two half-circles are 
drawn with the chosen color. Each half-circle is drawn near each 
of the attributes to indicate that the relation holds. In the case of 
comparison between attributes and values, filled circles are used 
in the chosen color. If the pop-up option is enabled it is possible to 
consult the condition represented by each marker by placing the 
mouse over each attribute. 

6. COMPARING TRACE 
REPRESENTATIONS 
The problem that trace representations aim to solve is to support 
the developer in finding the problem in the model (if there is a 
problem in the model) or, alternatively, providing a basis that the 
developer can use to communicate with the human factors expert. 
The aim therefore is to ensure that the representation can serve 
these roles. There is still work to do here, however a preliminary 
evaluation has been completed to explore the effectiveness of the 
tabular and physical state representations. This study was based 
on the model of the Toyota air conditioning system reported in 
[5]. It is preliminary, designed to be indicative and formative in 
choosing an appropriate trace representation, both as a basis for 
analysis by the developer and as a basis for the scenario. 

In the study the subjects were Computer Science students at the 
University of Minho. The study involved two groups, eight in 
each group. The two groups were presented with the results of two 
verification attempts. The first attempt addressed an undo related 
issue (whether pressing a given button twice would leave the 
device in its original state). The second example, which is more 
complex, aims to prove that if the Air Conditioning is on, and the 
environment temperature is higher than the temperature defined 
by panel, then the environment temperature will reduce until it 
reaches the panel temperature. In the study the subject’s task was 
to interpret the counter examples as presented by the trace 
representations and to understand where and why the verification 
has failed. 

The two groups both saw the simpler problem first. Each group 
was split in two and the two representations were switched 
between each sub-group so that the first sub-group saw the tabular 
representation first and vice versa. A co-operative evaluation 
approach was taken and after the evaluation each subject was 
asked to complete a questionnaire. 

The evaluation proceeded as follows: 

1. The model is explained to the subject while at the same time 
describing how the IVY tool works and in particular how the 
model checking process works. 

2. The property for which the trace is a counterexample is 
explained to the subject. 

3. The subject is asked to offer an opinion about the 
representation, what is happening in the trace (they have the 
model in front of them) and whether they can identify the 
problem that the trace represents. 

4. This process is repeated in the case of the other trace, with 
the different trace representation. 

5. The subject is then asked to complete the questionnaire. 

The questionnaire was adapted from one based on the USE 
framework (assessing three dimensions: Usefulness, Satisfaction, 



and Ease of use [15]). This questionnaire was adapted to: allow 
the evaluation of representations instead of user interfaces and to 
use a comparative item analysis as opposed to a five point Likert 
scale. 

The results are indicative only.  As stated above, test subjects 
were split according to their prior knowledge of model checking. 
For those without prior knowledge of model checking, the tabular 
representation was harder to understand on first impact. In the 
beginning, subjects did not identify the actions and the state 
transitions. After a short period (minutes), all subjects identified 
the problem and the reason for it. The Physical States 
representation appeared to be easier to understand in the sense that 
subjects understood where the actions and state transitions were.  

Two subjects who began with the Tabular representation looked at 
the table, interpreted it as a database table, therefore did not 
identify the state transitions, and therefore did not identify the 
problem. After an explanation these subjects completely 
understood the problem and identified the reason for it. None of 
the subjects using the tabular representation identified the loop in 
the representation.  

Users with previous knowledge of model checking seemed to be 
comfortable with the tool. Both those who started with the tabular 
representation and those who started with the physical states 
diagram were able to identify all the interface components. They 
easily understood which action was being represented in each 
state transition of the counter-example. They were able to identify 
where the condition was being violated and its causes. The 
problem was well identified in both examples (the easier and the 
harder).  

One of the subjects that started with the tabular representation was 
not capable of interpreting it. He could only identify the problem 
after further explanation of the interface components. 

The results of the questionnaires provided information about 
preferences. In terms of usefulness, subjects did not show a clear 
preference for either representation. The group that was familiar 
with model checking showed a slight preference for the tabular 
representation whereas the group unfamiliar with model checking 
appeared to show a preference for the physical states 
representation. In the case of ease of use there was a clear 
preference for the state representation by both groups. No 
preference was shown in terms of ease of learning. 

7. CONCLUSIONS 
The paper has focused on two issues. It has described the main 
ingredients associated with supporting an analysis process using 
the IVY tool. This tool is concerned with modeling interactive 
devices and the analysis of models using model checking tools. It 
is concerned with the means of presenting the results of the 
analysis both in terms of animations or prototypes of scenarios 
and the understanding of the scenarios themselves. The paper 
includes a preliminary evaluation of the traces that are output. 

The paper raises questions about the nature of usability 
evaluations, challenges that arise because of the comparison with 
the results of [21]. Previous work relating to IVY and other 
research by the authors makes the assumption that an interactive 
device should satisfy a set of properties and the interesting 
situations arise when the properties fail, the discussion has 

therefore revolved around the traces generating scenarios that are 
of interest from a usability point of view. 

[21] explores a different proposition, namely that usability is at 
least as much about the user’s effort in using the system. It 
describes this effort in terms of graph properties, the length of 
paths, the valency of nodes and so on, indicating choice and 
moding within the device. 

In practice usability analysis needs to contribute both styles of 
analysis. The paper aims to make a further contribution, namely 
that providing a comparable analysis of a design makes it possible 
more directly to assess the value of two techniques in the analysis 
of interactive devices.  
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