
Interaction Engineering Using the IVY Tool
José C. Campos

Department of Informatics/CCTC
Universidade do Minho

4710-057 Braga, Portugal
+351 253 60 4447

jose.campos@di.uminho.pt

Michael D. Harrison
School of Computing Science, Newcastle University

Claremont Tower
Newcastle upon Tyne, NE1 7RU, UK

+44 191 222 8218

michael.harrison@ncl.ac.uk

ABSTRACT
This paper is concerned with support for the process of usability
engineering. The aim is to use formal techniques to provide a
systematic approach that is more traceable, and because it is
systematic, repeatable. As a result of this systematic process some
of the more subjective aspects of the analysis can be removed.
The technique explores exhaustively those features of a specific
design that fail to satisfy a set of properties. It also analyzes those
aspects of the design where it is possible to quantify the cost of
use. The method is illustrated using the example of a medical
device. While many aspects of the approach and its tool support
have already been discussed elsewhere, this paper builds on and
contrasts an analysis of the same device provided by a third party
and in so doing enhances the IVY tool.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification –
model checking. D.2.2 [Software Engineering]: Design Tools
and Techniques – user interfaces. H.5.2 [Information Interfaces
and Presentation]: User Interfaces – theory and methods.

General Terms
Design, Reliability, Human Factors, Verification.

Keywords
Formal Methods, model-based usability analysis.

1. INTRODUCTION
The aim of usability analysis is to predict problems that might be
barriers to the use or effectiveness of an interactive device early in
the design process. By being effective in the early stages of design
it can forestall the costs of redesign. This paper is concerned with
formal techniques that provide early feedback about the design of
an interactive system before expensive decisions have been made.
Usability analysis is usually intended for use by human computer
interaction experts. They operate on an informal representation of
the design, which can be more readily changed, for example a
storyboard or a draft of the user manual. A primary aim of this
analysis is to achieve usability improvement while at the same

time minimizing the cost of application.

Because typical usability evaluation methods are informal it is
sometimes difficult and tedious to perform them systematically
and accurately. They rely on application by those who have
sufficient expertise to apply them correctly, for example
interpreting any questions that are asked of the design
appropriately. Although the aim of these methods is that they
should be cheap to apply, the cost and the benefit of application
depends on the expertise of the analyst. A common concern is that
the influence of expert judgment is such that the evaluation of a
specific device is not repeatable [2,11].

This paper explores the process and tool support for a particular
formal approach to systematic analysis and extends work reported
in [5]. While the approach has already been discussed in the
context of an automobile air conditioning system, the paper
explores the whole process of usability evaluation in more detail
using the IVY tool. It also recognizes and accommodates
properties of a device that relate to user effort. These properties
were used to analyze the same device in [21]. To repeat the
analysis performed in [21], new property patterns were
incorporated into the IVY tool relevant to the additional properties
checked. This comparative analysis justifies the use of a relatively
small example. However it should be said that there is a large
class of designs of interactive devices similar in complexity to this
example, and evidence shows they are not free from usability
problems.

While the focus of the analysis performed using the IVY tool in
[5] was to find usability problems that arise because a property
akin to a usability heuristic is broken, the comparable analysis of
[21] on the same device focuses on a different kind of issue. That
analysis is concerned with the “cost” of using an interface. It is
argued in [21] that cost can be addressed by looking at the model
as a graph and considering user effort as defined in terms of the
number of steps that have to be taken to follow different kinds of
path within the graph. This paper applies both styles of analysis
and, as a result, enhances the process originally discussed.

The paper makes a number of contributions:

• It revisits the analysis process proposed in [5] and describes
the complete architecture of the IVY tool designed to support
it. The IVY tool makes the process of usability evaluation
more repeatable and therefore brings more objectivity to the
evaluation process.

• It expands on the type of reasoning that can be supported by
IVY. To this end, a number of new property patterns are
introduced.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EICS’09, July15–17, 2009, Pittsburg, Pennsylvania, USA.
Copyright 2009 ACM 978-1-60558-600-7/09/07...$5.00.

• It applies the tool to a model and verification requirements
defined by a third party. This illustrates the flexibility and
power of the tool, and represents an effort to repeat and
thereby validate an analysis done elsewhere.

2. RELATED WORK
Most of the techniques aimed at identifying usability requirements
or applying usability analysis have relatively well elaborated
processes. For example the stages of cognitive walkthrough [19]
and heuristic evaluation [17] are clear described and adhered to by
analysts using the techniques. Relatively few of these techniques
however benefit from tool support. Even in the context of
techniques of human reliability assessment (which have strong
affinities with the techniques described here) where evidence of
the dependability of the system is a primary focus, few tools have
been developed that support the whole process. Consider the
examples of ATHEANA [8] and CREAM [13], the ability to trace
the application of the technique and to provide evidence of how
the method is applied is an important requirement of regulators.

The focus of the IVY tool is analysis and central to this analysis is
a model checking approach [7]. Hence key features of the design
are concerned with aiding the construction of properties based on
usability patterns and the analysis of the traces that are generated
as counter examples when the properties break. For this reason a
notation was used with a precise semantics to make it relatively
straightforward to map to a standard model checking tool.
Previous work [14] has used statecharts with much more complex
semantics. Model checking has been used elsewhere in the
analysis of user interfaces, for example [1]. The difference here is
to use model checking as the core of an approach to the systematic
analysis of interactive systems.

Those tools that do exist in human computer interaction are more
concerned with representation than with analysis. Hence Petshop
[16] is concerned to aid the development and animation or
prototyping of ICO based models. There are also a number of
tools designed to support the construction of tasks (see, for
example [18]). In general these tools are not designed to support
usability analysis as such, rather to aid the organization and
structuring of a model of the design of the interactive system.
These approaches use formal notations to specify interaction or
task to map to implementation or to provide animations of the
design. The animations in [16,18] are based on Petri nets or CTT
models, the animation in this work is based on the traces that are
generated as counterexamples when properties break.

3. THE PROCESS
Analysis can be performed at different points in the development
process, and with different purposes. The kind of model used
varies with the type and purpose of the analysis. The concern in
the IVY process is formative, to produce design feedback at the
early stages of development. The goal is that models that capture
specific aspects of the system might be quickly developed and
analyzed using tool support (see Figure 1).

Four important representations are described in this process. The
model captures key features of the device. It is developed at a
level of abstraction that emphasizes these features while at the
same time making it possible to reason about the system,
providing an analysis that will form the basis for the design. A
trace is a sequence of states that (for these purposes) breaks a

property and forms the basis for the analysis. The trace is
generated by the model checker that underlies the IVY tool.
Models and traces are directly related to two other representations.
The prototype reflects the characteristics of the model and can be
used to explore what the system is like. This can be achieved
producing a more or less functional version of the device. The
scenario is a narrative describing a context in which the device is
used based on the trace. Hence the prototype and the scenario can
be seen as bringing context and texture to the more abstract
models and traces. Tool support can be used to extract a model
from a prototype or to develop a prototype from the model. This
makes it easier to move between levels of abstraction.

Figure 1. Analysis in the development process

(adapted from [12])

A collection of properties are used to analyze the device. These
properties are based on standard patterns and are applied
systematically to the design. When a property cannot be verified,
a device behavior is returned illustrating a behavior that made the
property false. This behavior is described using a trace. It
identifies a potential problem and must then be examined for
plausibility. In this case cognitive plausibility plays a major role.
The results of this examination can lead to the design of the model
being refined if a genuine problem is identified. Alternatively it
could highlight a flaw in the model (for example, inadequacy of
abstractions used), or a possible but not relevant behavior (maybe
because it is not cognitively plausible).

These representations and properties are combined using the IVY
process. The designer produces a model based on a design. In the
early stages of design this model could be based on a storyboard
reflecting anticipated use. The model might be animated by the
developer to obtain a look and feel of the envisaged design. This
animation could be explored and extended through an initial co-
operative evaluation. Once the model is developed it could be
analyzed by applying a set of property patterns to the model.
These property patterns (which are based on usability heuristics)
are applied systematically to the model. The application of these
properties either yields the fact that the device supports them or
produces a trace where the property is broken. This trace can then
be rendered as a scenario – describing a narrative in which the
property is broken so that further analysis can be carried out by a
usability expert.

The only remaining feature of this iterative process is that the
process of enquiry, perhaps using a variety of techniques, may
lead to additional properties perhaps relating to the experience of
the users of the device that can be formulated and expressed using
a tool to aid the generation of properties [12].

Figure 2. Graseby 9500 (from [16])

4. THE EXAMPLE
The central analysis of the paper concerns the Graseby 9500
syringe pump (see Figure 2). The device is set up by a nurse or
anesthetist and injects drugs into patients over a period of hours or
even days. It can be used on demand by a patient for pain
management. Controlling these devices can involve detailed
patient models (for example inputting the weight of the patient).
The Graseby 9500 can be worn or carried around by the patient. It
delivers calibrated doses of drugs on demand within parameters
set up by the nurse. The value of this example is that, in addition
to being a safety critical application, it has already been analyzed
using a comparable technique in [21]. These two analyses can
therefore be compared.

5. THE IVY WORKBENCH
The process described in Section 3 is supported by the IVY tool
(see Figure 3). The tool has six components that support these
activities (a seventh is mentioned as a desirable component).

(1) A model editor is designed to help the designer to create a
model. The model enables the creation of MAL interactor
models.

(2) A reverse engineering component takes the code of a
prototype of the device and generates a model from it.

(3) A model animator takes a model and produces a prototype
from it.

(4) A property editor eases the expression of appropriate
usability related properties. It generates the logical formulae
that might be verified by the model checker.

(5) A compiler (i2smv) translates these models into the model
checker’s input language.

(6) A trace visualizer / analyzer aids the analysis of traces.
(7) A scenario generator creates a scenario from a trace.

Figure 3. IVY Architecture

Table 1. setting up the effect on states

Infusing On

Bolus Infusion_suspended

stop

Infusion_suspended On

All but one of these elements have been completed and are at a
prototype stage, while one (the scenario generator) remains to be
completed. While many of these features have been explored
elsewhere in different contexts the contribution is that these tools
are integrated into a single system based around a model checking
approach.

The IVY workbench’s plugin framework (IPF) is at the core of
the architecture, and acts as a broker, providing all plugins with
the ability to store and query interactor information. Two basic
types of information can be stored: the MAL models, and the
traces resulting from the verification step. Plugins are provided
with an API that enables them to both store and query that
information. Typical examples of the information that can be
queried are the attributes and actions of an interactor, or the
attribute values of a given state in a trace.

The next sections show how the proposed architecture supports
the analysis of the Graseby 9500 syringe pump user interface.

5.1 The model editor
Models are developed in the MAL interactor language [4,5,9]. A
MAL interactor is defined by: a set of typed attributes that define
the interactor’s state; a mapping of the interactor’s state to some
presentation medium; a set of actions that define operations on the
interactor’s state; a set of axioms written in MAL (Modal-Action
Logic) that define the semantics of the actions in terms of their
effect on interactor’s state.

In the current case, modeling the system is trivial since it is based
on the model used in [21]. This model is available as a state
transition table, and can be obtained from:
http://www.cs.swan.ac.uk/~csharold/presson/. The table captures
how the system state changes in response to different actions.
Table 1 presents three rows for illustrative purposes. What it
shows is that pressing the Stop button when the system is in either

Infusing or Infusing suspended mode makes it go into the On
state, while pressing Stop when in Bolus mode makes it go into
Infusion suspended mode. Hence, the model mainly captures the
moding of the system.

To express the model in MAL it is necessary to define an attribute
that captures the state and to encode the state transitions as MAL
axioms.

This state attribute is of type GPstate:

interactor main
 attributes
 [vis] state: GPstate

Type GPstate is defined as an enumerated type, with one value for
each possible system state. There are 54 possible values in
GPstate. Table 1 illustrates four of them: Infusing, On, Bolus, and
Infusion_suspended.

The actions of the system must be defined. The state transition
table identifies a total of 11 actions, 2 of which are internal to the
system. This gives rise to the following action definition in the
MAL model:

 actions
 [vis] down, enter key, off, purge, start, stop, on, up
 lock, timeout

The first nine actions are user actions and are thus marked with
the [vis] modality. The two additional actions (lock and timeout)
are internal actions.

Finally, the behavior of the device must be defined. For each row
in the table, a modal axiom is defined expressing the state change
it describes. The axioms relating to table 1 are:

 state=Infusing -> [stop] state'=On
 state=Bolus -> [stop] state'=Infusion_suspended
 state=Infusion_suspended -> [stop] state'=On

Each axiom defines the effect (expression to the right of the []
operator) of an action (identified in the [] operator), when the
condition to the left of the [] is true. Hence if the state of the
device is Infusing and the stop button is pressed then the new
value of state will be On.

In addition to modal axioms the notation allows the representation
of invariants – for example that an “on-off” light will always be
on when the device is in the On state. It also allows the
representation of deontic axioms defining under which conditions
an action is permitted or obligatory.

The transition table in [21] defines all the behavior of the system
and therefore provides the basis for the MAL axioms used in this
analysis. Besides the modal axioms described above, there is the
need to state that only those behaviors described in the transition
table are possible. For each action a permission axiom is defined
restricting behavior to those conditions for which a row is defined.
For the stop action case for example:

per(stop) -> state in {Infusing, Bolus, Infusion_suspended}

Hence, the stop action only causes an effect when the state is one
of “Infusing”, “Bolus” or “Infusion_suspended”.

In the current case a specific given model has been used. In the
general case a developer only has to identify what the key
attributes of the state are from the point of view of the interaction
and then to identify how these attributes are affected by the
possible actions. A model is constructed by composing interactors
in a hierarchical form. Hence a model can always be represented
by a state machine, where the states are defined by the attribute
values and the transitions are labeled by the actions that cause
changes to the attributes.

Figure 4. IVY Model Editor

The editor (Figure 4) supports the editing of interactor models in
two modes. The first mode allows the developer to visualize and
manipulate the overall structure of the model. The model structure
is reflected as a hierarchy of objects. The graphical notation used
in graphical mode is inspired by UML class diagrams [3].
Interactors are represented as classes, and interactor aggregation
and specialization are represented in the usual UML way. UML
has the advantage of being a widely known modeling language,
hence adopting its notational conventions facilitates
comprehension of the model’s representation. In graphical mode,
besides the graphical representation of the model, a number of
inspector panes are provided, enabling editing of different aspects
of the model (types, attributes, actions and axioms of the currently
selected interactor; aggregations; etc.).

Textual mode, on the contrary, allows direct editing of the text of
the model. It provides typical text editing facilities. This mode
provides a more effective approach to editing and fine tuning an
already existing model. More experienced users of the tool are
able to edit the model more quickly as a result, looking for aspects
to change directly in the text instead of in the inspector panes of
the graphical mode, while still being offered a degree of
assistance. Less expert users, on the other hand, can choose the
graphical mode, where they are offered more guidance.

5.2 Reverse Engineering Prototypes (GUI
Surfer)
This component extracts elements of a model from a Java / Swing
program using a slicing function [20]. It isolates the Swing sub-
program from the entire Java program. A small set of abstractions
are defined for the interactions between user and system: user
input, user selection, user action and output. The names of the

attributes in the interactor model are derived from the names of
the widget variables in the code. The axioms are inferred firstly by
determining the initial state of the code in terms of the attributes
that are extracted. An analysis of the potential changes in the user
interface, caused by the available user actions is then performed.

The analysis of code is restricted to user interface code. Hence,
generated models tend to have a high degree of non-determinism.
The IVY editor is used to complete the axioms.

In the current example there was no need to use this component.
[21] provides a prototype based on the finite state model.

5.3 The Property Editor
The purpose of the property editor (see Figure 5) is to apply
property patterns systematically to the device model. The
properties for verification are written in CTL (Computational Tree
Logic) [7]. The IVY user can select, from a number of patterns,
the property that best suits the analysis needs, and instantiate it
with actions and attributes from the model. The correct CTL
property for verification is generated by the property editor. A
number of patterns are available for application, for example
Feedback, Behavioral Consistency, Undo, Reversability, as well
as the Dwyer patterns [10]. For more detail about property
patterns see [5].

Figure 5. IVY property editor

The system supports quantification of these properties over the
state attributes that have been defined in the model. Properties
with quantified variables act as meta-formulae that, when
instantiated, give rise to a number of concrete valid CTL formulae
for verification. This approach provides an increased level of
expressiveness. Hence, for example, the visibility pattern can be
applied systematically to all actions by writing a single property.
Verification results are provided for each concrete instantiation of
the property (i.e., in this case, on an action by action basis).

In the next section the existing patterns will be used to support
some of the analysis proposed in [21]. In the process some new
patterns will also be required.

5.4 Animating Models (AniMAL)
The AniMAL plugin enables user interface prototyping from
MAL models (see Figure 6). Currently, prototypes can be

animated to present the sequence of events recorded by a fail
trace, providing a more textured indication of what went wrong.

AniMAL uses interactor models published by the Model Editor,
as well as traces provided by the Traces Analyser. It collects
information about all prototype relevant attributes and actions in
the model (those with a modality). These are made available as a
basis to construct a prototype. It is then possible to drag available
elements to the view port to create a visual representation of the
interactor attributes and actions as appropriate. Furthermore,
automatic prototype generation can be requested, rendering all
elements using default components.

Figure 6. The AniMAL plugin animating the Graseby 9500

Each interactor is represented by a panel, grouping the interactor’s
attributes and action representations. Interactor composition is
represented by the nesting of their panels. Once rendered,
elements are placed hierarchically, using the main interactor's
panel as the root on the view port.

Attributes should be rendered flexibly. An attribute may need to
be rendered with one of several components, to have its values
represented more realistically or conveniently (for example, to
include an explanatory label next to an input field). There are
several data types for storing values (for instance, Boolean
attributes require different components than integer attributes).
The process of rendering attributes during animation requires
synchronization with the data model. The approach used requires
each widget to implement a set of interfaces, making it possible to
write new widgets and use them to represent attributes without
requiring changes to the plugin. For simplicity's sake, actions are
currently rendered as toggle buttons.

The prototype is built around the known Hierarchical Model-
View-Controller (HMVC) pattern, using the Tikeswing framework
(http://sourceforge.net/projects/tikeswing (27 February 2009)).
Interactor panels are represented by a Model-View-Controller
(MVC) set. The View aggregates graphical elements, like child
interactors' views, as well as attribute and action widgets. The
Controller handles view events, like mouse drags and keyboard
events as well as View-Model synchronization. Finally, a
centralized Model stores attribute and action values.

Using the HMVC pattern, values are transparently synchronized
between model and view, eliminating the need for complex event
handling and dependent value updates of user interface
components. Therefore, a change to an attribute's value in the
model is automatically reflected in the view represented in the
corresponding widget.

To adapt the prototypes to different situations, AniMAL enables
the user to select different customizations, creating a more
realistic user interface. Currently, three levels of customization are
possible: changing the layout management algorithm; changing
the widget associated with the given attribute; and changing the
rendering properties of a given widget.

Each fail trace includes a set of values for each attribute and
actions for each state. Animating a fail trace is done by changing
the data model to match each state sequentially in the trace. By
using the HMVC design pattern, only the data model needs to be
changed, while graphical elements are automatically updated, due
to View-Model synchronization.

5.5 Verifier
The verification step is performed by the NuSMV [6] model
checker. To make the verification possible, MAL interactor
models are compiled to the SMV language by the i2smv compiler.
When a given property is not verified, SMV provides a behavior
of the model (a trace) that demonstrates that the property in
question is false. A trace consists of a sequence of states of the
model that violates the property under scrutiny. The states can be
analyzed with the Trace Visualizer component described next.

This section focuses on verification performed on the Graseby
device. As discussed in the introduction, two contrasting analyses
were performed. The first type of property is concerned with
analyzing features of the interactive behavior of the device to
explore situations where usability properties fail. These properties
are applied successively over the possible values of the state
attributes as quantified in the property template. The second type
of property is concerned with the user effort associated with
achieving different activities. Here the concern is with graph
properties of the device. The discussion that follows shows how
the IVY tool can support much of the latter style of analysis. The
properties analyzed are developed in the same order as they
appear in [21].

5.5.1 Reachability properties
These can be verified using existing IVY property templates. In
particular, the Reachability pattern:

AG(state=x -> EF(state=y))

where x and y are variables that range over the possible states of
the system.

CTL does not allow variables to be quantified over states but, as
discussed above, the IVY tool can be used to instantiate the
property as required with all the possible values for x and y
ranging over state. Since there are 54 possible states, this
generates 2,916 different properties. The tool quickly checks the
full set. All instantiated properties hold true. It can be concluded
therefore that the model is strongly connected. If the property had
failed, the counter examples would show which states are not
reachable from which other states. If reachability of states from

one particular state is of interest (as is discussed in [21]) then it is
straightforward to instantiate the particular value of x and write:

AG(state=on -> EF(state=y))

to check that all states are reachable from this particular state.
Alternatively, the same property can be checked using the
Possibility pattern, while defining On as the initial state of the
model:

AG(EF(state=x))

The Possibility pattern instantiates 54 properties. These are all
quickly proved.

The next analysis performed by [21] is concerned to “determine
the set of states that can reach selected states”. This can also be
achieved using the Reachability pattern. For example, checking
the subsets of states that reach the Infusing state can be achieved
by using:

AG(state=x -> EF(state=Infusing))

The required subset is composed of those states for which the
verification succeeds. In the present case, since the model is
strongly connected, all properties succeed.

5.5.2 Eccentricity
In [21] the notion of eccentricity is used to define the diameter
and radius of the graph. This enables the identification of its
periphery and center and is considered to be a measure of the user
effort required by the interface. Calculating eccentricities can be
done using a pattern that has been added to the IVY tool, the
Eccentricity pattern

AG(state=x -> !EF(state=y))

Eccentricity is determined by the longest path between x and y
returned by the model checking step. Calculating the eccentricity
of the state On can be achieved by:

AG(state=on -> !EF(state=y))

The result of this analysis is to conclude that its eccentricity is 5.
This approach works because the model checker returns the
shortest path between state On and state y (for every possible y).
At the moment, determining the longest path must be done by
visual inspection using the trace visualizer plugin. Automating the
process will be easy to achieve.

5.5.3 Completeness
Completeness refers to the ability to reach all possible states with
one action. It can be verified with the following pattern (which is
added to the IVY template battery as Completeness):

AG(state=x -> EX(state=y))

Instantiating this pattern produces 2,916 more properties. In this
case the verification takes longer (over one hour on a Mac Book
with an 2.2GHz Intel Core 2 Duo processor and 4GB of memory).
It is concluded that the dialog is not complete. The counter-
examples identify those pairs of states for which there are no
single step transitions. Notice that extending this to consider a
multi-step path would amount to simply increasing the number of
EX operators in the formula.

5.5.4 Undo
Undo is a standard property analyzed by the previous IVY
process. To analyze “undo equivalents” an undo pattern can be
used. To test whether stop and start are undo equivalent the
“Undo (by specific action)” pattern is used. It fails for:

AG (state = Infusion_suspended -> AX (action = stop ->
 (EX action = start & AX (action = start -> state =
 Infusion_suspended))))

That is, when the system is in the infusion suspended state, and
stop is pressed, pressing start does not undo the stop effect.

A trace is produced that highlights the problem. The trace
analyzer shows that when in Infusion_suspended mode, pressing
stop and start puts the system in infusing mode (not infusion
suspended mode). Considering that start undoes the effect of stop
in all other circumstances points to a potential usability problem.

To demonstrate the issue with an end user the AniMAL plugin
can be used to create a simulation of the system and run the
problem trace (see Figure 6). This will help validate the likelihood
of the situation being a real usability concern.

Because undo equivalence need not be symmetric, the pattern is
instantiated for the start-stop combination also. This analysis
succeeds only when the system is in the On or
Infusion_suspended states.

The above analysis makes it possible to verify whether two given
actions are undo equivalent. To determine undo equivalent pairs, a
new pattern is defined (Undo Equivalent pairs):

AG(state=x -> AX(Q -> !EX(state=x & !R)))

where Q is the action to undo and R a set of actions that are not to
be considered. This will produce traces, each identifying one
action, not in R, that undoes Q.

Using this pattern, it becomes possible to determine which actions
are undo equivalent. However, the pattern “fails” silently (in fact,
the verification will succeed) if an action has no undo equivalent.
Using the Undo pattern quickly determines which actions are
undoable and under which conditions. At the same time it is
possible to determine the minimal cost of undoing an action using:

AG(state=x -> AX(ac1 -> !EF(state=x)).

With this information, it becomes possible to calculate the undo
cost of the system as defined in [21].

5.5.5 Other costs
Determining overrun cost is possible, but it must be defined
explicitly through the sequence of actions to be analyzed. This can
be done using AX operators in a formula similar to the one above.

Reset recovery cost can be calculated by the following pattern
(Reset recovery):

AG(state=x -> AF(state=Q & !EF(state=x)))

where Q is the reset state.

Instantiating the pattern, with x ranging over all possible states,
generates properties whose verification produces traces
identifying minimal paths from each state to Q (for example, off)
and back to the original state.

5.5.6 Topological properties
The relation of a number of graph properties, like edge
connectivity and minimum cuts, to usability is also explored in
[21]. These are topological properties of the graph which are
complementary to the behavioral analysis illustrated above. Model
checking is not appropriate in that case.

5.6 The results of the verification
The next stage involves analysis of the behavioral traces resulting
from the verification step. The visualization component aims to
ease recognition, helping to determine what the problem is that is
being pointed out by a trace, helping to discover possible
solutions to it. In developing the IVY tool four different formats
of traces were explored: a tabular representation similar to the
existing SMV representation, part of the Cadence Labs tool
(www.kenmcmil.com); a Physical States representation showing a
graphical representation of the trace states; a Logical States
representation which is similar to the physical states
representation but the trace states are pre-processed to eliminate
artificial states introduced by the compilation process; an Activity
Diagram representation which is centered on actions described by
Activity Diagrams (UML 2.0 [3]).

5.6.1 Tabular
In this representation (see Figure 7) the information is presented
in a table, in the style of Cadence SMV tables [14]. The headings
in the columns show state numbers. The beginning of a cycle is
shown using an asterisk.

One cell with a colored background indicates that the attribute’s
value in the current state has changed when compared with the
same attribute’s value in the previous state. When the value
remains from one state to another, the white background is used
(in the case of Figure 7, all cells are colored). This idea, adopted
from [14], aims to allow rapid recognition of when the interactor’s
attributes change state.

Figure 7. Tabular visual representation

5.6.2 Physical States
This representation (see Figure 8) is inspired by state transition
diagrams. Each interactor is represented in a column which shows
the states that the interactor goes through in the trace. The global
state, with all the interactor’s variables, is also represented to
provide the analyst with an index of the state attributes. This
index can be used to see, at each step, the global state formed by
the states of each individual interactor. In this global state a green
arrow indicates the beginning of a loop, with another arrow
indicating its end in the last state.

The interactor’s attributes are either shown next to each state or
can be toggled off to provide a more compact view. In that case,
attributes are not represented in the diagram, but can be consulted
by placing the mouse over each state. The fact that information
does not appear all the time on the screen (with pop-ups activated)
helps the user diminish the amount of information that it is
necessary to analyze in order to discover the problem highlighted

by the trace. Actions are shown as labels in the arrows between
two consecutive states. These arrows are only shown if a
transition exists for the given interactor in that particular state.
When the arrow is not shown, this indicates that the state of the
particular interactor has not changed even though the system has
continued to progress through the transition of other interactors.

While this representation is effective, states are represented at the
same level of abstraction as the SMV code. This issue is dealt
with in the logical representation.

Figure 8. Physical States visual representation

5.6.3 Exploring the traces
To facilitate the analysis of the traces, the visualizer allows the
possibility of marking states depending on the criteria defined
over the state attributes. In this case the criteria are defined in a
panel that is in the main window (see Figure 9). The criteria are
defined using relations (=, >, <) between attribute pairs or
between attributes and values. To each criterion is associated a
color. All the states that verify a given criterion are annotated with
this color.

Figure 9. Analysis of the example in the Logical States

representation using markers

In the case of comparison between attributes, two half-circles are
drawn with the chosen color. Each half-circle is drawn near each
of the attributes to indicate that the relation holds. In the case of
comparison between attributes and values, filled circles are used
in the chosen color. If the pop-up option is enabled it is possible to
consult the condition represented by each marker by placing the
mouse over each attribute.

6. COMPARING TRACE
REPRESENTATIONS
The problem that trace representations aim to solve is to support
the developer in finding the problem in the model (if there is a
problem in the model) or, alternatively, providing a basis that the
developer can use to communicate with the human factors expert.
The aim therefore is to ensure that the representation can serve
these roles. There is still work to do here, however a preliminary
evaluation has been completed to explore the effectiveness of the
tabular and physical state representations. This study was based
on the model of the Toyota air conditioning system reported in
[5]. It is preliminary, designed to be indicative and formative in
choosing an appropriate trace representation, both as a basis for
analysis by the developer and as a basis for the scenario.

In the study the subjects were Computer Science students at the
University of Minho. The study involved two groups, eight in
each group. The two groups were presented with the results of two
verification attempts. The first attempt addressed an undo related
issue (whether pressing a given button twice would leave the
device in its original state). The second example, which is more
complex, aims to prove that if the Air Conditioning is on, and the
environment temperature is higher than the temperature defined
by panel, then the environment temperature will reduce until it
reaches the panel temperature. In the study the subject’s task was
to interpret the counter examples as presented by the trace
representations and to understand where and why the verification
has failed.

The two groups both saw the simpler problem first. Each group
was split in two and the two representations were switched
between each sub-group so that the first sub-group saw the tabular
representation first and vice versa. A co-operative evaluation
approach was taken and after the evaluation each subject was
asked to complete a questionnaire.

The evaluation proceeded as follows:

1. The model is explained to the subject while at the same time
describing how the IVY tool works and in particular how the
model checking process works.

2. The property for which the trace is a counterexample is
explained to the subject.

3. The subject is asked to offer an opinion about the
representation, what is happening in the trace (they have the
model in front of them) and whether they can identify the
problem that the trace represents.

4. This process is repeated in the case of the other trace, with
the different trace representation.

5. The subject is then asked to complete the questionnaire.

The questionnaire was adapted from one based on the USE
framework (assessing three dimensions: Usefulness, Satisfaction,

and Ease of use [15]). This questionnaire was adapted to: allow
the evaluation of representations instead of user interfaces and to
use a comparative item analysis as opposed to a five point Likert
scale.

The results are indicative only. As stated above, test subjects
were split according to their prior knowledge of model checking.
For those without prior knowledge of model checking, the tabular
representation was harder to understand on first impact. In the
beginning, subjects did not identify the actions and the state
transitions. After a short period (minutes), all subjects identified
the problem and the reason for it. The Physical States
representation appeared to be easier to understand in the sense that
subjects understood where the actions and state transitions were.

Two subjects who began with the Tabular representation looked at
the table, interpreted it as a database table, therefore did not
identify the state transitions, and therefore did not identify the
problem. After an explanation these subjects completely
understood the problem and identified the reason for it. None of
the subjects using the tabular representation identified the loop in
the representation.

Users with previous knowledge of model checking seemed to be
comfortable with the tool. Both those who started with the tabular
representation and those who started with the physical states
diagram were able to identify all the interface components. They
easily understood which action was being represented in each
state transition of the counter-example. They were able to identify
where the condition was being violated and its causes. The
problem was well identified in both examples (the easier and the
harder).

One of the subjects that started with the tabular representation was
not capable of interpreting it. He could only identify the problem
after further explanation of the interface components.

The results of the questionnaires provided information about
preferences. In terms of usefulness, subjects did not show a clear
preference for either representation. The group that was familiar
with model checking showed a slight preference for the tabular
representation whereas the group unfamiliar with model checking
appeared to show a preference for the physical states
representation. In the case of ease of use there was a clear
preference for the state representation by both groups. No
preference was shown in terms of ease of learning.

7. CONCLUSIONS
The paper has focused on two issues. It has described the main
ingredients associated with supporting an analysis process using
the IVY tool. This tool is concerned with modeling interactive
devices and the analysis of models using model checking tools. It
is concerned with the means of presenting the results of the
analysis both in terms of animations or prototypes of scenarios
and the understanding of the scenarios themselves. The paper
includes a preliminary evaluation of the traces that are output.

The paper raises questions about the nature of usability
evaluations, challenges that arise because of the comparison with
the results of [21]. Previous work relating to IVY and other
research by the authors makes the assumption that an interactive
device should satisfy a set of properties and the interesting
situations arise when the properties fail, the discussion has

therefore revolved around the traces generating scenarios that are
of interest from a usability point of view.

[21] explores a different proposition, namely that usability is at
least as much about the user’s effort in using the system. It
describes this effort in terms of graph properties, the length of
paths, the valency of nodes and so on, indicating choice and
moding within the device.

In practice usability analysis needs to contribute both styles of
analysis. The paper aims to make a further contribution, namely
that providing a comparable analysis of a design makes it possible
more directly to assess the value of two techniques in the analysis
of interactive devices.

8. ACKNOWLEDGMENTS
Many people have contributed to the development of the IVY
tool. Special thanks are due to Nuno Sousa for working on the
majority of plugins, Sandrine Mendes, Vitor Pinheiro and Nuno
Guerreiro, for developing AniMAL. Diogo Martins, Rui Freitas
and Nuno Job for performing the usability study pilot.
Development has been supported by the Fundação para a Ciência
e a Tecnologia (FCT, Portugal) and the European regional
development fund through grant POSC/EIA/56646/2004. Thanks
are also due to Harold Thimbleby and his team for providing the
challenge in the first place.

9. REFERENCES
[1] Berstel, J., Reghizzi, S.C., Roussel, G. and Pietro, P.S. 2005.

A scalable formal method for design and automatic checking
of user interfaces. ACM Trans. Softw. Eng. Methodol.,
14(2):124–167.

[2] Blandford, A.E., Hyde, J.K., Green, T.R.G. and Connell, I.
2008. Scoping analytical usability evaluation methods: a case
study. Human Computer Interaction 23: 3, 278-327.

[3] Booch, G., Rumbaugh, J. and Jacobson, I. 2005. Unified
Modeling Language: user guide. Addison Wesley, 2 edition.

[4] Campos, J.C. and Harrison, M.D. 2001. Model checking
interactor specifications. Automated Software Engineering,
8:275-310.

[5] Campos, J.C. and Harrison, M.D. 2008. Systematic analysis
of control panel interfaces using formal tools. In N. Graham
and P. Palanque, editors, Interactive systems: Design,
Specification and Verification, DSVIS'08, volume 5136 of
Springer Lecture Notes in Computer Science, pages 72-85.
Springer-Verlag. 

[6] Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F.,
Pistore, M., Roveri, M., Sebastiani, R., and Tacchella, A.
2002. NuSMV 2: An Open Source Tool for Symbolic Model
Checking. In Larsen, K. G. and Brinksma, E., editors,
Computer-Aided Verification (CAV'02), volume 2404 of
Lecture Notes in Computer Science. Springer-Verlag.

[7] Clarke, E.M., Emerson, E.A. and Sistla, A.P. 1986.
Automatic verification of finite-state concurrent systems
using temporal logic specifications. Transactions on
Programming Languages and Systems, 8(2):244-263.

[8] Cooper, S.E., Ramey-Smith, A.M. & Wreathall, J., A. 1996.
Technique for Human Error Analysis (ATHEANA). US
Nuclear Regulatory Commission

[9] Duke, D.J. and Harrison, M.D. 1993. Abstract interaction
objects. Computer Graphics Forum, 12(3):25-36.

[10] Dwyer, M. B., Avrunin, G. S., and Corbett, J. C. 1997. 
Patterns in property specifications for finite-state
verification. In Garlan, D. and Kramer, J., editors, 21st
International Conference on Software Engineering, Los
Angeles, California, 411-420.

[11] Gray, W. and Salzman, M. 1998. M. Damaged merchandise?
a review of experiments that compare usability evaluation
methods. Human Computer Interaction, 13(3):203.261.

[12] Harrison, M.D., Campos, J.C., Doherty, G. and Loer, K.
2008. Connecting rigorous system analysis to experience
centred design. In Effie Lai-Chong Law, Ebba Thora
Hvannberg, Gilbert Cockton (eds) Maturing Usability:
Quality in Software, Interaction and Value. Springer Human
Computer Interaction Series. pp. 56-74.

[13] Hollnagel, E. 1998. Cognitive Reliability and Error Analysis
Method (CREAM). Elsevier.

[14] Loer, K and Harrison, M.D. 2006. An integrated framework
for the analysis of dependable interactive systems (IFADIS):
its tool support and evaluation. Automated Software
Engineering, 13(4):469-496.

[15] Lund, A.M. 2001. Measuring usability with the USE
questionnaire. The Usability SIG Newsletter.
(http://www.stcsig.org/usability/newsletter/0110_measuring_
with_use.html as at 13th February 2009).

[16] Navarre, D., Palanque, P. and Bastide, R. 2003. A Tool-
Supported Design Framework for Safety Critical Interactive
Systems. Interacting with computers, Elsevier, Vol. 15/3, pp
309-328.

[17] Nielsen J. 1992. Finding usability problems through heuristic
evaluation. In: Proc. of ACM CHI'92 Conference on Human
Factors in Computing Systems. New York. ACM 249-256.

[18] Paternò F., Santoro C., Mäntyjärvi J., Mori G. and Sansone
S. 2008. Authoring Pervasive MultiModal User Interfaces
International Journal of Web Engineering and Technology,
Inderscience Publishers, pp.235-261.

[19] Polson, P.G., Lewis, C., Rieman, J. and Wharton, C. 1992.
Cognitive walkthroughs: a method for theory-based
evaluation of user interfaces, International Journal of Man-
Machine Studies, Volume 36(5).

[20] Silva, J.C., Campos, J. C. and Saraiva J. 2007. Combining
Formal Methods and Functional Strategies Regarding the
Reverse Engineering of Interactive Applications. In Doherty
G., Blandford A. (Eds.) Interactive Systems: Design,
Specification and Verification, volume 4323 of Lecture
Notes in Computer Science, pages 137-150. Springer-Verlag.

[21] Thimbleby, H.W. and Gow, J. 2008. Applying Graph Theory
to Interaction Design. In Gulliksen, J.; Harning, M.B.;
Palanque, P.; Veer, G.C. van der; Wesson, J. (Eds.)
Engineering Interactive Systems Springer Lecture Notes in
Computer Science. Vol. 4940. 501-519.

