
Pattern-based Analysis of Automated
Production Systems

José Creissac Campos ∗ José Machado ∗∗

∗ Departamento de Informática/CCTC, Universidade do Minho,
Braga, Portugal, (e-mail: jose.campos@di.uminho.pt).

∗∗ Departamento de Engenharia Mecânica, Universidade do Minho,
Guimarães, Portugal, (e-mail: jmachado@dem.uminho.pt)

Abstract: As formal verification tools gain popularity, the problem arises of making them more
accessible to engineers. A correct understanding of the logics in which properties are expressed
is needed in order to guarantee that properties correctly encode the intent of the verification
process. Writing appropriate properties, in a logic suitable for verification, is a skilful process.
Errors in this step of the process can create serious problems since a false sense of security if
gained with the analysis. However, when compared to the effort put into developing and applying
modelling languages, little attention has been devoted to the process of writing properties that
accurately capture verification requirements. This paper illustrates how a collection of property
patterns, and its tool support, can help in simplifying the process of generating logical formulae
from informally expressed requirements.

Keywords: Formal verification; Safety analysis; Discrete systems; Modelling; Error criteria.

1. INTRODUCTION

Formal verification is the process of proving the correctness
of a system (or a model thereof) with respect to some for-
mally expressed property. Model-checking [Bérard et al.,
1999] is becoming an established technique for the formal
verification of Discrete Event Systems (DES) automation.
A finite state system can be represented by a labelled state
transition graph, where labels of a state are the values of
atomic propositions in that state (for example the values
of the latches). Properties about the system are expressed
as formulae in temporal logic. Model-checking consists of
traversing the graph of the transition system, verifying
that it satisfies the formula representing the property, i.e.,
that the system is a “model” of the property.

Temporal logic formulae enable expressing properties of
the behaviour of the system. For instance, some properties
of the controller model, like safety and liveness properties,
related to the internal states of the controller program
[Bornot et al., 2000]. Writing these formulae is a two step
process:

(1) the relevant properties of the system must be identi-
fied;

(2) for each property, the correct encoding in the logic of
the verification tool must be found.

Step 1 is domain dependent, and largely relies on knowl-
edge about the specific system being designed/verified and
what its properties should be. Step 2 is a technical step.
A correct understanding of the model, the requirement,
and the logic in which properties are expressed is needed
in order to guarantee that the property being tested cor-
rectly encodes the intent of the testing process. This is
a non-trivial step. As illustrated by Dwyer et al. [1998]

and Campos et al. [2008], instances can be found in the
literature where the logical formulae used for verification
do not correspond to what was intended. This is a serious
problem since a false sense of security if gained with the
analysis.

In order to ease the process, strategies can be applied such
as breaking down a property in smaller parts, or using
observer automata to express the behaviour one wants
to verify. The former case begs the question of how to
compose the results of the smaller verification steps. In
the latter case, the complexity of the model is increased.
This has the potential to make the verification of large
systems less feasible.

By studying and identifying the properties used for the
verification of DES automation, it becomes possible to
systematize the writing of such properties in an automatic
way. That is the goal of this work.

In [Campos et al., 2008] a study about the type of prop-
erties that are typically verified of industrial controllers
using formal analysis techniques is presented. The results
of that study were systematised in a collection of patterns
to help analysis. A tool was also developed to support the
approach.

The current paper develops the pattern collection further,
and illustrates how it can be used in a concrete example.
It also briefly discusses how the developed tool can assist
in the process.

2. PROPERTY SPECIFICATION PATTERNS

The term “design pattern” was first introduced by Gamma
et al. [1995] as a means of capturing and transmitting
experts’ knowledge in the field of object-oriented design. A

Proceedings of the 13th IFAC Symposium on
Information Control Problems in Manufacturing
Moscow, Russia, June 3-5, 2009

978-3-902661-43-2/09/$20.00 © 2009 IFAC 972 10.3182/20090603-3-RU-2001.0425

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634296?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

pattern is not simply a mechanism to classify some artefact
(be it a object-oriented design, or a property specification)
into a category. A pattern’s goal is to capture proven
solutions to known problems, and to demonstrate how
they can be used in practice to solve the same or similar
problems in new situations.

With the above in mind, Dwyer et al. [1998] propose a
system of property specification patterns. They carried out
an extensive review of published property specifications,
and identified recurring patterns which they organised into
an hierarchy.

For each pattern, a description that includes the pattern’s
intent, examples and known uses, relationships to other
patterns, and mappings to different logics is provided.
Additionally, the patterns can be tailored with scopes:
they can be applied to the whole of the model’s behaviour,
or be restricted to work between specified conditions.

Patterns do not provide concrete solutions. Instead, they
provide templates that must be tailored for specific pur-
poses. Hence, when attempting to apply the patterns to a
specific area two issues arise:

• The patterns should capture the relevant knowledge
for the specific area being considered.
• The manner in which the properties are formulated

should be adequate to the logics and modelling ap-
proaches used in the area of interest.

In order to answer these two questions a study of property
specifications in the area of automation control was carried
out.

The objective of the study was similar to that carried out
by Dwyer et al. [1998]: to collect properties used in the
literature, and look for possible patterns. The justification
to perform a new instance of a study of this type was
two fold: on the one hand, the original study already had
a number of years, begging the question of whether new
patterns had arisen; on the other hand, there was interest
in a particular application of the verification technology,
and in determining whether domain specific patterns were
being used in that context.

A total of 6 main case studies was analysed, resulting
in over 70 property specifications (see [Campos et al.,
2008] for details). These properties were then aggregated
into classes according to their syntactical structure, and
the type of application. These classes then originated
patterns for which LTL (Linear Temporal Logic) and CTL
(Computational Tree Logic) formulae were provided.

Given the particular modelling approach used in the field,
a considerable number of properties used special variables
to restrict the analysis to stable states. This concept of
“stability” is related with states of the plant model that
may not correspond to true states of the plant behaviour.
The concept of ”stability” is well explained by Machado
et al. [2006]. While this concept can at first seem a detail
to be dealt with during pattern instantiation, it has in
fact a great impact on the structure of the properties.
The introduction of such variables requires considerable
knowledge of the logics being used if it is to be done
properly.

3. A REVISED PATTERN COLLECTION

Since the first version, introduced in Campos et al. [2008],
the pattern collection has been subject to a number
of updates. A new pattern has been added (Liveness),
one pattern has been sub-divided (Response), and (most
importantly) the notion of scope has been introduced.

This section describes the revised version of the pattern
collection proposed in Campos et al. [2008]. Due to space
contraints, the presentation of the patterns has been
simplified for this paper: only the after and after/until
scopes are presented (the after scope is used to express
the pattern holds after some condition; the after/until
scope is used to express the pattern holds between two
conditions); scopes are presented for the base formulation
only; CTL formulations of the patterns are used preferably
(where such formulations are not available, LTL is used);
alternative formulations to the use of the weak until
operator are not included; only one example per pattern
is presented.

Throughout the descriptions P and Q will be used to
denote variables that need instantiation. St and Sp will be
used for scoping the patterns. The stable variable defines
the stable states.

3.1 Possibility Pattern

In many situations it is relevant to verify whether some
event or system state is possible. This type of requirement
is captured by the Possibility Pattern. This pattern was
found to be one of the three most common patterns in the
literature.

Property Pattern: Possibility
Intent: To express that some event or state (P) is always possible
throughout the execution of the system. Note that it does not
require that the state or event actually happens in a specific
execution of the model, only that it is possible that it will.

Basic Formulation (CTL)

Globally : AG EF P

After St: AG(St → AG EF P)

After St until Sp:

AG((St ∧ ¬Sp) → A[E[¬Sp U (P ∧ ¬Sp)] W Sp])
Stable Formulation (CTL)

Globally : AG EF (stable∧P)

Examples: Rossi [2003] uses this pattern to express the absence
of dead code. The author writes a family of properties

AG EF (etat = prei)

where etat is a variable capturing the current state of the system
and prei the possible execution steps. What each properties says
is that a particular execution step is always possible.

3.2 Fairness Pattern

In some situations it is not enough to express that some
event or state is possible, it must be possible consistently
through out the behaviour of the system. This property is
called Fairness. This pattern, despite not being one of the
most used, was used to express relevant properties.

13th IFAC INCOM (INCOM'09)
Moscow, Russia, June 3-5, 2009

973

Property Pattern: Fairness
Intent: To express that some event or state (P) is repeatedly
possible throughout the execution of the system. Unlike the
possibility pattern, this pattern does require that the state or
event actually happens in the execution of the model.

Basic Formulation (LTL)

Globally : G F P

After St: G(St → G F P)

After St until Sp: G((St ∧ ¬Sp)→ [F (P ∧ ¬Sp) W Sp])

Stable Formulation (LTL)

Globally : G F (stable∧P)

Examples: Rossi [2003] uses this pattern to express dead lock
freedom

G F fdc

where fdc represents the end of the processing cycle. Note
however, that a behaviour which satisfies the above property is
that where the system does not leave the fdc condition.

3.3 Absence Pattern

In many cases it is relevant to verify that undesirable
situations cannot occur. This can be captures by the
Absence Pattern. This was one of the most common
patterns.

Property Pattern: Absence
Intent: To express that some event or state P is not present
throughout the execution of the system.

Basic Formulation (CTL)

Globally : AG (¬P)

After St: AG(St → AG ¬P)

After St until Sp: AG((St ∧ ¬Sp) → A[¬P W Sp])

Stable Formulation (CTL)

Globally : AG ¬(stable∧P)

Examples: Yang et al. [2001b] use this pattern repeatedly to
express both that a tank should not become empty, and that it
should not overflow

AG¬(Lev = 0) ∧AG¬(Lev = 6)

where Lev represents the Level of the tank.

3.4 Universality Pattern

Guaranteeing that some condition is true in all states of
the system is also a common requirement. This is captured
by the Universality Pattern.

Property Pattern: Universality
Intent: To express that some event or state condition P occurs
in every state of the execution of the system. This pattern is in
effect the opposite of the absence pattern.

Basic Formulation (CTL)

Globally : AG P

After St: AG(St →AG P)

After St until Sp: AG((St ∧ ¬Sp) →A[P W Sp])

Stable Formulation (CTL)

Globally : AG (stable→ P)

Examples: Yang et al. [2001a] use this pattern to express that
the temperature of a reactor always stays inside a desirable range

AG(reactor .TREA > 0 ∧ reactor .TREA < 6)

where reactor .TREA is the reactor’s temperature.

3.5 Eventual/Immediate Response Patterns

In some situations there might be the need to verify causal
relations between two states or events. One possibility is
one state/event leading to another. This is captured by
the Response Patterns. Patterns are provided for both the
case when the response does not need to be immediate,
and for the immediate case.

Property Pattern: Eventual Response
Intent: To express that some event or state P will always lead,
at some point in the future, to another event or state Q.

Basic Formulation (CTL)

Globally : AG (P → AF Q)

After St: A[¬St W (St∧ AG(P →AF Q))]

After St until Sp:

AG((St ∧ ¬Sp) → A[(P → A[¬Sp U (Q ∧ ¬Sp)]) W Sp])

Stable Formulation (CTL)

Globally : AG ((P∧stable) → AF (stable∧Q))

Examples: Yang et al. [2001b] use this pattern to express that
a pump should not carry on working when the level of a tank is
running low

AG(Lev < 2 → AF (¬m2 ∧ ¬vB ∧ ¬v4))

where Lev represents the level of the tank, m2 is the state of the
pump, and vB and v4 are valves’ states.

Property Pattern: Immediate Response
Intent: To express that some event or state P will always
immediately lead to another event or state Q.

Basic Formulation (CTL)

Globally : AG (P → AX Q)

After St: AG(St → AG (P → AX Q))

After St until Sp:

AG((St ∧ ¬Sp) → A[(P → AX (Q ∧ ¬Sp)) W Sp])

Stable Formulation (CTL)

Globally : AG ((P∧stable) → A[¬stable U (stable∧Q)])

Examples: Bornot et al. [2000] use this pattern in the formula

AG((active ∧ s6) → AX (x ∧ y → s7 ∧ ¬s8))

to express that a specific condition on the state of the system
(active∧s6) immediately leads to a transition, and not to another
(x ∧ y → s7 ∧ ¬s8).

3.6 Precedence Pattern

Another possible causal relation is that some state/event
must always precede some other state/event. This is cap-
tured by the Precedence Pattern.

Property Pattern: Precedence
Intent: To express that some event or state Q must occur before
some other event or state P . Conceptually this pattern is the
opposite of the response pattern.

Basic Formulation (CTL)

Globally : A[¬Q W P]

After St: A[¬St W (St∧ A[¬Q W P])]

After St until Sp: AG((St ∧ ¬Sp) →A[¬Q W (P ∨ Sp)])

Stable Formulation (CTL)

Globally : A[¬ (stable∧Q) W (stable∧P)]

continues...

13th IFAC INCOM (INCOM'09)
Moscow, Russia, June 3-5, 2009

974

...continued

Examples: Rossi [2003] uses the LTL encoding of this pattern
in the property

G(¬dp conveyor motor W (¬dp drill motor))

to express that a drill should always be stopped (¬dp drill motor)
before a conveyor belt is started (dp conveyor motor).

3.7 Liveness Pattern

This pattern was not present in the original proposal in
Campos et al. [2008]. Further analysis, however, revealed
the relevance of considering situations where some state
or event must be possible after another state or event (as
opposed to the response patterns which make it manda-
tory). This type of property is captured by the Liveness
Pattern.

Property Pattern: Liveness
Intent: To express that some event or state Q can occur after
some other event or state P .

Basic Formulation (CTL)

Globally : AG(P → EF Q)

After St: A[¬St W (St∧ AG(P →EF Q))]

After St until Sp:

AG((St ∧ ¬Sp) → A[(P → E[¬Sp U (Q ∧ ¬Sp)]) W Sp])

Stable Formulation (CTL)

Globally : AG((P∧stable) → EF (Q∧stable))

Examples: Machado et al. [2006] use this pattern in the formula

AG(X1 → EF¬X1)

to express deadlock freedom (by saying that the sate of X1 can
always change).

4. TOOL SUPPORT

As already discussed, expressing properties in a formal
logic can be a complex task. While the patterns above
can be a useful tool in dealing with this complexity, the
manual process of selecting and instantiating a pattern is
error prone, and such errors can be hard to detect. This is
particularly the case when complex formula are at stake.

In order to address this, a tool has been developed to
help pattern instantiation. The tool (Properties Editor –
see figure 1) is based on the notion of property patterns
described above. A list of property patterns and help for
instantiating those patterns is provided.

The patterns include all the information in the original
patterns, such as intention and known uses. Additionally
the tools allows for the definition of the scope for the
property. This allows the user to browse the patterns
in order to select the one most adequate to the type of
property of interest.

As illustrated in figure 1 the tool supports different collec-
tions of patterns. In the current case, both the patterns in
[Dwyer et al., 1998] (Dwyer), and the patterns introduced
above (SCAPS) are being made available. To this end,
a DTD (Document Type Definition) for the description
of patterns has been developed, and support for reading
pattern collections expressed in XML (eXtensible Markup
Language), in accordance to that DTD, integrated into the
tool.

Fig. 1. The patterns tool

5. AN EXAMPLE

This section uses an example, taken from [Machado, 2006]
to illustrate how the pattern collection can be useful in the
analysis of Discrete Event Systems.

5.1 The example system

The system chosen for this case study lies in the well-
known category of ”pick-and-place” systems (see Figure
2). Its function is to take parts, fed by gravity into three
feed chutes, for placement in a single unloading chute.
Sensors pp1, pp2 and pp3 indicate the presence of a part in
one of the feed chutes, while sensor pp0 signals the presence
of a part in the unloading chute.

The device that enables picking and placing a part is
composed of a group of three pneumatic cylinders plus
a vacuum suction cup system. The vertical cylinder (V C)
places the suction cup in contact with a part. Longitudinal
cylinders L1C and L2C are arranged in series to allow
positioning the vertical cylinder V C in front of the four
chutes (L2C stroke is twice as long as L1C stroke). The
four positions reached are thereby detected by position
sensors s0, s1, s2 and s3. The depression in the suction
cup is obtained by virtue of a venturi device and detected
by a vacuum sensor.

The vertical cylinder is controlled by a monostable electro-
valve (order V CGD – Vertical Cylinder Go Down), and
its positions of end of stroke are detected by sensors vcu
(vertical cylinder up) and vcd (vertical cylinder down).
The horizontal cylinders L1C and L2C are controlled
by bistable electro-valves and the control orders of the
corresponding electro-valve are L1CGO (L1C Go Out),
and L1CGI (L1C Go In). By analogy, the orders L2CGO
and L2CGI are the orders sent from the controller to
the electro-valve of the cylinder L2C for, respectively, the
moving forward and moving back of the cylinder L2C
piston rod. For the picking-up of the parts, the order
VENTURI is sent from the controller to the associated

13th IFAC INCOM (INCOM'09)
Moscow, Russia, June 3-5, 2009

975

Fig. 2. Plant of the case study pick-and-place system.

electro-valve, and the aspiration is detected by the sensor
vacuum.

The system was formally modelled to allow for formal
verification. Describing the model is out of the scope of
this paper (see [Machado, 2006] for a description). Here the
interest is in expressing the properties. For the discussion
that follows it is enough to know the meaning of the
variables described next.

Concerning variables that represent plant model states:

• V P2: V C is in the deployment movement;
• V P5: L1C is in the retracted position;
• V P6: L1C is in the deployment movement;
• V P7: L1C is in the deployed position;
• V P8: L1C is in the retraction movement;
• V P9: L2C is in the retracted position;
• V P10: L2C is in the deployment movement;
• V P11: L2C is in the deployed position;
• V P12: L2C is in the retraction movement.

Concerning variables that represent controller model
states, a family of variables Xi represents the internal state
of the controller during the evolution of the system.

5.2 Desired System Behaviour

Informally the desired system behavior can be described
by the following properties:

• PR 1.i: The controller never commands a horizontal
cylinder i in two directions at the same time;
• PR 2: If the controller commands the vertical cylinder

to go down, then it must not command any movement
to the horizontal cylinders;
• PR 3: The controller commands horizontal cylinders

only while sensor vcu is on;
• PR 4: After the part is picked up, in the ”pick-up

position”, it must not be dropped down until the
suction cup reaches the ”place position”.
• PR 5: The horizontal cylinders move only while the

sensor vcu is on;
• PR 6.i: The controller model must not have deadlock;

• PR 7.i: When a part is detected by sensor ppi, then
in the future, the corresponding horizontal cylinder(s)
will be deploying;

• PR 8.i: When a part is detected by sensor ppi, then
in the future, it will be picked;

• PR 9: While the vertical cylinder is moving down,
all the other cylinders stay in deployed or retracted
position.

5.3 Property Formalization

Machado [2006] used Computation Tree Logic (CTL)
[Bérard et al., 1999] for expressing most of the properties.
In the case of property PR 4 an observer automata was
used, due to the complexity of the behaviour that was
being expressed. In what follows it will be shown how the
patterns collection can ease the process of property for-
malization. Appropriate patterns will be selected for each
property, and its parameters instantiated with appropriate
expressions. The generated formulae are presented in Table
1 below.

Property PR 1.i can be seen as wanting to guarantee that
the system will never reach specific undesirable states.
Looking at the pattern collection, this can be expressed
using the Absence pattern (section 3.3) using the Globally
scope. It is now enough to define what the undesirable
states for each cylinder are, and instantiate P in the
pattern with them. For L1C, P becomes L1CGO∧L1CGI.
For L2C, p becomes L2CGO ∧ L2CGI. Instantiating the
pattern originates the first two formulae in Table 1.

Four of the eight remaining properties correspond to con-
ditions that should always hold. This is true of properties
PR 2, PR 3, PR 5, and PR 9. In this case, once each
condition is defined, the Universality pattern (section 3.4)
with the Globally scope can be used. For PR 2, P becomes
V CGD → ¬(L1CGI ∨ L1CGO ∨ L2CGI ∨ L2CGO) (i.e.
movement in the vertical cylinder means no movement in
the horizontal ones). Applying the pattern originates the
third formula in the table. The same is done for the other
properties.

Property PR 4 refers to a property that must always be
true between two specific instants. The goal is to guarantee
that the piece never drops down between the pick-up and
place positions. Again, this can be expressed using the
Universality pattern, but now with the “After...Until...”
scope. P becomes vacuum (the piece never drops down),
St (the pick-up positions) is replaced by (s1∨s2∨s3)∧vcd,
and Sp (the place position) by s0 ∧vcd. Instantiating the
pattern originates the fifth formula in the table.

Notice that the stable version of the “After...Until...”
scope was used. Notice also that, for simplicity, in the table
the weak until operator is used. The tool does not use weak
operators since these are typically not supported by model
checkers. Hence, the generated formula becomes:

AG((stable ∧ (s1 ∨ s2 ∨ s3) ∧ vcd ∧ ¬(s0 ∧ vcd))→
¬E[¬(stable ∧ s0 ∧ vcd)U(¬(stable→ vacuum)

∧¬(stable ∧ s0 ∧ vcd))])

As noted above, in [Machado, 2006] the option was made
not to try writing the formula, and an Observer Automata

13th IFAC INCOM (INCOM'09)
Moscow, Russia, June 3-5, 2009

976

was used instead. Using patterns, generating this complex
property was no more difficult than generating the prop-
erty for simpler cases.

In property PR 6 the goal is to ensure that the system
state can always evolve. This can be defined using the
Liveness pattern (section 3.7) for each of the Xi internal
state variables. Defining P as X1 and Q as ¬X1, originates
the seventh formula in the table. The same process is
applied to each variable (X1 to X38). In fact, the tool
supports the simultaneous generation of the 38 needed
formulae in one step (for simplicity only the first one
is presented). Note that, following [Machado, 2006], the
choice was made not to consider stable states only.

Properties PR 7.i and P 8.i are similar. Both are instances
of the Eventual Response pattern (section 3.5). For sensor
pp1, P is replaced with pp1 and Q with V P6 (the
corresponding cylinder) to get the ninth property in the
table, which corresponds to PR 7.1. For PR 8.1, P is
replaced with pp1 and Q with s1 ∧ vcd ∧ vacuum (i.e.
vertical cylinder is down at the right position, and there is
vacuum in the suction cup). For the remaining cases the
process is the same.

Table 1. Results from applying the patterns

Property CTL formalization

PR 1.1 AG ¬(stable ∧ L1CGO ∧ L1CGI)
PR 1.2 AG ¬(stable ∧ L2CGO ∧ L2CGI)

PR 2 AG (stable →(VCGD →
¬(L1CGI ∨ L1CGO ∨ L2CGI ∨ L2CGO)))

PR 3 AG (stable →
((L1CGI ∨ L1CGO ∨ L2CGI ∨ L2CGO) → vcu))

PR 4 AG((stable∧(s1∨s2∨s3)∧vcd∧¬ (s0 ∧vcd))→
A[(stable→vacuum) W (stable∧ s0 ∧vcd)])

PR 5 AG (stable → ((V P6 ∨ V P8 ∨ V P10 ∨ V P12)
→ vcu))

PR 6.1 AG (X1 → EF ¬X1)

PR 7.1 AG ((stable ∧ pp1) → EF (stable ∧ V P6))
PR 7.2 AG ((stable ∧ pp2) → EF (stable ∧ V P10))
PR 7.3 AG ((stable ∧ pp3) →

EF (stable ∧ V P6 ∧ V P10))

PR 8.1 AG ((stable ∧ pp1) →
EF (stable ∧ s1 ∧ vcd ∧ vacuum))

PR 8.2 AG ((stable ∧ pp2)→
EF (stable ∧ s2 ∧ vcd ∧ vacuum))

PR 8.3 AG ((stable ∧ pp3) →
EF (stable ∧ s3 ∧ vcd ∧ vacuum))

PR 9 AG (stable → (V P2 → ((V P5 ∧ V P9) ∨
(V P5 ∧ V P11) ∨ (V P7 ∧ V P9) ∨

(V P7 ∧ V P11))))

6. CONCLUSIONS AND FUTURE WORK

In recent years, several approaches to applying formal ver-
ification techniques on automation systems dependability
have been proposed. As verification tools gain popularity,
the problem arises of making them more accessible to
engineers.

This paper has looked at the issue of supporting the ex-
pression of property specifications. A collection of patterns
has been put forward as an aid to expressing relevant
properties of a system’s behaviour, together with a tool
to help in using the pattern collection.

The applicability of the pattern collection was demon-
strated with an example. Comparing our results with those
of Machado [2006], it can be seen that equivalent CTL
formulae were obtained for all properties (except PR 4).
However, this was achieved without the need to resort to
temporal logic expertise. The only requirements were an
understanding of the problem domain and basic proposi-
tional logic knowledge. The temporal logic aspects were
captured by the patterns. In the special case of PR 4,
the approach was able to generate a temporal formula
(again, using propositional logic to instantiate the pattern)
while originally there was the need to resort to an observer
automaton.

Future work is two fold. One one hand, continuing to
collect data from the verification literature, in order to
further validate and perfect the current set of patterns.
On the other hand, there is the need continue applying
the tool to a number of case studies in order to better
assess its value in the verification process.

REFERENCES

B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit,
L. Petrucci, and P. Schnoebelen. Systems and Soft-
ware Verification: Model-Checking techniques and tools.
Springer, 1999.

S. Bornot, R. Huuck, B. Lukoschus, and Y. Lakhnech.
Verification of sequential function charts using SMV.
In International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA 2000),
volume V, pages 2987–2993. CSREA Press, June 2000.

J. C. Campos, J. Machado, and E. Seabra. Property
patterns for the formal verification of automated pro-
duction systems. In Proceedings of the 17th IFAC World
Congress, pages 5107–5112. IFAC, 2008.

M.B. Dwyer, G.S. Avrunin, and J.C. Corbett. Patterns
in property specification for finite-state verification. In
B. Boehm, D. Garlan, and J. Kramer, editors, 21st
Intern. Conf. on Software Engineering (ICSE’98), pages
411–420. IEEE Computer Society Press, 1998.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns. Addison-Wesley Professional Computing
Series. Addison-Wesley, 1995.

J. Machado, B. Denis, and J.-J. Lesage. A generic
approach to build plant models for DES verification
purposes. In 8th International Workshop On Discrete
Event Systems (WODES’06), pages 407–412, July 2006.

J.M. Machado. Influence de la prise en compte d’un
modèle de processus en vérification formelle des Sys-
tèmes à Evénements Discrets. PhD thesis, Escola de
Engenharia, Universidade do Minho, 2006.

O. Rossi. Validation formelle de programmes ladder pour
automates programmables industriels. PhD thesis, École
Normale Supérieure de Cachan, France, June 2003.

S.H. Yang, O. Stursberg, P.W.H. Chung, and
S. Kowalewski. Automatic safety analysis of
computer-controlled plants. Computers and Chemical
Engineering, 25:913–922, 2001a.

S.H. Yang, L.S. Tan, and C.H. He. Automatic verifica-
tion of safety interlock systems for industrial processes.
Journal of Loss Prevention in the Process Industries, 14:
379–386, 2001b.

13th IFAC INCOM (INCOM'09)
Moscow, Russia, June 3-5, 2009

977

