
Brief Announcement: Efficient Causality Tracking in
Distributed Storage Systems With Dotted Version Vectors

Nuno Preguiça
CITI/DI-FCT-Univ. Nova de Lisboa

Portugal

Carlos Baquero, Paulo Sérgio Almeida,
Victor Fonte, Ricardo Gonçalves

HASLab, U. Minho & INESC TEC, Portugal

ABSTRACT
Version vectors (VV) are used pervasively to track depen-
dencies between replica versions in multi-version distributed
storage systems. In these systems, VV tend to have a dual
functionality: identify a version and encode causal depen-
dencies. In this paper, we show that by maintaining the
identifier of the version separate from the causal past, it
is possible to verify causality in constant time (instead of
O(n) for VV) and to precisely track causality with informa-
tion with size bounded by the degree of replication, and not
by the number of concurrent writers.

Categories and Subject Descriptors
C.2.4 [Computer-communication networks]: Distributed
Systems

Keywords
Causality tracking, distributed storage systems.

1. INTRODUCTION
Tracking causality is one of the fundamental problems in

distributed systems. Causality can be precisely character-
ized by causal histories [5]. Causal histories are sets of
unique event identifiers. Each event, a, is assigned a new
unique identifier, ida, and its causal history, Ha, will include
this identifier and the set, Pa, of identifiers for all events that
causally precede a (Ha = {ida} ∪ Pa). The partial order of
causality can be precisely tracked by comparing these sets
by set inclusion. An history Ha causally precedes Hb iff
Ha ⊂ Hb. Two histories are concurrent if neither include
the other: Ha ‖ Hb iff Ha 6⊆ Hb ∧Hb 6⊆ Ha.

Version vectors (VV) [3] are an efficient mechanism to en-
code causal histories in distributed storage systems. When
considering VV, unique identifiers are the composition of
unique site ids and a monotonic integer counter. A version
vector, V , maintains for each site, si, an integer V [si] =
ni encoding that event identifiers (si, 1), . . . , (si, ni) are in-
cluded in the set represented by V (assuming that the first
assigned identifier in si is (si, 1)). VV are used to verify the
causality among replica versions: Va ≤ Vb, iff ∀s, Va[s] ≤
Vb[s], which is no more that the application of set-inclusion
defined for causal histories.

Copyright is held by the author/owner(s).
PODC’12, July 16–18, 2012, Madeira, Portugal.
ACM 978-1-4503-1450-3/12/07.

By the definition of causal history, it is clear that it is
possible to verify if an event a causally precedes an event
b by simply verifying if its identifier ida is contained in the
set Pb of events that precede event b : a < b, iff ida ∈ Pb

(or ida ∈ Hb ∧ ida 6= idb). Two events are concurrent if
neither causally precedes the other: a ‖ b iff ida 6∈ Pb∧ idb 6∈
Pa. VV do not allow the use of the set-contains operation
when verifying the causality dependencies of two events, as
the version identifier is not known as it is diluted in the
VV. In the next section, we present a causality tracking
mechanism that decouples version identifiers and causality
tracking information, correctly encoding the causal history.

2. DOTTED VERSION VECTORS
A dotted version vector (DVV) [4] is a logical clock which

consists of a pair (d, v), where v is a traditional version vec-
tor and the dot d is a pair (i, n), with i a node identifier and n
an integer. The dot is the version identifier and it represents
the globally unique event being described, while the VV rep-
resents the causal past. Events represented by a DVV can be
characterized by the following function from DVV to causal
histories: C[[((i, n), v)]] = {in} ∪

⋃
j{jm | 1 ≤ m ≤ v[j]}

where in denotes the event with identifier (i, n).
From the definition of causal histories, it follows immedi-

ately that an event a with DVV ((ia, na), va) causally pre-
cedes an event b with DVV ((ib, nb), vb): a < b, iff na ≤
vb[ia] (i.e., the event identifier of a is in the causal past of
b). Two events are concurrent if neither causally precedes
the other: a ‖ b iff na > vb[ia] ∧ nb > va[ib].

As an example, we present the evolution of the versions
of an object maintained in two storage servers using both
causal histories (Figure 1a) and DVV (Figure 1c). DVV are
the immediate representation of causal histories, with the
version identifier decoupled from the causal past. Next, we
discuss the advantages and disadvantages of DVV.

O(1) causality verification: Verifying if one event a
precedes some other event b can be done in constant time
with adequate data structures, by simply verifying if the
event identifier (dot) of a is reflected in the causal past of
b. Although in many cases this is just a theoretical curios-
ity, with the growing number of sites involved in distributed
systems, this is becoming increasingly important.

Efficient causality tracking in replicated storage
systems: Distributed file systems (e.g. Locus, Coda, Ficus)
usually use VV with one entry per server. This is sufficient
for detecting concurrency between versions stored in servers.
For detecting concurrency between the version in a server
and the version a client wants to write, the client can record

335

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634287?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

server
A

server
B

{A1} {A1,A2}

{A1} {A1,A2}

{A1,A3}||
{A1,A2}

{A1,A3} ||
{A1,A2}

{A1} {A1,A2}
{A1,A3} ||

{A1,A2,B1}

{A1,A3}

{A1,A2,A3,A4}

(a) Causal histories (version identifier in underlined bold)

!"#$"#%
&%

!"#$"#%
'%

()*+,% (-*+,%

()*+,% (-*+,!

"#$%&!..%
(-*+,!

"'$%&!(!"#$%&!)!

()*+,% (-*+,! "#$%&!

(/*+,%

(b) Version vectors (problematic cases in underlined bold)

!"#$"#%
&%

!"#$"#%
'%

(&)*+,-)-.% (&)/+,*)-.%

(&)*+,-)-.% (&)/+,*)-.%

(&)0+,*)-.%11%
(&)/+,*)-.%

(&)0+,*)-.%11%
(&)/+,*)-.%

(&)*+,-)-.% (&)/+,*)-.!

(&)0+,*)-.!11%
(')/+,/)-.!

(&)0+,*)-.%

(&)2+,0)-.%

(c) Dotted version vectors

Figure 1: System with two servers and a single object. Client
interactions are presented as curves. Server synchronizations
depicted by dotted lines. The causality information main-
tained after each relevant event is shown close to each small
circle, || meaning that concurrent versions are maintained.

the VV of the version it has read. When writing back its
changes, if the VV in the server is different, a concurrent
update is detected. In this case, systems as Coda require the
conflict to be solved before the file can be accessed again.
With DVV, conflicts can be detected by comparing only the
dot, instead of the full VV – a different dot present in the
server replica means a conflict.

When a storage system maintains multiple versions, the
problems gets more complex. As exemplified in the replica
A of Figure 1b, the same strategy can be used to detect
concurrent writes from two clients. The problem that arises
is what VV to use to identify the second version. When using
an entry per server, any VV generated will dominate the VV
of the previous version – in the example, [2, 0] < [3, 0]. This
can cause problems if it is necessary to compare the two
versions, as it would happen in server B, after receiving the
version tagged with VV [3, 0]. This shows that VV with one
entry per server are insufficient to track causality among
versions generated concurrently by multiple clients.

An alternative used in cloud storage systems, e.g. Riak
version , is to keep one entry in the VV per client. This is
inefficient as VV can grow very large. To address this prob-
lem these systems prune VV optimistically, which is unsafe,
possibly leading to lost updates and/or to the introduction
of false concurrency. Safe mechanisms for pruning VV, as
the one proposed by Golding [1], require global knowledge.

DVV can precisely track causality among versions concur-
rently created by multiple clients using one entry per replica

server. When a client submits a version that is concurrent
with the version in the server, a new DVV is generated that
correctly tracks causality (as DVV decouple version identi-
fication and the causal past). In the example of figure 1c,
we have (A, 3)[1, 0] ‖ (A, 2)[1, 0].

DVV are a simple, practical and efficient solution to track
causality - an evaluation with a modified version of Riak that
includes DVV has shown a significant reduction in the size
of metadata, and better latency when serving requests [4].

3. RELATED WORK AND CONCLUSIONS
Vector clocks (VC) are used to track causal dependencies

among events in a distributed system. The same approach
proposed in DVV could be used with VC, as VC use essen-
tially the same mechanism as VV, with the difference that
VV only record events that generate new data versions and
VC record all events in a distributed system.

Wang et. al. [6] have proposed a variant of VV with O(1)
comparison time, but VV entries must be kept ordered, lead-
ing to non constant time for other operations. Furthermore,
as a simple VV, it also incurs in the problems of VV for
tracking causality among concurrent client updates.

WinFS [2] also maintains version identifiers for files sepa-
rate from the causal past of the whole file system, recorded
as a version vector with exceptions (VVE). VVE can express
any causal history by recording non-continuous sequences of
events.In most multi-version distributed storage systems, a
client can only replace all versions in the repository by a new
version, making DVV with a single dot sufficient for repre-
senting the causal histories that occur. Additionally, WinFS
only tracks concurrency among clients running in different
nodes, with their own replica and entry in the VVE.

By decoupling the version identifier and the causal past,
DVV efficiently record causal dependencies that occurs among
clients, allowing to verify causality in O(1) time, instead of
O(n) for VV.

Acknowledgments.
We would like to thank Doug Terry for his comments

on previous versions of this work. This work is funded by
the ERDF, COMPETE Programme,and by National Funds
through the FCT, projects FCOMP–01–0124–FEDER–010114,
PTDC/EIA-EIA/108963/2008 and PEst-OE/EEI/UI0527/2011.

4. REFERENCES
[1] R. Golding. Weak-consistency Group Communication

and Membership. PhD thesis, UCSC, 1992.

[2] Dahlia Malkhi and Douglas B. Terry. Concise version
vectors in winfs. Dist. Computing, 20(3):209–219, 2007.

[3] D. Stott Parker and et. al. Detection of mutual
inconsistency in distributed systems. Trans. on
Software Engineering, 9(3):240–246, 1983.

[4] Nuno Preguiça, Carlos Baquero, Paulo Sérgio Almeida,
Victor Fonte, and Ricardo Gonçalves. Dotted version
vectors: Logical clocks for optimistic replication.
CoRR, abs/1011.5808, 2010.

[5] R. Schwarz and F. Mattern. Detecting causal
relationships in distributed computations: In search of
the holy grail. Dist. Computing, 3(7):149–174, 1994.

[6] W. Wang and C. Amza. On optimal concurrency
control for optimistic replication. In Proc. ICDCS,
pages 317–326, 2009.

336

	Introduction
	Dotted version vectors
	Related work and conclusions
	References

