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Abstract. We propose an abstract framework for modeling state-basstdras
with internal behavior as e.g. given by silentestransitions. Our approach em-
ploys monads with a parametrized fixpoint opergtty give a semantics to those
systems and implement a sound procedure of abstractioneohtarnal tran-
sitions, whose labels are seen as the unit of a free monoide Madly, our
approach extends the standard coalgebraic frameworkdta-based systems by
taking into account the algebraic structure of the labeltheir transitions. This
allows to consider a wide range of other examples, incluagurkiewicz traces
for concurrent systems.

1 Introduction

The theory of coalgebras provides an elegant mathematealefvork to express the
semantics of computing devices: the operational semamtlush is usually given as a
state machine, is modeled as a coalgebra for a functor; thetakional semantics as the
unique map into the final coalgebra of that functor. Whiledkeaotational semantics is
oftencompositionalas, for instance, ensured by the bialgebraic approacha, [Ris
sometimes ndully-abstract i.e, it discriminates systems that are equal from the point
of view of an external observer. This is due to the presendsefmal transitions (also
callede-transitions) that are not observable but that are notattsidd away by the usual
coalgebraic semantics using the uniqgue homomorphismhetfinal coalgebra.

In this paper, we focus on the problem of giving trace sentand systems with in-
ternal transitions. Our approach stems from an elementasgreation (pointed out in
previous work, e.g[25]): the labels of transitions formarmid and the internal transi-
tions are those labeled by the unit of the monoid. Thus, tiserealgebraic structureon
the labels that needs to be taken into account when modakndgnotational semantics
of those systems. To illustrate this point, consider thiv¥ahg two non-deterministic
automata (NDA).
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The one on the left (that we call) is an NDA with e-transitions: its transitions are
labeled either by the symbols of the alphabet= {a,b,c} or by the empty word

e € A*. The one on the right (that we cdl) has transitions labeled by languages in
P(A*), here represented as regular expressions. The monoiduseun the labels is
explicit onB, while it is less evident iM\ since the set of labeld U {¢} does not
form a monoid. However, this set can be trivially embedded #( A*) by looking at
each symbols as the corresponding singleton languagehiSaeason each automaton
with e-transitions, likeA, can be regarded as an automaton with transitions labeled by
languages, liké. Furthermore, we can define the semantics of NDA withansitions

by defining the semantics of NDA with transitions labeled dyduages: a word is

accepted by a statg if there is a pathqg il> e L—">p wherep is a final state, and
there exist a decompositian = wy - - - w,, such thatw; € L;. Observe that, with this
definition, A andB accept the same language: all words adeéhat end witha or c. In
fact,B was obtained from in a well-known process to compute the regular expression
denoting the language accepted by a given automaton [16].

We propose to define the semantics of systems with interaasitions following
the same idea as in the above example. Given some transiper(ite. an endofunc-
tor) F', one first defines an embedding Bfsystems with internal transitions info*-
system, wherd™* has been derived fro? by making explicit the algebraic structure
on the labels. Next one models the semantics oFasystem as the one of the cor-
respondingF™*-systeme. Naively, one could think of defining the semanticseoés
the unique map, into the final coalgebra foF™*. However, this approach turns out
to be too fine grained, essentially because it ignores thenyidg algebraic structure
on the labels ok. The same problem can be observed in the example alfoaed
the representation of as an automaton with languages as labels have different final
semantics—they accept the same language only modulo tlaieqs of monoids.

Thus we need to extend the standard coalgebraic framewdgdking into account
the algebraic structure on labels. To this end, we developh@mory for systems whose
transition typeF™* has acanonical fixpointi.e. its initial algebra and final coalgebra
coincide. This is the case for many relevant examples, asrobd in [14]. Ourcanon-
ical fixpoint semanticsvill be given as the compositeo !., where!, is a coalgebra
morphism given by finality angis an algebra morphism given by initiality. The target
of j will be an algebra for™* encoding the equational theory associated with the labels
of F*-systems. Intuitively; being analgebramorphism, will take the quotient of the
semantics given by modulo those equations. Therefore the extension provigedsb
the technical feature allowing us to take into account tigeladaic structure on labels.

To study the properties of our canonical fixpoint semanitcwijll be convenient
to formulate it as an operater— e assigning to systems (seen as sets of equations)
a certainsolution Within the same perspective we will implement a differeimickof
solutione — ef turning any system with internal transitions into one* where those
have been abstracted away. By comparing the operatesse’ ande — e*, we will
then be able to show that such a procedure (also callgininatior) is sound with
respect to the canonical fixpoint semantics.

To conclude, we will explore further the flexibility of ourdmework. In particular,
we will model the case in which the algebraic structure of#rels is quotiented under



some equations, resulting in a coarser equivalence thaortbaiven by the canon-
ical fixpoint semantics. As a relevant example of this phesoom, we give the first
coalgebraic account of Mazurkiewicz traces.

SynopsisAfter recalling the necessary background in Sedfibn 2, weutis our mo-
tivating examples—automata withtransitions and automata on words—in Secfibn 3.
Section’ 4 is devoted to present the canonical fixpoint seiosaand the sound proce-
dure ofe-elimination. This framework is then instantiated to thamples of Sectiol] 3.
Finally, in Sectiol b we show how a quotient of the algebraatrels induces a coarser
canonical fixpoint semantics. We propose Mazurkiewiczsaas a motivating example
for such a construction. A full version of this paper with gibofs and extra material
can be foundimttp://arxiv. org/ abs/ 1402. 4062.

2 Preliminaries

In this section we introduce the basic notions we need foabstract framework. We
assume some familiarity with category theory. We will usklfaxre capital€C to denote
categoriesX,Y, ... for objects andf, g, . . . for morphisms. We use Greek letters and
double arrows, e.q;: F' = G, for natural transformations, monad morphisms and any
kind of 2-cells. IfC has coproducts we will denote them By+ Y and usenl, inr for

the coproduct injections.

2.1 Monads

We recall the basics of the theory of monads, as needed tmrmdrfe information, see
e.9.[20]. A monad is a functol’: C — C together with two natural transformations,
aunit n: idec = T and amultiplication : T2 = T, which are required to satisfy
the following equations, for everX € C: ux o nrx = pux o Tnxy = id and
Tpx o prx = (X © [1X-

A morphism of monadsom (7', 7", uT) to (S, n°, 1) is a natural transformation
v: T = S that preserves unit and multiplicationy o n% = n% andyx o p% =
wS o ysx o Tyx. A quotient of monads a morphism of monads with epimorphic
components.

Example 2.1.We briefly describe the examples of monads that we use in #uisip

1. LetC = Sets. The powerset monaft maps a sefX to the setPX of subsets
of X, and a functionf: X — Y toPf: PX — PY given by direct image. The
unit is given by the singleton set may (z) = {«z} and multiplication by union
px(U) =Usey S-

2. LetC be a category with coproducts ahtln object ofC. The exception mona8l
is defined on objects &X = E+ X andonarrowg: X — Y aséf =1dg + f.
Its unit and multiplication are given alf € C respectively asnrx: X — E+ X
andVg+1Idx : E+ E+ X — E+ X,whereVg = [idg,idg] is the codiagonal.
WhenC = Sets, E can be thought as a set@fceptionsand this monad is often
used to encode computations that might fail throwing an gttee chosen from the
setk.
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3. Let H be an endofunctor on a categdtysuch that for every object there exists
a free H-algebraH* X on X (equivalently, an initialH + X-algebra) with the
structurery : HH*X — H*X and universal morphismy : X — H*X. Then
as proved by Bari [7] (see also Kelly [18F*: C — C is the functor part of a
free monacdbn H with the unit given by the abovgy and the multiplication given
by the freeness ofi*H*X: px is the uniqueH-algebra homomorphism from
(H*H*X, Ty~ x) to (H*X, 7x) such thajux - ng~x = nx. Also notice that for a
complete category every free monad arises in this way. liyirfal later use we fix
the notatiork = 7 - Hn: H = H* for the universal natural transformation of the
free monad.

Given a monad/: C — C, its Kleisli categoryX/(M) has the same objects &5
but morphismsX — Y in X¢(M) are morphismsX — MY in C. The identity map
X > XinX¢(M)is M'sunitnx: X — MX; and compositio o f in X¢(M) uses
M’s multiplication:g o f = 1 o Mg o f. There is a forgetful functdit: X¢(T) — C,
sendingX toT'X andf to i o T'f. This functor has a left adjoirdt, given by X = X
anddf = n o f. The Kleisli categorykK¢(M) inherits coproducts from the underlying
categoryC. More precisely, for every objects andY their coproductX + Y in C is
also a coproduct itk¢( M) with the injectionginl andJinr.

2.2 Distributive laws and liftings

The most interesting examples of the theory that we will @nésn Sectio 4 concern
coalgebras for functorél : K¢(M) — K¢(M) that are obtained as liftings of endo-
functorsH on Sets. Formally, given a monad/: C — C, alifting of H: C — Cto
Xe(M) is an endofunctoff : K¢(M) — K¢(M) suchthaf o H = H o J. The lifting
of amonadT,n, ) isamonadT,7, i) such thafl" is a lifting of T and7, 1z are given
onX € X¢(M) (i.e. X € Sets) respectively ag(nx) andd(ux).

A natural way of lifting functors and monads is by mean ofrilisttive laws. Adis-
tributive lawof a monad T, n*, u*') over a monad M, n*, ;M) is a natural transfor-
mation\: TM = MT, that commutes appropriately with the unit and multipicat
of both monads; more precisely, the diagrams below commute:

TX TX TM2X 22 v x 225 verx
| [ L
TMX — MTX TMX MTX

)\X )\X
nﬂxT TM%@ uﬂxT TMuﬁ
MX —— MX T2MX — s TMTX — T2MX
T>\1WX )\TX

A distributive law of afunctor T over amonad M, n™, ™) is a natural transformation
A: TM = MT such that only the two topmost squares above commute.

The following “folklore” result gives an alternative degation of distributive laws
in terms of liftings to Kleisli categories, see also[[17]2[2r [6].



Proposition 2.2 ([22]).Let (M, 7™, u*) be a monad on a catego. Then the fol-
lowing holds:

1. For every endofunctdf on C, there is a bijective correspondence between liftings
of T'to K¢(M ) and distributive laws of” over M.

2. For every monad7,n”, u*) on C, there is a bijective correspondence between
liftings of (T, 7™, uT') to K¢ (M) and distributive laws of” over M.

In what follows we shall simply writéd for the lifting of an endofunctofi.

Proposition 2.3 ([14]).Let M: C — C be a monad andi: C — C be a functor
with a lifting H: K¢(M) — K¢(M). If H has an initial algebra.: HI = I (in C),
thend.: HI — I is an initial algebra forH (in I¢(M)).

In our examples, we will often consider the free monad (EXef@d[3)H* generated
by a lifted functorH . The following result will be pivotal.

Proposition 2.4. Let H: C — C be a functor and//: C — C be a monad such that
there is a lifting H : K(M) — K(M). Then the free monad*: C — C liftsto a
monadH*: K¢(M) — Xe(M). Moreover,H* = H*.

Recall from [14] that for every polynomial endofunctfir on Sets there exists a
canonical distributive law off over anycommutativenonad/ (equivalently, a canon-
ical lifting of H to K¢(M)); this result was later extended to so-called analytic endo
functors ofSets (see [21]). This can be used in our applications since theepoat
functor® is commutative, and so is the exception mogstf £ = 1.

2.3 Cppo-enriched categories

For our general theory we are going to assume that we work ategory where the
hom-sets carry a cpo structure. Recall thapais a partially ordered set in which all
w-chains have a join. A cpo with bottom is a cpo with a least eletri. A function
between cpos is callecbntinuousf it preserves joins ofu-chains. Cpos with bottom
and continuous maps form a category that we deno€pypo.

A Cppo-enriched categor is a category where (a) each hom-68tX,Y) is a
cpo with a bottom element x y : X — Y and (b) composition is continuous, that is:

go <|_| fn> = |(gofs) and <|_| fn>og— L] (Fno9).

n<w n<w n<w n<w

The composition is callekkft strictif Ly z o f = Lx 7 forallarrowsf: X — Y .

In our applicationsC will mostly be a Kleisli category for a monad d®ets.
Throughout this subsection we assume tHias aCppo-enriched category.

An endofunctorH: C — C is said to bdocally continuousf for any w-chain
fn: X =Y, n<win C(X,Y) we have:

H<|_| fn> ~ L #

nw n<w



We are going to make use of the fact that a locally continuma®®inctord on
C has acanonical fixpointi.e. whenever its initial algebra exists it is also its final
coalgebra:

Theorem 2.5 ([11]).Let H: C — C be a locally continuous endofunctor on the
Cppo-enriched categoryC whose composition is left-strict. If an initidl-algebra
v: HI 5 I exists, then—': I = HI is a final H-coalgebra.

In the sequel, we will be interested in free algebras for atiomn on C and the free
monadH * (cf. Examplé2.1L13). For this observe that coproducts &re alway<Cppo-
enriched, i.e. all copairing maps,—| : C(X,Y) x C(X,Y) - C(X + X', Y) are
continuous; in fact, it is easy to show that this map is cartirs in both of its arguments
using that composition with the coproduct injections istaarous.

Proposition 2.6. Let C be Cppo-enriched with composition left-strict. Furthermore,
let H : C — C be locally continuous and assume that all fl#ealgebras exist. Then
the free monad{* is locally continuous.

2.4 Final Coalgebras in Kleisli categories

In our applications theCppo-enriched category will be the Kleisli categoy =
X¢(M) of a monad orSets and the endofunctors of interest are liftingsof endo-
functorsH on Sets. It is known that in this setting a final coalgebra for theitift 7
can be obtained as a lifting of an initial-algebra (see Hasuo et al. [14]). The following
result is a variation of Theorem 3.3 in [14]:

Theorem 2.7. Let M : Sets — Sets be a monad and? : Sets — Sets be a functor
such that

(a) Xe¢(M) is Cppo-enriched with composition left strict;
(b) H is accessible (i.e£l preserves\-filtered colimits for some cardinai) and has
alifting H: X¢(M) — X¢(M) which is locally continuous.

If .- HI 5 I is the initial algebra for the functoH, then

1. Ju: HI — I'is the initial algebra for the functof; R
2. 3.~ ': I — HI is the final coalgebra for the functdt .

The first item follows from Proposition 2.3 and the second foilews from Theo-
rem[2.%. There are two differences with Theorem 3.3 [14]:

(1) The functorH : Sets — Sets is supposed to preseruecolimits rather that be-
ing accessible. We use the assumption of accessibilityuseca guarantees the
existence of all free algebras fdf and for H, which implies also that for all
Y € K¢(M) an initial H*(Id + Y')-algebra exists. This property &f* will be
needed for applying our framework of Sectidn 4.



(2) We assume that the lifting : K¢(M) — K¢(M) is locally continuous rather than
locally monotone. We will need continuity to ensure the deudagger law in Re-
mark[2.9. This assumption is not really restrictive sinGeggplained in Section
3.3.1 of [14], in all the meaningful examples whefeis locally monotone, it is
also locally continuous.

Example 2.8 (NDA)Consider the powerset mon&(Exampld 2.IL11) and the functor
HX = A x X + 1onSets (with 1 = {v'}). The functorH lifts to H on X/(P) as
follows: forany f: X — Y in K¢(P) (thatisf: X — P(Y) in Sets), Hf: Ax X +
1> AxY +1lisgivenbyHf(v)={v}andH f({a,z)) = {{a,y) |y € f(z)}.

Non-deterministic automata (NDA) over the input alphaletan be regarded as
coalgebras for the functdi : Ke(P) — Ke(P). Consider, on the left, a 3-state NDA,
where the only final state is marked by a double circle.

a

(X,

N0 0— o R
) =

e(2

2,3} A={a,b}
{{a, 1), (b, 1), (b,2)}
{(a,2),(0,3)} e(3) ={v,(a,2),(b,3)}

{1

It can be represented as a coalgebr& — HX, thatis a functiore: X — P(A x
X + 1), given above on the right, which assigns to each state X a set which:

contains/ if x is final; and(a, y) for all transitionsr = y.

It is easy to see tha/ = P and H above satisfy the conditions of Theorém|2.7
and therefore both the findl-coalgebra and the initial/-algebra are the lifting of
the initial algebra for the functofX = A x X + 1, given by A* with structure
t: Ax A* +1 — A* which mapsa, w) to aw andv toe.

For an NDA(X, ¢), the final coalgebra homomorphism X — A* is the function
X — PA* that maps every state i to the language that it accepts.Xid(P):

X—-————— === —= e - — = — - »> A*
ecl(z) & v ee(z) »
aw € l.(z) & forsomey € X, (a,y) € e(z) andw € !c(y) &
. G ol B e +AXA +1
Axle+1

2.5 Monads with Fixpoint Operators

In order to develop our theory of systems with internal bébrawe will adopt an
equational perspective on coalgebras. In the sequel wk secae preliminaries on this
viewpoint.

LetT : C — C be amonad on any catega®y Any morphisnme : X — T(X +Y)
(i.e. a coalgebra for the funct@i(Id + Y")) may be understood as a system of mutually
recursive equations. In our applications we are interesttfte case wher€ = X¢(M)
andT = H* is a (lifted) free monad. As in the example of NDA (Exampl€)2ake



M =PandHX = 1+ A x X. Now, setT’X = A* + A* x X and consider the
following system of mutually recursive equations

To = {Ca (abvxl)}v T~ {dv (a,:co), (Evy)}v

wherexy, z; € X arerecursion variablesy € Y is aparameteranda, b,c,d € A. A
solutionassigns to each of the two variables z; an element of?(TY") such that the
formal equations= become actual identities K¢(P):

xo — {(aba)*¢c, (aba)*abd, ((aba)*ab,y)}, x1 — {(aadb)*d, (aab) ac, ((aab)*,y)}.

Observe that the above system of equations corresponds émuation morphism
e: X — T(X +Y) and the solution to a morphiseh: X — TY, both inX¢(M). The
property that' is a solution fore is expressed by the following equationdif (M ):

t e Tle" ny ny
et = (X— ST (X +Y) TTY 7Y, @)

Soe — el is aparametrized fixpoint operatpice. a family of fixpoint operators indexed
by parameter sefs.

Remark 2.9.In our applications we shall need a certain equational ptgé the op-
eratore — e': for all Y € C and equation morphism: X — T(X + X +Y), the
following equation, callediouble dagger lawholds:

T(Vx+Y)

M= (X——=T(X+X+Y) T(X +Y))'.

This and other laws of parametrized fixpoint operators haenistudied by Bloom and
Esik in the context ofteration theorieg8]. A closely related notion is that dElgot
monadd?2, [3].

Example 2.10 (Least fixpoint solutionset 7" : C — C be a locally continuous
monad on th&ppo-enriched categorg. ThenT is equipped wi th a parametrized fix-
point operator obtained by taking least fixpoints: given aphsme : X — T(X +Y)
consider the functiob, on C(X, TY) given by®.(s) = p¥ o T[s,ni] oe. Thend, is
continuous and we takeé to be the least fixpoint @b, . Sincee’ = @, (e'), equation[(lL)
holds, and it follows from the argument in Theorem 8.2.15 Brdrcise 8.2.17 in [8]
that the operatoe — ¢f satisfies the axioms of iteration theories (or Elgot monads,
respectively). In particular the double dagger law holdstli@ least fixpoint operator
ers el

3 Motivating examples

The work of [14] bridged a gap in the theory of coalgebrascimtain functors, taking
the final coalgebra directly iBets does not give the right notion of equivalence. For
instance, for NDA, one would obtain bisimilarity insteadafiguage equivalence. The
change to Kleisli categories allowed the recovery of theallanguage semantics for
NDA and, more generally, led to the developmento#lgebraic trace semantics



In the Introduction we argued that there are relevant exasnfar which this ap-
proach still yields the unwanted notion of equivalence,gheblem being that it does
not consider the extra algebraic structure on the labelrs#te sequel, we motivate the
reader for the generic theory we will develop by detailing tase studies in which this
phenomenon can be observed: NDA wittransitions and NDA with word transitions.
Later on, in Example®&l7, we will also consider Mazurkiewtigzes|[[19].

NDA with e-transitions. In the world of automatae-transitions are considered in or-
der to enable easy composition of automata and compactsenetions of languages.
These transitions are to be interpreted as the empty word edmputing the language
accepted by a state. Consider, on the left, the followingpgraxample of an NDA with
e-transitions, where statesandy just makee transitions. The intended semantics in
this example is that all states accept wordsin

e@) = {(e.)} (@) = cea’

O~ =@ W = {2} ) = e

e(z) = {(a,2),v} le(2) = a*

Note that, more explicitly, these are just NDA where the alpit has a distinguished
symbole. So, they are coalgebras for the funcbr+ Id: K¢(P) — Ké(P) (where
H is the functor of Examplg—2.8), i.e. functioas X — P((A x X +1) + X) =
P((A+1) x X +1), as made explicit for the above automaton in the middle.

The final coalgebra fof + 1d is simply (A + 1)* and the final map.: X —
(A 4 1)* assigns to each state the languagéAn+ 1)* that it accepts. However, the
equivalence induced By is too fine grained: for the automata abo\emapse, y and
z to three different languages (on the right), where the numbe plays an explicit
role, but the intended semantics should disregatd

NDA with word transitions.This is a variation on the motivating example of the in-
troduction: instead of languages, transitions are Iablejedorda. Formally, consider
again the functoff from Examplé 2.8. Then NDA with word transitions are coalgeb
for the functorl*: K¢(P) — X¢(P), that is, functiong: X — P(A* x X + A*) =
P(A* x (X +1)). We observe that they are like NDA but (1) transitions arelet by
words in A*, rather than just symbols of the alphabktand (2) states have associated
output languages, rather than just We will draw them as ordinary automata plus an

arrow= to denote the output language of a state{nestands for the empty language).
For an example, consider the following word automaton asdaated transition func-
tione.

{ e(y) ={(,2)} e(z)={c}
i e} e(u) ={(e,v)} e(v) ={(ab,z2)}

4 More generally, one could consider labels from an arbitraopoid.



The semantics of NDA with word transitions is given by langes overA, obtained
by concatenating the words in the transitions and endinlg avitvord from the output
language. For instance,above accepts worebc but notab.

However, if we consider the final coalgebra semantics wendgae a mismatch.
The initial H*-algebra has carriérd*)* x A* that can be represented as the set of non-
empty lists of words overd*, where(A*)* indicates possibly empty lists of words. Its
structure: A* x ((A*)* x A*)+A* — (A*)* x A* mapsw into ({), w) and(w’, (I, w))
into (w’ :: I, w). Here, we us&) to denote the empty list andis the append operation.
By Theoreni2l7, the finalf *-coalgebra has the same carrier and strucfuré. The
final map, as a functioh : X — P((A*)* x A*), is then defined by commutativity of
the following square (ik¢(P)):

. (), w) €le(z) & wee(x) gt o)
(wlw')eldxr) & Fy (w,y) € e(z) and(l,w’) € l(y).

A XX+ A" = — — — AT x ((A")" x A7) 4+ A*

id g Xle+id 4

Once more, the semantics given RQyis too fine grained: in the above example,
le(z) = {([a,b],c)} and!.(u) = {([e, ab], c)} whereas the intended semantics would
equate both: andu, since they both accept the langudgéc}.

Note that any NDA can be regarded as word automaton. Reeatigtural transfor-
mations: H = H* defined in ExamplE2Il.3: for the functél of NDA,

x: AXxX+1—-5A"x X+ A"

maps any paifa,z) € A x X into {(a,z)} € P(A* x X + A*) andv’ € 1 into
{e} € P(A* x X + A*). Composing an NDA: X — HX with kx: HX — H*X,
one obtains the word automater o e.

In the same way, every NDA wittransitions can also be seen as a word automa-
ton by postcomposing with the natural transformatiern] : H+1d = H* Here,
n: 1d = H* is the unit of the free monad/* defined on a given seX below (the
multiplicationp.: H* H* = H* is shown on the right).

nx: X = A* x X + A* px: A x (A* x X+ A*)+ A* =5 A* x X + A*
x— {(e,x)} (w, (W, z))~»{(w-w,z)} (ww)—{w- w}
w— {w}

In the next section, we propose to define the semantiék?*ecboalgebras via a canonical
fixpoint operator rather than with the final map which as we sve might yield
unwanted semantics. Then, using the observation aboveethantics ofi- coalgebras
andf + Id- -coalgebras will be defined by embedding them |Htt}coalgebras via the
natural transformations and|x, ] described above.

10



4 Canonical Fixpoint Solutions

In this section we lay the foundations of our approach. A toigsion is introduced
assigning canonical solutions to coalgebras seen as equatrphismsdf. Section
[2.3) in aCppo-enriched setting. We will be working under the followingamptions.

Assumption 4.1. Let C be aCppo-enriched category with coproducts and composi-
tion left-strict. LetT" be a locally continuous monad @such that, for all object’, an
initial algebra forT'(1d + Y") exists.

As seen in Example 210, in this setting an equation morphisthi — T'(X +Y)
may be given the least solution. Here, we take a differentagah, exploiting the initial
algebra-final coalgebra coincidence of Theokenm 2.5.

For every parameter objekt € C, the endofunctof’(Id + V) is a locally contin-
uous monad because it is the compositiofi'afith the (locally continuous) exception
monadd+Y . Thus, by Theorein 2.5 appliedTqId+Y"), the initial 7’(Id+Y")-algebra
i T(Iy +Y) =5 Iy yields a finalT (1d + Y)-coalgebray ' : Iy STy +Y).
This allows us to associate with any equation morphisnX’ — 7'(X +Y") a canonical
morphism of typeX — T'Y as in the following diagram.

X m—m - STY
Tuz
. ot e TTY 3)
TTlidry 2]
T(X+Y) = i ? Ty +Y) = oo s T(TY +Y)

In @), the magd.: X — Iy is the unique morphism d@f (Id + Y)-coalgebras given by
finality of L;lz Iy — T(Iy +Y), whereas : Iy — TY is the uniqgue morphism of
T(Id + Y)-algebras given by initiality ofy : T (Iy +Y) — Iy.

We call the compositgo |.: X — TY thecanonical fixpoint solutiowf e. In the
following we check that the canonical fixpoint solution isi@ed a solution o, in fact,
it coincides with the least solution.

Proposition 4.2. Given a morphisne: X — T'(X + Y'), then the least solution ef
as in Exampl&2.10 is the canonical fixpoint solutieh:=jo !.: X — TY as in(@).

As recalled in Example 210, the least fixpoint operates e' satisfies the double
dagger law. Thus Propositin 4.2 yields the following résul

Corollary 4.3. LetC andT: C — C be as in Assumptidn 4.1. Then the canonical
fixpoint operatore — e' associated witl” satisfies the double dagger law.

5 The equality of least and canonical fixpoint solutions carubed to state a stronger result,
namely that canonical fixpoint solutions satisfy the axiarhgeration theoriesdf. Example
[2.10). However, the double dagger law is the only properdy We need here, explaining the
statement of Corollafy43.
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We now introduce a factorisation result on the operater ef, which is useful for
comparing solutions provided by different monads conrteeie a monad morphism.

Proposition 4.4 (Factorisation Lemma).Suppose thal’ and T’ are monads orC
satisfying Assumptidn 4.1 and 7' = T’ is a monad morphism. For any morphism
e: X >T(X+Y):

woel = (yxiyvoe) i X 5T,

wheree' is provided by the canonical fixpoint solution férand (yx .,y o e)T by the
one forT".

4.1 A Theory of Systems with Internal Behavior

We now use canonical fixpoint solutions to provide an abstresry of systems with
internal behavior, that we will later instantiate to the ivating examples of Sectidnd 3.
Throughout this section, we will develop our framework foe following ingredients.

Assumption 4.5. Let C be aCppo-enriched category with coproducts and composi-
tion left-strict and letf': C — C be a locally continuous functor for which all free
F-algebras exist. Consider the following two monads derfvech F':

— the free monad™: C — C (cf. Example 2.1L.B), for which we suppose that an
initial F*(Id + Y")-algebra exists for alt” € C;

— for afixedX € C, the exception mona#’X + Id: C — C (cf. Exampld 2.1LP),
for which we suppose that an initial.X + Id + Y -algebra exists for all’ € C.

In the next proposition we verify that the constructionaatuced in the previous section
applies to the two monads of Assumptionl4.5.

Proposition 4.6. LetC, F, F* and F X +1d be as in Assumptidn 4.5. Th€hand the
monadsF*: C — CandFX +1d: C — C satisfy Assumptidn4.1. Thus bdth and
F X + 1d are monads with canonical fixpoint solution (which satisiy double dagger
law by Corollany4.3).

To avoid ambiguity, we denote with— ¢! the canonical fixpoint operator associated
with F* and withe — e* the one associated withX + Id.

We will employ the additional structure of those two monaatstfie analysis of-'-
systems with internal transitiondn F-system is simply ai’-coalgebra: X — FX,
where we take the operational point of view of seeifi@s a space of states ahdas
the transition type of. An F-system with internal transitions is A’ 4 Id)-coalgebra
e: X — FX + X, where the componenX’ of the codomain is targeted by those
transitions representing the internal (non-interactbe)avior of system.

A key observation for our analysis is thatsystems—with or without internal
transitions—enjoy a standard representatiorassystems, that is, coalgebras of the
forme: X — F*X.

Definition 4.7 (F-systems ag"*-systems)Letx : F' — F* be as in Example2[1.3.
We introduce the following encodirg— ¢ of F-systems and’-systems with internal
transitions asF*-systems.

12



— Given anF-systeme: X — F X, definee: X — F*X as
e: X—5 XX,

— Given anF-system with internal transitions: X — FX + X, definee : X —
FrXasée: X—e—FX 4+ X—[vx i 1 2F*X.

Thus F-systems (with or without internal transitions) may be sasrequation mor-
phismsX — F*(X +40) for the monad* (with the initial objectt” = 0 as parameter),
with solutions by canonical fixpointf{. Sectio 2.b). This will allow us to achieve the
following.

§1 We supply a uniform trace semantics Brsystems, possibly with internal transi-
tions, andF*-systems, based on the canonical fixpoint solution opecdtsi.

§2 We use the canonical fixpoint operator BfX + Id to transform anyF-system
e : X — FX + X with internal transitions into af’-systeme\e : X — FX
without internal transitions.

§3 We prove that the transformation & is sound with respect to the semantic$ bf

§1: Uniform trace semantics. The canonical fixpoint semantics 6fsystems, with or
without internal transitions, anf*-systems is defined as follows.

Definition 4.8 (Canonical Fixpoint Semantics).

— For an F*-systeme: X — F*X, its semantice]: X — F*0 is defined ag'
(note thate can be seen as an equation morphism#tron parametely” = 0).

— For an F-systene : X — FX, its semantic§e]: X — FO is defined ag! =
(kxoe)l.

— For an F-system with internal transitions : X — FX + X, its semantics
[e]: X — FOis defined ag' = ([kx,n% ] oe)'.

The underlying intuition of Definition 418 is that canonidadpoint solutions may be
given an operational understanding. Giveniansysteme: X — F*X, its solution
el X — F*0is formally defined as the composite !. (cf. (3)): we can see the coal-
gebra morphisnt, as a map that gives tHeehaviorof systeme without taking into
account the structure of labels and the algebra morphesrevaluating this structure,
e.g. flattening words of words, using the initial algelga F*F*0 — F*0 for the
monadF™. In particular, the action gfis what makes our semantics suitable for mod-
eling “algebraic” operations on internal transitions sash-elimination, as we will see

in concrete instances of our framework.

Remark 4.9.The canonical fixpoint semantics of Definition4.8 encompsasise frame-
work for traces in[[14], where the semantics of Arsysteme : X — FX—without

internal transitions—is defined as the uniqgue morphisrfrom X into the final -

coalgebraF™0. Indeed, using finality of™0, it can be shown that = [e]. Theo-

rem[4.10 below guarantees compatibility with Assumpfids 4.

The following result is instrumental in our examples andomparing our theory with
the one developed in [14] for trace semantics in Kleisli gatess.
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Theorem 4.10.Let M : Sets — Sets be a monad and/ : Sets — Sets be a functor
satisfying the assumptions of Theofen 2.7, that is:

(@) X¢(M) is Cppo-enriched and composition is left strict;
(b) H is accessible and has a locally continuous liftiHg X¢(M) — XK¢(M).

ThenX?¢(M), H, H* and HJX + Id (for a given setX) satisfy Assumptidn4.5.

Example 4.11 (Semantics of NDA with word transitiofis)Sectior{ 8, we have mod-
eled NDA with word transitions as/*-coalgebras orK¢(M), where H and M are
defined as for NDA (see Examle P.8). By Proposifior] Zi4, = H* and thus, by
virtue of Theoreni Z. 10/~ satisfies Assumptidn 4.5. Therefore we can define the se-
mantics of NDA with word transitions: X — P(A* x X + A*) via canonical fixpoint
solutions age] = ef = o l.:

X-—-—-—-—-—=—-- A XA - — - - - — - — — — — — — > A*
e 1w = w .
i(walw) = {wu|ueilw)}
A" x X + A" — Taxiogid A" X ((A")" x A"+ A" — — — od T > A x AT+ AF

Observe that the above diagram is judt (3) instantiated Witk H* andY = 0.
Moreover, this diagram is ifi/(P) and hence the explicit definition ef as a function
X — P(A*)is given byel(z) = U P())(l(z)).

Both !, and; can be defined uniquely by the commutativity of the above rdieg
We have already defined in diagram[(2) and the definition gfis given in the right-
hand square of the above diagram. The isomorphism in thelendehdi;., were defined
in Sectiori 8.

Using the above formulal (z) = [J P(j)(!(z)) we now have the semantics af

w € el(r) & wee(z) or (5)
JyeX,wiwsear (W1,Y) € e(z),ws € el (y) andw = wyws.

This definition is precisely the language semantics: a woislaccepted by a stateif

wnl

there exists a decompositian = wy - - - w,, such thatz LN Y1 S A Yn—1 = .

Take again the automaton of the motivating example. We cboulede the semantics
and observe that we now get exactly what was expeetéd) = e'(v).

@) = {(ebh )}  el@) = {abc}

a b ) = {(B], )} ei(y) = {bc}
e L) = {00 (=) = {c)

(w)—(v) ) = {(leat) ) ¢f(u) = {abe}

(@) = {(ab], )} ei(v) = {abc}

The key role played by the monad structure4incan be appreciated by comparing the
graphs of. ande’ = j o !, as in the example above. The algebra morphisfm*)* x
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A* — A* maps values from the initial algebfa*)* x A* for theendofuncto * into
the initial algebrad* for the monadH*: its action is precisely to take into account the
additional equations encoded by the algebraic theory ofrthead I *. For instance,
we can see the mapping &f(u) = {([¢, ad], )} into the wordabc as the result of
concatenating the wordsab, ¢ and then quotienting out of the equatiatbc = abc in
the monoidA*.

Remark 4.12 (Multiple Solutions)he canonical solutioa' is not the unique solution.
Indeed, the uniqueness igfin the left-hand square and pin the right-hand square of
the diagram above does not imply the uniqueness ofo see this, take for instance

the automaton
O

Both s(z) = () ands’(z) = A* are solutions. The canonical one is the least one, i.e.,

an
ef(z) = s(x) = 0.
Example 4.13 (Semantics of NDA wittransitions).NDA with e-transitions are mod-
eled asH + Id-coalgebras ofK¢(M), whereH and M are defined as for NDA (see
Example2.B). We can define the semantics of NDA witinansitions via canonical
fixpoint solutions age] = &', wheree is the automaton with word transitions corre-
sponding toe (see Definitiol 417). The first example in Secfion 3 would eesented
as follows,

é(x) = [rx,nx]oe(r) = {(ey)}

D “ e(y) = [kx,mx] oe(y) {(e,2)}

=[rxnxloe(z) = {(a,2),¢}

@
—~
I\
~

wheren and s are defined as at the end of Sectidn 3. By uslidg (5), it can Liyeas
checked that the semantipg = ef: X — PA* mapsz, y andz into a*.

§2: Elimination of internal transitions. We view anF’-systene: X — F' X + X with
internal transitions as an equation morphism for the maRad+ Id, with parameter
Y = 0. Thus we can use the canonical fixpoint solutionfof + Id to obtain anF-
systemet: X — FX +0 = FX,which we denote by\e. The construction is depicted
below.

77 hore ©

FX+Xd—>FX+N><FX—>FX+FX
Fx+

drx+j
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Example 4.14 -elimination).Using the automaton of Examgile 4113, we can perform
e-elimination, as defined if{6), using the canonical solufir the monad7JX + Id:

X————- Lo 9NxAxX+1)—-—— = —— - +(Ax X +1)

| ; -

AXX+D+X 2 (Ax X+ D+NXx (Ax X +1) 2 (Ax X+ 1)+ (Ax X +1)

We obtain the following NDAe\ ¢ def jole: X > Ax X + 1.

@) = {2.0.2.27))  Aea) = (@)
!e(y) = {(170’7 2)7(17‘/)} e\e(y) = {(a7 Z)v‘/} ‘) @ - Da
!e(z) = {(O,G,Z),(O, ‘/)} e\e(z) = {(avz)v‘/}

The semantice\ ¢] is defined as\ ¢ , wheree\c = xx o ¢\ ¢ is the representation of
the NDA e\ e as an automaton with word transitions (Definition4.7). insnediate to
see, in this case, thfit\ €] = [¢]. This fact is an instance of Theorém4.17 below.

Remark 4.15Note thate-elimination was recently defined using a trace operator on a
Kleisli category [13| 24, I5]. These works are based on theetsemantics of Hasuo

et al. [14] and tailored foe-elimination. They do not take into account any algebraic
structure of the labels and are hence not applicable to ther ekamples we consider

in this paper.

§3: Soundness of-elimination. We now formally prove that the canonical fixpoint
semantics o ande\e coincide. To this end, first we show how the constructien e\e
can be expressed in terms of the canonical fixpoint solutidfi*o This turns out to be
an application of the factorisation lemma (Proposikion) 4i@r which we introduce the
natural transformation: FX + Id = F*(X + Id) defined a” € C by

[kx, n%] [F*inl,F*inr]

my: FX4Y —— 1 o pex 4y — 2 M X 1Y)

Since F* is a monad with canonical fixpoint solutions, it can be vedifibat so is
F*(X 4 1d). Moreover,r is a monad morphism betwednX + Id and F*(X + Id).
These observations allow us to prove the following.

Proposition 4.16 (Factorisation property ofe — e\ €). For any F-systeme : X —
FX + X with internal transitions, consider the equation morphisgioe : X —
F*(X + X). Then:

mooe\e= (rxoe)l : X — F*X.

Proof. This follows simply by an application of Propositibn#.4etee = et andy = 7
with Y = 0. O

We are now in position to show poifi8: soundness of-elimination.
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Theorem 4.17 (Eliminating internal transitions is sound).For any F-systeme :
X — FX + X with internal transitions,

[e\e] = [e]-

Proof. The statement is shown by the following derivation.

[e\e] = [e}] Definition of e\ ¢
= (kxoeb) Definition of [—] (Def.[2.8)
= (myoeh)! Definition of o
= (mxoe)ft Propositio 4.16
= (F*(Vx)o(nxoe))'  double dagger law
= éf Definition of e (Def.[4.7) andrx
= [e] Definition of [—].

5 Quotient Semantics

When considering behavior of systems it is common to en&swsgectrums of suc-
cessively coarser equivalences. For instance, in baseepsalgebra trace equivalence
can be obtained by quotienting bisimilarity with an axioratistg the distributivity of
action prefixing by non-determinisin [23]. There are manyerexamples of this phe-
nomenon, including Mazurkiewicz traces, which we will dése below.

In this section we develop a variant of the canonical fixpsgrantics, where we
can encompass in a uniform manner behaviors which are aqustd the canonical
behaviors of the previous section (that is, the objea).

Assumption 5.1. Let C, F', F* andF X +1d be as in Assumptidn 4.5 and F* = Q
a monad quotient for some mon&d Moreover, suppose that for afl € C an initial
Q(Id + Y)-algebra exists.

Observe that, as Assumptibn b.1 subsumes Assumipiidn 4.&revweithin the frame-
work of previous section, with the canonical fixpoint sabutiof F* providing seman-
tics for F*- and F-systems. For our extension, one is intereste@(nas a semantic
domain coarser thaf™*0 and we aim at defining an interpretation férsystems irQ0.
To this aim, we first check th@ has canonical fixpoint solutions.

Proposition 5.2. Let C, F, Q andvy : F* = ( be as in Assumptidn 3.1. Then As-
sumptiorf 411 holds fo€ and @, meaning that) is a monad with canonical fixpoint
solutions (which satisfy the double dagger law by Coroll&s3).

We use the notatioa — e~ for the canonical fixpoint operator @. This allows
us to define the semantics @-systems, analogously to what we did Bt -systems
in Definition[4.8. Moreover, the connecting monad morphismf™ = @ yields an
extension of this semantics to include also systems ofitrangype F'* and .
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Definition 5.3 (Quotient Semantics).The quotient semantics @f-systems, with or
without internal transitionsF™*-systems and@)-systems is defined as follows.

— Fora@-systene: X — QX, its semanticde]..: X — QO is defined ag™ (note
thate can be regarded as an equation morphismd@bwith Y = 0).

— For an F*-systeme: X — F*X, its semanticde].: X — QO is defined as
(yx 0€)™.

— For an F-systene—with or without internal transitions—its semantfeg...: X —
QO is defined agyx o €)™, whereg is as in Definitioi 4J7.

The Factorisation Lemma (Propositionl4.4) allows us tokdista a link between the
canonical fixpoint semantids-] and the quotient semanti¢s]...

Proposition 5.4 (Factorisation for the quotient semantick Let e be either anF™*-
system or arf’-system (with or without internal transitions). Then:
le]l~ =00 [e]. (7

As a corollary we obtain that eliminating internal trarsits is sound also for quotient
semantics.

Corollary 5.5. For any F-systene : X — FX + X with internal transitions,

[e]~ = [e\e]~

The quotient semantics can be formulated in a Kleisli cateGd (M) by further as-
suming(c) below. This is needed to lift a quotient of monads frBets to K¢(M).

Theorem 5.6. Let M : Sets — Sets be a monad and{: Sets — Sets be an ac-
cessible functor satisfying the assumptions of Thedrein B 7Propositior 24 the
free monadi/* on H lifts to a monadH *: X¢(M) — Xi(M) via a distributive law
A H*M = M H*with H* = H*. LetR: Sets — Setsbeamonadand: H* = R
a monad quotient such that

(c) for each setX, there is a map\y : RM X — MRX making the following com-
mute.

H*MX 25 MH*X

ﬁMxl lMEx

RMX —— MRX
X

Then the following hold:

1. thereisa mo/rla@: Ke(M) — Ke(M) liting R and a monad morphisgt H* =
R defined agx = J(¢x); R R R

2. Xe(M), H, H*, HJX + 1d (for a given setX), R and¢{: H* = R satisfy As-
sumption 5.11.

Notice that condition (c) and the first part of stateniént 1ratated to[[9, Theo-
rem 1]; however, that paper treats distributive laws of nisnaver endofunctors.
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Example 5.7 (Mazurkiewicz trace3his example, using a known equivalence in con-
currency theory, illustrates the use of the quotient seitmdeveloped in Sectidi 5.

The trace semantics proposed by Mazurkiewicz [19] accoiamtsoncurrent ac-
tions. Intuitively, letA be the action alphabet andb € A. We will call « andb con-
current, and writer = b, if the order in which these actions occur is not relevanisTh
means that we equate words that only differ in the order afeghie/o actions, e.g.abv
andubav denote the same Mazurkiewicz trace.

To obtain the intended semantics of Mazurkiewicz traces seethe quotient se-
mantics defined aboffeln particular, for Mazurkiewisz traces one considers a-sym
metric and irreflexive “independence” relatidron the label setl. Let = be the least
congruence relation on the free moneid such that

(a,b) € I = ab = ba.

We now have two monads dets, namelyH*X = A* x X + A* andRX =
A*/= x X + A*/=. There is the canonical quotient of mon&dsH* = R given by
identifying words of the sames-equivalence class. It can be checked that those data
satisfy the assumptions of Theoréml|5.6 and thus we are alléwvapply the quotient
semanticd—]~.. This will be given on an NDAe: X — HX by first embedding it
into H* ase = kx oe: X — H*X and then intoR asgx oe: X — RX.To this
morphism we apply the canonical fixpoint operatorR)to obtam(gX oe)”, that is,
the semantice] .: X — R0 = A*/=. Itis easy to see that this definition captures the
intended semantics: for all statess X

[e]~(2) = {[w]= | w € [e](2)}.

Indeed, by Proposition 8.4¢].. = & o [¢] and&y: H*0 — RO is justJ&, where
& A* — A*/= maps every wora into its equivalence clags]=.

6 Discussion

The framework introduced in this paper provides a uniforny teaexpress the seman-
tics of systems with internal behaviour via canonical fixpggolutions. Moreover, these
solutions are exploited to eliminate internal transitioma sound way, i.e., preserving
the semantics. We have shown our approach at work on NDA &fitansitions but,
by virtue of Theorenh 4.10, it also covers all the examplesl#i [like probabilistic
systems) and more (like the weighted automata on positale of [24]).

It is worth noticing that, in principle, our framework is djgable also to examples
that do not arise from Kleisli categories. Indeed the thedr@ectior# is formulated
for a general categorg’: Assumptiori 4.6 only require€ to be Cppo-enriched and
the monadr’ to be locally continuous. The role of these assumptions ésftid: (a)
ensuring the initial algebra-final coalgebra coincidence ¢) guaranteeing that the
canonical fixpoint operatar — e satisfies thelouble dagger lawlf (a) implies (b),

8 Mazurkiewicz traces were defined over labelled transitisiesns which are similar to NDA
but where every state is final. For simplicity, we consideSltere immediately as NDA.

19



we could have formulated our theory just assuming the cdamaie of initial algebra
and final coalgebra and without afyppo-enrichment. Condition (a) holds for some
interesting examples not based on Kleisli categories fergexamples in the category
of join semi-lattices. Therefore it is of relevance to imigate the following question:
given a monad’ with initial algebra-final coalgebra coincidence, undeiickhcondi-
tions does the canonical fixpoint solution providedibgatisfy the double dagger law?

As a concluding remark, let us recall that our original gisestoncerned the prob-
lem of modeling the semantics of systems where labels caratgebraic structure. In
this paper we have mostly been focusing on automata theatryhére are many other
examples in which the information carried by the labels letsmance for the semantics
of the systems under consideration: in logic programmihgli are substitutions of
terms; in (concurrent) constraint programming they armelats of a lattice; in process
calculi they are actions representing syntactical costard in tile systems [12] they
are morphisms in a category. We believe that our approackida® various insights
towards a coalgebraic semantics for these computationdéio
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A Proofs of Section 2

In this appendix, we show the proofs of Proposifion 2.4[aBd Phe proofs of the other
results shown in Sectidd 2 can be found in the referred titeea

Proposition[2.4. Let /: C — C be a functor and/: C — C be a monad such that
there is a lifting H : K¢(M) — X¢(M). Then the free monadd*: C — C lifts to a
monadH*: K¢(M) — Xe(M). Moreover,H* = H*.

Proof. Let \: HM — M H be the distributive law of the functdi over the monad
M corresponding to the lifting7 (see Proposition 2.2). For an objekt, we define
vx: H*M — H*M by the universal property of the initidif (—) + M X -algebra
H*(MX).

M x

HH*MX it H*MX & MX

H'yxl 'yx% (8)

HMH*X —— MHH*X —— MH*X
ATx Mrx

By diagram chasing, one can show thatH*M =- M H* is a distributive law of the
monadH * over the monad/ and, by Proposition 2l 2, we have a liftiify: : K¢(M) —
Ke(M). .

For proving H* = H*, takeax: H(H*(X)) + X — H*(X) to be the initial
H(—) + X-algebra and observe that«) is the initial H(—) + X-algebra (Propo-
sition[2.3). The fact that the units and the multiplicatiaisii* and H* coincide is
immediately proved by functoriality of. a

Proposition[2.8. Let C be Cppo-enriched with composition left-strict. Furthermore,
let H : C — C be locally continuous and assume that all filgealgebras exist. Then
the free monad{* is locally continuous.

Proof. First recall thati* X is a freeH -algebra with the structurey and the universal
morphismnx (cf. Exampld2.11(5)). Equivalentlyx = [7x,nx] : H(H*X) + X —
H*X is an initial algebra fo#{ (—) + X. Given a morphisny : X — Y, H*f is de-
fined by initiality; more preciselyd* f is the unique morphism such that the following
diagram commutes:

H(H*X)+ X X H*X
|
H(H*f)-i—idl | H* f
N
H(HY) + X — e HUHY) +Y — o H'Y
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Now recall thatv x is an isomorphism and consider the following function
$:C(X,)Y)xCH*X,H'Y)—> C(H*X,H'Y)
with
b(f,h) =ay - (Hh+ f) - ax".
SinceH is locally continuous, we see thétis continuous (in both arguments). Clearly,
H* f is the unique fixpoint ofp( f, —). To see that{* f is locally continuous leff,, :

X — Y be anw-chain inC(X,Y). It is easy to see that| _  H*f, is a fixpoint of
@ (|l,,<,, fn,—); indeed we have (using continuity &j:

nw

LJ }{*fn = LJ ¢(fﬁ7}1*fﬁ)

nw n<w

q5<|_| s |_|H*fn>.

n<w n<w

Thus, by the uniqueness of the fixpoit (| |, /) we have

H <|_| J%) = || #/a
n<w n<w

as desired. O

Finally, we record a simple lemma for future use:

Proposition A.1. Let H' be a quotient functor of the locally continuous funcfdron
the Cppo-enriched categorg". ThenH' is locally continuous, too.

Proof. Suppose that: H — H’ is an epi natural transformation. Considerachain
(fn)n<w in C(X,Y"). To prove thatd’(| | f») = || H' f,, we show that

H'(| | fa)ogx = av o H(| | fn) (naturality of-)
n<w n<w
- avo(| | Hfn) (H locally continuous)
i<w
— | | (av o H 1) (continuity of comp.)
n<w
- |_| (H'f 0 qx) (naturality of~)
nw
- (|_| H'f,)oqx (continuity of comp.)
nw
and we use thatyx is epi. a
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B Proofs of Sectiorf4

In this appendix, we report the proofs of the results state8ection 4, apart from
Theorent 4,70 that we prove separately in the next appendix.

Proposition[4.2.Given a morphisna: X — T(X +Y), then the least solution efas
in Examplé 2,10 is the canonical fixpoint solutief:= jo!.: X — TY as in(3).

Proof. It suffices to show thgto !, is the least fixpoint of the continuous functidp on
C(X,TY), defined as in Example 2110. To this aim, first observe thaletis fixpoint
of @, can be obtained as thejoin

el = |_|e;fl:X—>TY

n<w

wheree) = Lx ry ande] , = uf o Tlef, nT] oe.

An analogous observation can be made for the coalgebra msarph: X — Iy.
By finality of Iy, !. is the unigue map making the left-hand squarélin (3) comnhuite.
particular, it is theeastfunction—in the cpaC(X, Iy )—to do so: thus it is the least
fixpoint of a continuous function, expressed by éhin

le = |_|cn:X—>Iy

n<w

wherecy = Lx 5, andc,41 =ty o T'(¢p, + idy) o e. Analogously, by initiality ofly-,
i : Iy — TY is the unigue—and thus the least—fixpoint of a continuoustion on
C(Iy,TY), calculated as follows:

i=|]d: Iy 5 TY

nw

wheredy = L1, 7y andd, 1 = pd o T[d,, n&] o i3

We now show by induction on thate! = d,, o c,,:
— for n = 0, by left-strictness of composition we have
G(TJ =l1lxry =1l rvolxr =dyoco.

— For the inductive step, consider the following derivation:

dn+1 O Cnt1 = /LY oT|d my nY] © Lyl Oly © T(Cn + ldY) €
n
hony]o
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Thus we are allowed to conclude:

S= U= Udvoen= Lo L en=rot

n<w nw nw n<w

where the third equality is given by continuity of compawitin C. a

Remark B.1.In the proof of Propositioh 412 one observes that dptind; areunique
fixpoints for the continuous functions &\(X, Iy ) andC(Iy,TY), respectively, cor-
responding to commutativity of the two inner squaresin K8)netheless, the same is
not true for their composite’, which we just prove to be thHeastsolution fore: there
are possibly other maps making the outer rectanglelin (3wot® (cf. Remark4.12).

Proposition[4.4. Suppose thal” and T’ are monads orC satisfying Assumptidn 4.1
and~: T = T’ is a monad morphism. For any morphism X — T(X +Y):

vy oel = (vx4y oe)T X =T,

wheree' is provided by the canonical fixpoint solution férand (yx .y o e)T by the
one forT”.

Proof. First we construct the canonical fixpoint solution torX — T(X +Y) and
o ¥ vxt+yoe: X — T'(X+Y). The former will factor through the initial (Id+Y")-

algebray : T'(Iy +Y) — Iy and the latter through the initidl’(Id + Y)-algebra
Uy : T'(Iy +Y) — I asin the diagram:

X-—---- -y - - - - - — - - 5TY
Yy
e L;,l Ly TTY
T[idTy,ng]T 7Y
1, N
X————-— e e ———f 5 TY
T
e’ Ll;/l Jy TTY
Triapy af'
T(X+Y)———— — — ST +Y)— — — — — — ST(T'Y +Y)
T/ (1, +idy) T’ (i’ +idy)

The statement of the Proposition amounts to show that thdatg of the diagram
commutes, that is,

vy ojole=1iolu. 9

We are going to prové]9) by exploiting the initiality & and finality of I{,. For this
purpose, it is convenient to make the following observation
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(¥) anyT’(Id + Y)-algebraf: T'(A +Y) — A canonically induces &' (Id + Y)-
algebraf oyayy: T(A+Y) — A and the same—by naturality offor algebra
homomorphisms. Dually, arifj(Id+Y)-coalgebra : B — T(B+Y') canonically
induces ar’(Id + Y)-algebrayg,y o g : T/(B +Y) — B and the same for
coalgebra homomaorphisms.

i A B C B

fT T’ (h+idy) T lg T’ (u+idy) ~L
T'(A4+Y) —>T’A+Y) T B+Y)—T'(B+Y)
'YA+YT ’YA+YT l’YBHV lVéﬂf
T(A+Y) 2 pf 4y TB+Y) MY By

By observatior(x), Iy, has a'(Id 4+ Y')-algebra structure and thus by initiality there is
a uniquel’(Id + Y')-algebra morphism : Iyy — I{.. Then our claim[(9) reduces to the
commutativity of the following diagram.

® JW (10)

We address commutativity ¢f) and of(2) separately.

-(- By observatior(x), 'Y has also & (Id + Y')-algebra structure. Then, by initiality
of Iy, for commutativity of® it suffices to show thaty oj and;’oa areT (Id+Y)-
algebra morphisms. For this purpose, first observe that bgtoaction; anda are
T(Id+Y)-algebra morphism and the same fan virtue of observatioif«). Hence
it suffices to prove that alsgy is aT'(Id + Y')-algebra morphism. That is given by
commutativity of the following diagram

TY 7 'Y
1y ® e
TTY oy TTY Yy 'Y
T[idT’Y+77$] ® T[idT/Y+77$l] @ T/[idle+77$/]
T(’yy+idy) ’ | YT’y +Y / /
T(TY +Y) T(TY +Y) ——  ,T(T'Y 4+7Y)

whereX) and(®) commute becauseis a monad morphism an@ by naturality of
-
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-(@- To show that als@) in (10) commutes, we first check that Iy, — I3 is also a
T’(Id 4+ Y')-coalgebra morphism:

Iy Is
o (o (o

T(Iy +Y) Pasay) I +Y)
lmﬂM T
T/(IY + Y) T(a+idy) T(Ig/ + Y)

In the diagram above, the pentagon with an@l€ommutes becauseis a7 (Id +
Y')-algebra morphism, whereas the pentagon with a@ytmmutes by naturality
of v applied to the map#'(a + idy ) and7”(a + idy ).
To conclude, observe that (by construction) andl. (by observatior{x)) are also
T'(Id 4 Y)-coalgebra morphisms. Thus |, = ./ by finality of I{,, meaning that
@ in (0) commutes.

O

Proposition[4.8.LetC, F', F’* and ' X + Id be as in Assumptidn 4.5. Théhand the
monads/™*: C — CandFX +1d: C — C satisfy Assumptidn4.1. Thus bdth and
F X + 1d are monads with canonical fixpoint solution (which satisiy double dagger
law by Corollany4.3).

Proof. We check that the two monads satisfy Assumpfiod 4.1. Fovalk C, the
condition on the existence of initial algebras for the entdaforsF*(Id+Y) andF X +
Id + Y is already guaranteed by Assumptionl4.5. It remains to sloal kcontinuity.
As F is locally continuous and all freE-algebras exist, the mondd* is also locally
continuous by Propositidn 2.6. Local continuity BX + id is immediate by the fact
that all copairing maps—, —]: C(Y, Z) x C(Y',Z) = C(Y +Y’, Z) in theCppo-
enriched categor{ are continuousaf. Sectior 2.B). O

Proposition[4.16 (Factorisation property ofe — e\¢). For any F-systeme : X —
FX + X with internal transitions, consider the equation morphisgioe : X —
F*(X + X). Then:

mooe\e= (mx oe)T X - F*X.

Proof. Let us use the notation — e® for the canonical fixpoint solution operator of
F*(X + Id). We now apply Proposition 4.4 to show that solutionsFof( X + Id)
factorize through the ones éfX + Id. The connecting monad morphisnvis FX +
Id — F*(X + Id), defined above. Propositibn #.4 yields the following faistation

property:
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(x) foranyY, Z € C and equation morphiset Z — FX + Z+Y, considefrz,y o
e: Z — F*(X+Z+Y). The solution(rz,y oe)®: Z — F*(X +Y) provided
by F*(X + Id) factorises asry o ef, wheree*: Z — FX + Y is the solution
provided byF' X + id toe.

If we fix Z = X andY = 0, then(x) says: for anyF’-systeme : X — FX + X with
internal computation, consider the equation morphisfgoe : X) — F*(X + X +
0) for F*(X + Id) with parametel” = 0. Then the following diagram commutes:

x T pex (11)
\ /{\Tfo
ei

FX

To conclude our argument, we observe that the the system oe: X — F*(X +
X 4+ 0) can be also seen as an equationférwith parametet” = X + 0. This means
that alsoF™* provides a solution to such equation, which can be checkeiteide
with the one given byF* (X + Id), that is, (mx o e)® = (7x oe)'. Then the main
statement is proven by be the following derivation:

mgoe\e = 7 o e* (Definition of e\ €)
= (rx oe)® (commutativity of [(11))
= (nx oe)l. (observation above)
O

C Proof of Theorem[4.10

This section is devoted to prove Theorem 4.10. To this aimfingegive more details
on accessible endofunctors and how they yield a canonaldlgebra construction.

Remark C.1.(1) Adamek and Porst [4] showed that an endofunéfasn Sets is ac-
cessible iff is it bounded in the following sense: there &xéscardinal such that
for every setd, every element off A lies in the image ofib for someb : B — A
of less tham\ elements.

(2) Recall from|[1] that for an accessible endofundtbion a cocomplete categofy
(not only the initial but) alfree H-algebras exist and are obtained from an inductive
construction. More precisely, for every objectof C define the following ordinal
indexedfree-algebra-chain

HyX = X,
Hi1 X = HH;X + X,
H;X = colmH;X for a limit ordinalj.
1<J
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Its connecting morphisms; ; : H; X — H; X are uniquely determined by

uy = (X—"SHX +X),
Uipt g1 = (HHX + X—"" SHH X + X),

u;,5 (¢ < j) is the colimit cocone for limit ordinalg.

Indeed, this defines an ordinal indexed chain uniquely (uisgdmorphism). The
“missing” connecting maps are determined by the universgbgrty of colimits,
€.0.Uy w41 IS Unique such thaty, 41 - Uit1,w = Uit1,wt1 = Hu, foralli < w.
Now suppose thall preserves\-filtered colimits. Thenuy 41 iS an isomorphism
and one can show thaf, X is a freeH-algebra onX with the structure and uni-
versal morphism given by;}AH.

As we saw previously, the assignment of a ffiéealgebra onX to any objectX
yields a free monad oH; thus, in item (2) above we havé* = H,. Now notice
that the construction in the previous point can be writtejectfree; we obtair*
after A\ steps of the following chain in the category of endofunctore:

Hy, = 1d,
H;y, = HH; +1d,
H; = colmH; for limit ordinals:.
1<]

The connecting natural transformatiolls = H; have the components described
as connecting morphisms in item (2).

As a consequence we see thaftffis accessible then so &*; indeed, allH;
preserve\-filtered colimits if H does.

The next Proposition is instrumental in relating acceftgiblf an endofunctor with

the existence of initial algebras for its lifting.

Proposition C.2. Let C a cocomplete categoryy/ : C — C be amonad and: C —
C be an accessible endofunctor with a liftidg: K¢(M) — K¢(M). Then for all
X € Xe¢(M) both the initialG(Id + X)-algebra and the initialG(Id) + X -algebra
exist.

Proof. As the left adjoin: C — X¢(M) is defined as the identity on objects, without

loss of generality we can prove our statement for an olfece X¢(M ), whereY €
C.

First we observe that the endofunciort+ Id: C — C (cf. Exampld ZILP) always
has a lifting toX¢(M ). Indeed, because the left adjoiht C — K¢(M) preserves
coproducts, we have

Jo(Id+Y)=9(Id)+3dY =(Id+JY) o]
implying thatld + JY: K¢(M) — X¢(M) is a lifting ofId + Y: C — C.

Now we can compose th€-endofunctorss andId + Y in two different ways,
obtainingG(Id) + Y: C — CandG(Id+Y): C — C. Itis straightforward to check
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that the composite of two liftings is a lifting of the comptesfunctor. This means that
we have liftingsG(Id) + JY : Ke(M) — Ké(M) andG(Id+JY): Ke(M) — Ke(M)
respectively of3(Id) +Y: C - CandG(Id + Y): C — C.

The next step is to use accessibility to get initial algelna€ that will be then
lifted to K¢(M). To this aim, we observe that both functaréld) + Y: C — C and
G(Id+Y): C — C are accessible, because the fundto# 1d is clearly accessible
andG is assumed to have this property.

Thus as observed in Remark €.1](2) both an ind@iéld) + Y-algebra and an initial
G(Id + Y)-algebra exist. Then Propositibn P.3 yields the existeratd bf an initial
G(Id) + JY-algebra and an initiak (Id 4+ JY)-algebra. O

We are now ready to supply a proof of Theolem %.10.

Theorem[4.10.Let M : Sets — Sets be a monad and] : Sets — Sets be a functor
satisfying the assumptions of Theofeni 2.7, that is:

(@) X¢(M) is Cppo-enriched and composition is left strict;
(b) H is accessible and has a locally continuous liftiHg J¢(M) — K¢(M).

ThenX((M), H, H* and HJX + 1d (for a given setX) satisfy Assumptidn4.5.

Proof. SinceX/(M) inherits coproducts frorSets, we only need to check the follow-
ing properties:

1. all freefl—algebras exist;
2. forally € X¢(M), the initial H*(Id + Y')-algebra exists;
3. forallY € X¢(M), the initial HJ X + 1d + Y -algebra exists.

In virtue of Proposition Cl2, the three properties are iegbliespectively by the follow-
ing statements:

1. the functorH : Sets — Sets is accessible;

2. the functord*: X¢(M) — K¢(M) is the lifting of H*: Sets — Sets andH* is
accessible;A

3. thefunctolH JX +1d: K¢(M) — K¢(M ) is the lifting of H X +1d: Sets — Sets
andH X + Id is accessible.

The first point is given by assumption. For the second pdifitis accessible by Re-
mark[C.I.(3) and7*: K¢(M) — Ke(M) is its lifting by Propositioh 2}4. For the third
point, since the identitfd: Sets — Sets and the constant functdii X : Sets —
Sets are clearly accessible and coproducts preserve this gyoffemH X +id: Sets —
Sets is also accessible. As the left adjoifit Sets — X¢(M) preserves coprod-
ucts, it is immediate to check th&fJX + id: X¢(M) — Ke(M) is the lifting of
HX +1d: Sets — Sets. Indeed:

Jo(HX +1d) = JHX + J(Id) = HJX + J(1d) = (HIX +1d) o J.

This concludes the proof of the three properties above. a
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D Proofs of Sectiol’b

In this appendix, we report the proofs of the results state8ection b, apart from
Theoreni 56 that we prove separately in the next appendix.

Proposition[5.2.Let C, F, Q and~ : F* = Q be as in Assumptidn 3.1. Then As-
sumptiorf 4.1 holds fo€ and @, meaning that) is a monad with canonical fixpoint
solutions (which satisfy the double dagger law by Coroll&s3).

Proof. We need to check the following:

1. forallY € C aninitial Q(Id + Y)-algebra exist and
2. Qis locally continuous.

The first point is given by Assumptidn %.1. For the second peiwe already checked
with Propositiort 4.6 that our assumptions@rand F' imply that F'* is locally contin-
uous. Then, by Propositién A.1) has the same property. O

Proposition[5.4 (Factorisation for the quotient semantick Lete be either anF*-
system or arf’-system (with or without internal transitions). Then:

[el~ =00 [e]. 12)

Proof. We instantiate the statement of Proposifion 4.4 to the meiEd Q and the
monad morphismy: F* = @. It amounts to commutativity of the following diagram
for a givenF*-systeme: X — F* X and the parametér = 0.

x 7 0 (13)

X T

F*0

Thus for F'*-systems the equality (L2) is immediate, becalide = (yx oe)™ by
Definition[5.3 andyx o €)™ = 70 o el = 7 o [e] by commutativity of [(IB).

Starting instead from af’-systeme’ based on state spagg with or without inter-
nal computations, consider the following chain of equediti

—y —t
[€]~ =(1x0€) = r00€e =v0]e]

The first and third equalities are given by unfolding the d&€in of [—-]. and[—],
whereas the second one is due to commutativity of (13) aghpbiethe F'*-system
¢’ X — F*X in place ofe. O
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Corollary For any F-systene : X — F'X + X with internal transitions,
[el~ = [e\e]~-

Proof. The statement is immediately given by the following deiivat

[e]~ =100 [e] =00 [e\e] = [e\e]~

where the first and third equalities hold by Proposifion 51d the second equality by
Theoreni 4.717. 0

E Proof of Theorem[5.6

Finally, we can prove Theorem5.6. The following lemma pdes sufficient conditions
for lifting the quotient of an endofunctor t&¢(M).

Proposition E.1. Let M, S: C — C be monads such that there exists a distributive
law \: SM — MS and letS: X¢(M) — K¢(M) be the corresponding lifting. Let
~v: S = R be amonad quotient such that

(c) for eachX, thereis a map\y : RM X — M RX making the following commute.

SMX X4 MSX

'YZ\/IXl lM’YX

RMX)\—/)MRX
X

ThenR lifts to a monadR: K¢(M) — K¢(M) andg: S = R defined ag’y = J(yx)
is a monad quotient.

Proof. We first prove that\': RM = MR given by{)\ } x is a natural transforma-

tion. Let f: X — Y be a morphism irC. As eachy-component is epi, it suffices to

checkthatM Rf o Ny oymx = Ay o RM f o yarx . For this purpose we construct the
following cube.

RMX X MRX
MRS
RMf T N
YM X RMY | Y MRY
1\ Myx
YMY |
SMX T MSX My
MSf
SMY MSY
Ay
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The bottom face commutes by naturality)ofthe leftmost and the righmost faces com-
mute by naturality ofy; the backward and the front face commute becaugé)oft is
therefore easy to see thafRf o My o yprx = Ay o RM f oy x.

Now, we prove thad’: RM = M R is a distributive law of monads. The argument
for the four diagrams is analogous, so we just show the onejfardepicted in the
triangle(1), below.

rx

RX SX
)‘/X TMX )
MRX RMX SMX
(4) J{Ué%
Myx Ax
MSX

Observe thaf2) commutes by naturality of, (3) commutes since is a distributive
law of monads and4) commute by(t). Therefore the first equality of the following
equation holds
v 0 Rn¥ oyx = Mrx ondy = ni'x oyx

and the second equality holds by naturality;0f. The commutativity of(1) follows
sincevyx is epi.
By Propositio 2.2, and the fact that: RM = MR, thenR has a monad lifting
R: XO(M) — Xe(M).

We now prove thag: S = Ris amonad morphism. First, we need to check thatitis
a natural transformation, that is for all morphisiftsX — Y in X¢(M), the following
diagram commutes.

Sx 20 py

oJ

SY —— RY
()
By spelling out the definitions ¢fandsS, the above diagram corresponds to the follow-
ingin C.
M

SX — " oyss—— M MRX

Sfl (1) M|Sf (2) lMRf

{
SMY n¥——s MSMY —Myyy—s MRMY

kxl (3) MLy (4) lMAQ/
& l‘%y

MSY ———— MMSY — o MMRY ——— MRY
1Y

Msy

Observe that1) and(3) commute by naturality of*, (2) commutes by naturality of
~ and(4) commutes by(t).
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Verifying thatq is a also morphism of monads is immediﬁeng =d(q )OH( %) =
(™) =n"andgo p® = 3(q) 0 I (1) = () 0 J(Rq 0 vs) = p® o RGo 7s.
All its components are epi sin¢eis a left adjoint and thus preserves epis. 0O

Theorem[5.6.Let M : Sets — Sets be a monad andd: Sets — Sets be an
accessible functor satisfying the assumptions of Thebt@mB¥ Propositiorh 214 the
free monadi/* on H lifts to a monadH*- Ke(M) — Ke(M) via a distributive law
\: H*M = MH* with H* = H*. LetR: Sets — Sets be amonad and: H* = R
a monad quotient such that

(c) for each setX, there is a map\y : RM X — M RX making the following com-
mute.

H*MX 25 MH*X

fol lMEX

RMX —— MRX
X

Then the following hold:

1. thereisa mona& 5C€( ) — X¢(M) lifting R and a monad morphisgt H* =
R defined aiX =J(x);

2. Ke(M), H, H*, HJX +1d (for a given setX), R and§ H* = R satisfy As-
sumption 5.11.

Proof. The conditions of Poirit]1 are guaranteed by Proposition I. particular, the
morphismé: H* = R is of the right type becausH* = H* by Propositio 24. For
point[2 we observe that, fak¢(M), H, H* and HJX + id, proving Assumptioh 511
amounts to show Assumptign #.5, which we already did in Téwad.10.

Thus it only remains to prove that for &l € X¢(M) an initial R(id + Y')-algebra
exists. In virtue of Proposition 3.2, it suffices to show tlfat Sets — Sets is ac-
cessible. The accessibility of the quotighbf H*: Sets — Sets is guaranteed from
the fact that//*: Sets — Sets is accessible (Remafk §.1]3)) and thus bounded (Re-
mark{C.I(1))) and that the quotients of bounded functors laretaounded. o

F Modeling Mazurkiewicz Trace Semantics

The following statement allows to apply the framework of tigiot semantics (Section
[B) to the modeling of Mazurkiewicz trace semantics (Sedfiah). The functor, the
monadsRk and H*, the quotient of monads: H* = R and the congruence relatien
are as in Example5.7.

Proposition F.1. The monad$’: Sets — Sets and R: Sets — Sets, the functor
H: Sets — Sets and the quotient of monads H* =- R satisfy the assumptions of

Theoreni 5.6.
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Proof. Clearly the functor : Sets — Sets is accessible. The remaining properties
of H and of the monad: Sets — Sets are as in Theorefn 2.7 and have been al-
ready verified in[[14]. Thus it remains to show that the qudtie H* = R satisfies
condition(c) of Theoreni 5.B. For this purpose, fi& € Sets. The desired morphism
Ny : RPX — PRX will be given by universal property of a standard coequalize
diagram induced by the congruence relatienC A* x A*. First we define the set
Epx C (H*PX x H*PX) as

Epx = {(w,Y)(©,Y)) [w=0v}U{(w,v)|w=0v}

Intuitively, Epx is the set of equations oA *PX induced by=. There are evident
projection mapsr, mo: Epx — H*PX. Itis immediate to verify that the following is
a coequalizer diagram.

Eopx ::;; HPX — % pox

Also one can check that the morphi§tax o Ax : H*PX — PRX (where\: H*P =
PH* is a distributive law as in the statement of Theofenh 5.6)gthe same values if
precomposed withr; or with 5. Thus the universal property of coequalizer yields a
unique morphism\’y making the following commute.

Bpx =3 H*PX ——— RPX
T2 X |
* ‘ ’
PH*X Pex | Ax
1
PRX
Commutativity of the above diagram yields conditi@f of Theoreni 5.5. O
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