
MDSheet – Model-Driven Spreadsheets

Jácome Cunha João Paulo Fernandes Jorge Mendes
Rui Pereira João Saraiva

{jacome,jpaulo,jorgemendes,ruipereira,jas}@di.uminho.pt
HASLab/INESC TEC & Universidade do Minho, Portugal
CIICESI, ESTGF, Instituto Politécnico do Porto, Portugal

RELEASE, Universidade da Beira Interior, Portugal

ABSTRACT
This paper showcases MDSheet, a framework aimed at im-
proving the engineering of spreadsheets. This framework is
model-driven, and has been fully integrated under a spread-
sheet system. Also, its practical interest has been demon-
strated by several empirical studies.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Spreadsheets;
D.2.0 [Software Engineering]: General; D.2.6 [Software
Engineering]: Programming Environments—Graphical en-
vironments, Integrated environments, Interactive environ-
ments

General Terms
Languages, Design, Human Factors

Keywords
Model-Driven Spreadsheets, MDSheet, Model Inference, Em-
bedding, Bidirectional Synchronization, Querying

1. INTRODUCTION
We can not run the modern world without spreadsheets.

Spreadsheets are omnipresent, from individuals needing to
cope with simple needs to large companies needing to im-
plement complex forecasts or to produce advanced reports.

The realization of such importance has made concrete im-
pact in the scientific community as well. This is due to more
research teams devoting their efforts to improving spread-
sheets, and a growing number of scientific events dedicated
to them.

A successful approach to address spreadsheets under a sci-
entific perspective consists of incorporating well-established
software engineering techniques in the spreadsheet develop-
ment process.

Our approach is essentially based on precisely one such
technique: we adopt model-driven spreadsheet engineering.
In the setting we propose a spreadsheet is abstracted through
a concise model, which is then used to improve effective-
ness and efficiency of spreadsheet users. The framework
we describe in this paper has been realized in a traditional
spreadsheet development system, thus not forcing spread-
sheet users to move to a different paradigm.

The spreadsheet development framework that we envision

has been fully incorporated in a tool, MDSheet1, whose fea-
tures include:2

1) Model inference: we extract the abstract representation
from legacy spreadsheets;
2) Embedded models: this abstract representation is manip-
ulated and evolved in spreadsheets themselves;
3) User guidance: relying on this business model, we are able
of guiding users in avoiding traditional spreadsheet mistakes;
4) Model/instance synchronization: we support the evolu-
tion of model and instances, ensuring an automatic synchro-
nization of the unevolved artifact;
5) Model quality assessment: a set of metrics on the com-
plexity of a spreadsheet model can be computed;
6) Querying: spreadsheet data can be queried.

2. SPREADSHEET ENGINEERING
MDSheet is a framework for the engineering of spread-

sheets in a model-driven fashion. This framework is highly
extensible: we have actually extended it with several new
functionalities that we have developed in the last few years.

2.1 Motivational Example
The realization of our approach to spreadsheet engineering

builds upon the embedding of ClassSheets in a spreadsheet
system. So, we start by introducing ClassSheets within MD-
Sheet with the example given in Figure 1: we present a model
for a Budget spreadsheet (Figure 1a), which we adapted
from [13]3, and an instance of such model (Figure 1b).

This model holds three classes where data is to be in-
serted by end users: i) Year, with a default value of 2010,
for the budget to accommodate multi-year information, ii)
Category, for assigning a label to each expense and iii),
a(n implicit) relationship class where quantity and costs are
registered and totals are calculated based on them. The ac-
tual spreadsheet may hold several repetitions of any of these
elements, as indicated by the ellipsis. For each expense we
record its quantity and its cost (with 0 as the default value),
and we calculate the total amount associated with it. Fi-
nally, (simple) summation formulas are used to calculate the
global amount spent per year (cell D5), the amount spent
per expense type in all years (cell F3) and the total amount
spent in all years (cell F5) are also calculated.

1MDSheet is available through the SSaaPP project website:
http://ssaapp.di.uminho.pt.
2In the next section, we describe each such feature in a dif-
ferent subsection.
3We assume colors are visible in the digital version of this
paper.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634257?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


(a) Model worksheet.

(b) Data/instance worksheet.

Figure 1: A bidirectional model-driven environment for a budget spreadsheet.

Following is the description of the full set of features of-
fered by MDSheet.

2.2 Model Inference
A model-driven approach to spreadsheet engineering of-

fers an improved development experience: an abstract rep-
resentation of a spreadsheet, i.e., its model, helps us, among
other things, in guiding users into preventing errors. This
approach, however, requires the definition of a model in par-
allel with the spreadsheet it abstracts. In order to handle
legacy spreadsheets, i.e., the ones that have not been de-
veloped from scratch together with their model, we have
devised a model inference technique [2], that has been im-
plemented in MDSheet. Concretely, we infer models in the
ClassSheets language, an object-oriented high-level formal-
ism to abstract spreadsheets [13].

2.3 Embedded Models
The worksheet structure of spreadsheets is a decisive fac-

tor in their modularity. In fact, we exploited precisely this
structure to make the model of a spreadsheet available within
spreadsheet systems themselves: one worksheet holds the
model of a spreadsheet, while another holds its data. This

embedding of spreadsheets has also been implemented under
MDSheet [6], which was demonstrated in Section 2.1. More-
over, we extended the ClassSheets language with database
constraints, such as unique columns/rows or foreign keys,
which have also been incorporated in MDSheet [11]. In fact,
we have further extended the available restrictions so that
the user can specify the contents of a cell using regular ex-
pressions or intervals [8]. Finally, we extended ClassSheets
with references between different models making them more
flexible. Note that through this embedding we can guaran-
tee that spreadsheet data always conforms to a model.

2.4 User Guidance
The embedding of our extended version of the ClassSheet

language allows us to guide the user in inserting correct data.
When a model is designed, it serves as a guider in the cre-
ation of a data worksheet, which is initially empty. Only
cells containing plain data can be edited as all other are
inferred from the model. This prevents, e.g., users from
making mistakes when defining formulas as they are locked.
Moreover, the restrictions created in the model guarantee
that the data in the cells respects them. In the model it is
possible to define an interval of integers for a cell, or a regu-



lar expression that the content must conform to. A column
or row can be marked as having only unique values or being
a foreign key to another column or row. All these restric-
tions are enforced by MDSheet. In the case of foreign keys,
the user can use a combo box to select existing values from
the referred column/row.

2.5 Model/Instance Synchronization
As any other software artifact, spreadsheets evolve over

time. MDSheet accommodates changes by allowing the evo-
lution of models and instances, while automatically coevolv-
ing the unchanged artifact. For this, we introduced a for-
mal framework to allow evolutions of the model to be au-
tomatically spanned to the instances [6, 7, 12]. We have
later proposed techniques and tools to the evolution of data
by the user and corresponding automatic coevolution of the
model [3]. We therefore ensure that model/instance consis-
tency is never broken.

2.6 Model Quality Assessment
In a first attempt to measure the quality of a spreadsheet

model, we introduced a set of metrics to calculate the com-
plexity of ClassSheet models [9]. These metrics are imple-
mented under MDSheet and can be calculated for any Class-
Sheet defined using it. They are then compared to the same
metrics computed for a repository of ClassSheet models so
users can have a reference point for such values. The evolu-
tion mechanisms can then be used to evolve the spreadsheet
improving it according to the metrics calculated.

2.7 Querying
As many spreadsheets are used as data repositories, the

need to query their data is frequent. MDSheet also inte-
grates a query system, which allows the definition of model-
oriented queries, in the style of traditional database queries.
This allows the writing of queries without having to man-
ually observe a possibly large number of columns and rows
of concrete data. Indeed, queries are written, by analyzing
models, as abstractions that are simpler to understand. Our
system was initially presented as a textual language [1, 4],
very similar to SQL. Even being textual it already was of
great help for users [14]. Still, we have further improved it
by embedding the language in a worksheet, thus creating a
visual language for spreadsheet querying [5].

3. EMPIRICAL VALIDATION
One of the purposes of our tool is to help users commit

less errors; if possible, it also intends to help users work
faster with spreadsheets. To assess these two concerns we
have run an empirical study and we have found empirical
evidence that indeed our model-driven spreadsheet environ-
ment can in fact help users become more efficient and more
effective [10].

4. CONCLUSION
We briefly presented MDSheet and all the features it of-

fers to its users. Given the fact that it has been built as a
framework, new tools, even if not proposed by us, can easily
be integrated in it.

We believe this tool is in a very mature state and can
be used in real case scenarios. We have thus started its
integration in industry: i), to support test case evolution

in an agile testing framework of a software house; ii), to
adapt data produced by different database systems for a
car multimedia production company; and iii), to provide
spreadsheet models for a food bank.

Acknowledgments
This work is part funded by the ERDF - European Regional
Development Fund through the COMPETE Programme (op-
erational programme for competitiveness) and by National
Funds through the FCT - Fundação para a Ciência e a Tec-
nologia (Portuguese Foundation for Science and Technology)
within project FCOMP-01-0124-FEDER-020532. The first au-
thor was funded by the FCT grant SFRH/BPD/73358/2010.

5. REFERENCES
[1] O. Belo, J. Cunha, J. P. Fernandes, J. Mendes,

R. Pereira, and J. Saraiva. Querysheet: A bidirectional
query environment for model-driven spreadsheets. In
VLHCC ’13, pages 199–200. IEEE CS, 2013.

[2] J. Cunha, M. Erwig, and J. Saraiva. Automatically
inferring classsheet models from spreadsheets. In
VLHCC ’10, pages 93–100. IEEE CS, 2010.

[3] J. Cunha, J. P. Fernandes, J. Mendes, H. Pacheco,
and J. Saraiva. Bidirectional transformation of
model-driven spreadsheets. In ICMT ’12, volume 7307
of LNCS, pages 105–120. Springer, 2012.

[4] J. Cunha, J. P. Fernandes, J. Mendes, R. Pereira, and
J. Saraiva. Querying model-driven spreadsheets. In
VLHCC ’13, pages 83–86. IEEE CS, 2013.

[5] J. Cunha, J. P. Fernandes, J. Mendes, R. Pereira, and
J. Saraiva. Embedding model-driven spreadsheet
queries in spreadsheet systems. In VLHCC ’14, 2014.
to appear.

[6] J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva.
Embedding and evolution of spreadsheet models in
spreadsheet systems. In VLHCC ’11, pages 186–201.

[7] J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva.
MDSheet: A framework for model-driven spreadsheet
engineering. In ICSE 2012, pages 1412–1415. ACM.

[8] J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva.
Extension and implementation of classsheet models. In
VLHCC ’12, pages 19–22. IEEE CS, 2012.

[9] J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva.
Complexity Metrics for ClassSheet Models. In
ICCSA ’13, volume 7972, pages 459–474. LNCS, 2013.

[10] J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva.
Embedding, evolution, and validation of spreadsheet
models in spreadsheet systems. 2014. submitted.

[11] J. Cunha, J. P. Fernandes, and J. Saraiva. From
Relational ClassSheets to UML+OCL. In SAC ’12,
pages 1151–1158. ACM, 2012.

[12] J. Cunha, J. Visser, T. Alves, and J. Saraiva.
Type-safe evolution of spreadsheets. In
D. Giannakopoulou and F. Orejas, editors, FASE ’11,
volume 6603 of LNCS, pages 186–201. Springer, 2011.

[13] G. Engels and M. Erwig. ClassSheets: automatic
generation of spreadsheet applications from
object-oriented specifications. In ASE ’05, pages
124–133. ACM, 2005.

[14] R. Pereira. Querying for model-driven spreadsheets.
Master’s thesis, University of Minho, 2013.


