
Automated Verification of the FreeRTOS
Scheduler in HIP/SLEEK

João F. Ferreira∗†, Guanhua He∗ and Shengchao Qin∗‡
∗School of Computing, Teesside University, UK

†HASLab / INESC TEC, Universidade do Minho, Portugal
‡State Key Lab. for Novel Software Technology, Nanjing University, China

Emails: {jff, g.he, s.qin}@tees.ac.uk

Abstract

Automated verification of operating system kernels is a challenging prob-
lem, partly due to the use of shared mutable data structures. In this paper,
we show how we can automatically verify memory safety and functional
correctness of the task scheduler component of the FreeRTOS kernel using
the verification system HIP/SLEEK. We show how some of HIP/SLEEK
features like user-defined predicates and lemmas make the specifications
highly expressive and the verification process viable. To the best of our
knowledge, this is the first code-level verification of memory safety and
functional correctness properties of the FreeRTOS scheduler. The outcome
of our experiment confirms that HIP/SLEEK can indeed be used to verify
code that is used in production. Moreover, since the properties that we verify
are quite general, we envisage that the same approach can be adopted to
verify the scheduler of other operating systems.

1. Introduction

In recent years, the number of embedded devices in the
marketplace has increased substantially due to significant
reductions in size and costs of microprocessors. As a result,
the safety of the real-time operating systems (RTOSs) that
are traditionally used by embedded devices is becoming in-
creasingly important. The industry has already recognised the
importance of providing safe and reliable RTOSs [1] and the
academic community is actively working on tools and methods
that can improve the current standards of software quality.
In particular, the advances in theory and tool support have
inspired industrial and academic researchers to join up in
an international Grand Challenge (GC) in Verified Software
[2], [3]. In the context of this international challenge, Jim
Woodcock proposed the verification of FreeRTOS [4], a real-
time, multitasking, preemptive operating system for embedded
devices [5]. However, as Woodcock points out, FreeRTOS
involves lots of pointers and the automatic verification of
heap-manipulating programs is challenging. For that reason,
Woodcock suggests the use of separation logic [6], which
supports reasoning about shared mutable data structures.

In this paper, we take the FreeRTOS kernel as a case
study and show how we can automatically verify the memory
safety and functional correctness of its main component: the
task scheduler. We use the verification system HIP/SLEEK,
developed by Chin et al. [7], [8], which allows the combina-
tion of both separation (i.e. shape) and numerical (e.g. size)
information. HIP/SLEEK also allows user-specified inductive
predicates to appear in program specifications, making the

specifications highly expressive. We only consider partial
correctness: we prove, for example, that the next task chosen
by the scheduler is the task that should be executed, but
we do not guarantee that the task will eventually be chosen.
To the best of our knowledge, we provide the first code-
level verification of memory safety and functional correctness
properties of the FreeRTOS scheduler.

In Section 2, we explain FreeRTOS and the main data struc-
tures used in its scheduler. The specification and verification
process is presented in Section 3, followed by related work
and concluding remarks.

2. FreeRTOS

FreeRTOS [4] is a real-time, multitasking, preemptive op-
erating system for embedded devices. The most important
concept in FreeRTOS is the concept of task. Each executing
program is a task under the control of the operating system
(some operating systems use the term process). In the presence
of multiple tasks, the operating system has to decide which
task to execute at any particular time. The part of the kernel
responsible for switching tasks is the scheduler. FreeRTOS
uses a fixed-priority scheduling policy, ensuring that at any
given time, the processor executes the highest priority task of
all those tasks that are currently ready to execute1. Among
other properties, the scheduler also has to guarantee that only
tasks that are ready to execute are actually executed.

FreeRTOS2 is written mostly in C, with a few assembler
functions that take care of architecture-specific details. There
are four main C files that represent the kernel of FreeRTOS.
The file tasks.c implements most of the scheduler functionali-
ties, making use of the structures and functions defined in the
file list.c. The file queue.c implements thread-safe queues that
are used for inter-task communication and synchronisation.
The file croutine.c implements coroutines, which are very
simple and lightweight tasks that make a very limited use of
stack. In this paper, we focus on the methods defined in the
files tasks.c and list.c.

1. Note that FreeRTOS does not guarantee any deadlines for the execution
of tasks. The only guarantee is that the highest priority task that is ready to
execute will run as soon as possible.

2. The work described in this paper is based on version 6.1.1 of FreeRTOS.
Have in mind that the data structures and the algorithms involved may have
changed since that version.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634249?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2.1. Data structures

Lists. FreeRTOS provides a list API that is designed for
the scheduler needs, but that can also be used by application
code. Lists are used to organise tasks; for example, the
scheduler maintains a list of tasks ready to execute and a list
of tasks that are blocked. The data structure representing lists
is called xList and is defined as follows:

t y p e d e f s t r u c t xLIST {
v o l a t i l e unsigned portBASE TYPE

uxNumberOfItems ;
v o l a t i l e x L i s t I t e m ∗ pxIndex ;
v o l a t i l e x M i n i L i s t I t e m xL i s t E n d ;
} x L i s t ;

A list consists of a structure with three fields: the number of
items in the list (uxNumberOfItems), a pointer to a list item
(pxIndex), and a (mini) list item that contains the maximum
possible item value, which is used as a marker (xListEnd). The
type portBASE TYPE is architecture dependent; in the context
of this paper, it can be viewed as an unsigned integer. Note
that lists only store pointers to structures of the type xListItem,
whose definition is:

s t r u c t xLIST ITEM {
p o r t T i c k T y p e xI temValue ;
v o l a t i l e s t r u c t xLIST ITEM ∗ pxNext ;
v o l a t i l e s t r u c t xLIST ITEM ∗ p x P r e v i o u s ;
void ∗ pvOwner ;
void ∗ p v C o n t a i n e r ;
} ;
t y p e d e f s t r u c t xLIST ITEM x L i s t I t e m ;

Each list item holds a value (xItemValue), a pointer to the
object (normally a task) that contains the list item (pvOwner),
a pointer to the list in which the list item is placed (pv-
Container), a pointer to the previous list item (pxPrevious),
and a pointer to the next list item (pxNext). The existence
of the pointers pxPrevious and pxNext suggests that lists
are doubly-linked. As we will see later (section 3), lists are
indeed cyclic doubly-linked lists. Note that the end marker,
xListEnd, is a structure of the type xMiniListItem; the only
difference between this structure and the structure xListItem is
the omission of the fields pvOwner and pvContainer.

The list API provides several functions to manipulate lists.
For example, the function used to initialise all the members
of an xList structure is:

void v L i s t I n i t i a l i s e (x L i s t p x L i s t) ;

After initialisation, the pointer pxIndex points to the field
xListEnd, which is the only element of the list. Regarding
the field xListEnd, its field xItemValue is set to the maximum
possible value (portMAX DELAY) and its pointers pxNext and
pxPrevious are set to point to itself. As a result, the list can

be seen as a doubly-linked list of size 1 (note, however, that
the first field, uxNumberOfItems, contains the value 0, which is
the number of elements different from the end marker). Figure
1 illustrates the state of a list immediately after initialisation.
The three xList fields are laid out horizontally; the first holds
the value of the variable uxNumberOfItems, which is zero; the
second holds the pointer pxIndex; the third holds a structure
of type xMiniListItem.

Fig. 1. xList data structure after initialisation

Another function, vListInsertEnd, is used to insert items into
a list at the position following the item pointed by pxIndex.
Its definition is:

void v L i s t I n s e r t E n d (x L i s t p x L i s t ,
x L i s t I t e m pxNewLis t I tem)

{
x L i s t I t e m pxIndex ;

/∗ I n s e r t a new l i s t i t e m i n t o p x L i s t , b u t
r a t h e r than s o r t t h e l i s t , makes t h e new l i s t
i t e m t h e l a s t i t e m t o be removed by a c a l l t o
p v L i s t G e t O w n e r O f N e x t E n t r y . T h i s means i t has
t o be t h e i t e m p o i n t e d t o by t h e p x I n d e x
member .
∗ /
pxIndex = p x L i s t . pxIndex ;

pxNewLis t I tem . pxNext = pxIndex . pxNext ;
pxNewLis t I tem . p x P r e v i o u s = p x L i s t . pxIndex ;
(pxIndex . pxNext) . p x P r e v i o u s = pxNewLis t I tem ;
pxIndex . pxNext = pxNewLis t I tem ;
p x L i s t . pxIndex = pxNewLis t I tem ;

/∗ Remember which l i s t t h e i t e m i s i n . ∗ /
pxNewLis t I tem . p v C o n t a i n e r = p x L i s t ;

(p x L i s t . uxNumberOfItems) + + ;
}

Note how pxIndex is changed to point to the item that was
just inserted. The relevance of vListInsertEnd will become
apparent later, when we explain how the scheduler determines
which task to run next. The API also offers a function,
vListRemove, that is used to remove items from a list:

void vListRemove (x L i s t I t e m pxItemToRemove) ;

Tasks. In FreeRTOS, a task is represented by a task
control block (TCB). TCBs are defined as follows3:

3. To simplify the presentation, we do not include fields specific to
architectures that have a Memory Protection Unit (MPU), nor fields related
with debugging. Also, the order of the fields has been rearranged.

t y p e d e f s t r u c t t s k T a s k C o n t r o l B l o c k
{

v o l a t i l e portSTACK TYPE ∗pxTopOfStack ;
portSTACK TYPE ∗ pxS tack ;

x L i s t I t e m x G e n e r i c L i s t I t e m ;
x L i s t I t e m x E v e n t L i s t I t e m ;

unsigned portBASE TYPE u x P r i o r i t y ;
} tskTCB ;

t y p e d e f void ∗ xTaskHandle ;

The first two fields of a TCB are related with the task’s stack:
pxTopOfStack points to the location of the last item placed on
the task’s stack, and pxStack points to the start of the stack.

Each TCB maintains two fields of the type xListItem:
xGenericListItem is used to place the TCB in ready and
blocked lists, and xEventListItem is used to place the TCB
in event lists.

Finally, the field uxPriority represents the priority of the
task, where 0 is the lowest priority.

FreeRTOS creates a special task —the idle task —when the
scheduler starts (i.e., when the function vTaskStartScheduler
is called). The idle task only executes when there are no other
tasks able to do so, and it is responsible for freeing memory
for tasks that have been deleted.

2.2. Scheduling

The scheduler starts when the function vTaskStartScheduler
is called. The kernel can suspend and later resume a task many
times during the task’s lifetime. Because tasks are unaware
of when they are suspended or resumed by the kernel, the
scheduler has to guarantee that upon resumption a task has a
context identical to that immediately prior to its suspension.
The process of saving the context of a task being suspended
and restoring the context of a task being resumed is called
context switching. The context of a task is saved in its own
stack.

The scheduler maintains several global variables that assist
in the scheduling process. For example, the scheduler keeps
track of the highest priority of which there are tasks ready
to execute (uxTopReadyPriority). It also uses a pointer to
the TCB that is currently running (pxCurrentTCB) and it
maintains an array of lists, called pxReadyTasksLists, that
contains lists of tasks ready to execute. Each list is associated
to a different priority and the array is sorted in ascending
order of priority; in other words, pxReadyTasksLists[k] is
the list of tasks with priority k that are ready to run. To
determine what is the next task to execute, the scheduler
selects the highest k such that pxReadyTasksLists[k] is non-
empty4, and then uses a round-robin strategy. The next code
listing shows how these pxCurrentTCB and pxReadyTasksLists

4. Here we use the term non-empty to qualify a list that has at least one
TCB; that is, we do not consider xListEnd as a list item.

are defined. The variable configMAX PRIORITIES represents
the maximum number of priorities that can be used.

s t a t i c v o l a t i l e unsigned portBASE TYPE
u x T o p R e a d y P r i o r i t y ;

tskTCB ∗ v o l a t i l e pxCurrentTCB = NULL;
s t a t i c x L i s t p x R e a d y T a s k s L i s t s [

configMAX PRIORITIES] ;

We now explain the dynamics of the FreeRTOS scheduler
using a simple example. To simplify the presentation, we
assume that we only have one list of tasks that are ready to
execute (of priority tskIDLE PRIORITY); also, we assume that
the list has been initialized and is in the state shown in figure
1.

Adding new tasks. Suppose that two tasks, A and B,
are created. The function that creates the tasks also adds them
to the list of tasks ready to execute, using a function called
prvAddTaskToReadyQueue. This function uses vListInsertEnd
to add the tasks and, if necessary, it updates the variable
uxTopReadyPriority. Hence, the state shown in figure 1 is
changed to the state shown in figure 2. Because task B is the
last task to be inserted, pxIndex points to task B’s TCB. Note
how the two TCBs are part of a doubly-linked list through
the field xGenericListItem. Tasks are added to the list of tasks
ready to execute when they are newly created or when they
become unblocked.

Picking the next task. Each time a tick is generated,
FreeRTOS saves the context of the task that is currently
running and executes the function vTaskSwitchContext. This
function selects the highest priority list that contains at least
one task ready to execute. Once the list is identified, the task
that follows the pointer pxIndex is chosen to run. The function
responsible for that is listGET OWNER OF NEXT ENTRY5,
which is shown in figure 3.
Before, we mentioned that the function vListInsertEnd was
relevant to the way in which the scheduler determines which
task to run at a particular time. Indeed, given that the scheduler
uses the macro listGET OWNER OF NEXT ENTRY to deter-
mine which task to execute next, an invariant of the scheduling
process is that, for each list of ready tasks with the same
priority, the TCB pointed by pxIndex will be the last one to
execute (this is a consequence of using a cyclic-doubly linked
list). Since the function vListInsertEnd sets pxIndex to point
to the newly inserted TCB, this will be the last one to execute.

Going back to the example illustrated in figure 2, we
can see that the scheduler would choose task A to run,
since it follows the task pointed by pxIndex. Moreover,
listGET OWNER OF NEXT ENTRY would change pxIndex
to point to task A. So, if no tasks are added nor re-
moved from the list before the next execution of list-

5. In fact, listGET OWNER OF NEXT ENTRY is defined as a C macro,
but we define it here as a function. Also, we use HIP’s notation so that the
reader can see an example of a HIP program. Note that we use a dot for
accessing fields, rather than C’s arrow notation ->. We also use the keyword
ref to express that the value of pxTCB is returned by reference.

Fig. 2. pxReadyTasksLists[tskIDLE PRIORI-TY] after the creation of tasks A and B

void listGET OWNER OF NEXT ENTRY
(r e f tskTCB pxTCB , x L i s t p x L i s t) {

x L i s t p x C o n s t L i s t = p x L i s t ;

/∗ I n c r e m e n t t h e i n d e x t o t h e n e x t i t e m and
r e t u r n t h e i tem , e n s u r i n g we don ’ t r e t u r n
t h e marker used a t t h e end o f t h e l i s t . ∗ /

p x C o n s t L i s t . pxIndex =
(p x C o n s t L i s t . pxIndex) . pxNext ;

i f (p x C o n s t L i s t . pxIndex == p x C o n s t L i s t . xL i s t E n d)
{

p x C o n s t L i s t . pxIndex =
(p x C o n s t L i s t . pxIndex) . pxNext ;

}
pxTCB = (p x C o n s t L i s t . pxIndex) . pvOwner ;
}

Fig. 3. listGET OWNER OF NEXT ENTRY is used to switch
executing tasks

GET OWNER OF NEXT ENTRY, the next task to run will
be task B.

Removing tasks. In case a task blocks or is destroyed,
function vListRemove is used to remove the task from the list
of tasks that are ready to execute.

3. Specification and Verification

The verification of a scheduler involves many different
types of properties. In this paper, we focus on memory safety
and functional correctness properties. More specifically, some
properties that we verify are:

• When tasks become ready to execute (newly created
tasks, or recently unblocked tasks), the scheduler adds the
tasks into the correct position of the “ready-tasks list”;

• When switching context, the scheduler picks the right
task to execute, i.e., the highest priority task that is ready
to execute;

• When tasks are blocked or removed, the scheduler does
not pick them to run;

• Memory safety: when the scheduler manipulates the data
structures involved in scheduling, their shapes are main-
tained and there are no dereferencing of null pointers6.

One of the main goals of this work is to investigate how
we can automatically verify memory safety and functional
correctness properties of a scheduler in a combined separation
and numerical domain. We also want to test the suitability
of the prototype HIP/SLEEK to verify code that is used in
production. As a result, our main challenge is to model the
data structures involved in the scheduling process and annotate
FreeRTOS code with expressive specifications.

HIP/SLEEK is a state-of-the-art verification tool developed
by Chin et al. [7], [8]. The front-end of the system is the
Hoare-style forward verifier HIP, which takes user-defined
predicates and program code with method specifications as
input, and invokes a set of forward reasoning rules. The entail-
ment checker SLEEK is used to systematically check that the
precondition is satisfied at each call site, and the postcondition

6. It is important to note that in this work we do not verify if TCBs’ stack
and code pointers are valid. Invalid TCBs can affect context switching, but
here we focus on ensuring that the scheduler makes the right choices.

is successfully verified for each method definition against the
given precondition. Proof obligations related with the numeric
domain are discharged to external automatic provers (e.g.
MONA [9]).

3.1. On user-defined predicates

One advantage of HIP/SLEEK is the ability to define the
shapes of data structures by separation logic combined with
numerical (e.g. size) and bag (e.g. multi-set of values) infor-
mation. Therefore, the specification language is expressive and
powerful to capture not only memory safety properties, but
also functional correctness properties.

For example, the shape of the lists used by the FreeRTOS
scheduler can be captured by the shape predicate XLIST shown
below.

XLIST(p) ≡ p7→xList(, i, i) ∗ DLS(i, q, i, q)
∨ p7→xList(, i, e) ∗ DLS(e, e1, i, f1)

∗ DLS(i, f1, e, e1)

Capitalised words refer to shape predicates and xList is
a data node. So, XLIST(p) means that p is a pointer to a
structure of the shape XLIST and a data node of the shape
xList(, i, e) represents an element of the datatype xList
shown in section 2. The first field corresponds to the variable
uxNumberOfItems and is left anonymously defined (), since
its value is not needed to define the shape of the structure.
The other two fields, i and e, correspond to the fields pxIndex
and xListEnd, respectively. It is important to note that we are
treating the end marker as a normal xListItem, so that we can
avoid explicit casts (these are not supported by HIP/SLEEK)7.
The predicate XLIST is divided in two cases and depends
on the predicate DLS, which captures the shape of doubly-
linked list segments. The first disjunct captures the case where
pxIndex and xListEnd point to the same entry (which is a
doubly-linked list segment); the second disjunct captures the
case where they point to different segments. The star (∗)
operator represents separating conjunction and ensures that
its arguments reside in disjoint heaps (for more information
about separation logic, see [6]). In both cases, the arguments
that are passed to the DLS predicate ensure that the items are
indeed in cyclic doubly-linked lists. The definition of the shape
predicate DLS is:

DLS(p, pv, ob, ib)≡
p7→xListItem(, pv, ob, ,) ∧ ib=p
∨ p 7→xListItem(, pv, t, ,) ∗ DLS(t, p, ob, ib)

In the definition of DLS, p is a pointer to the first element
of the segment, pv is a pointer to the element preceding the

7. By treating the field xListEnd as a normal xListItem, our model adds
two extra fields to the end marker: pvContainer and pvOwner. However, since
these fields are never accessed for the end marker, this simplification is safe.

segment, ob is a pointer to the element following the segment,
and ib is a pointer to the last element of the segment. So, to
express a cyclic doubly-linked list, we have to set p=ob and
pv=ib.

These predicates can be directly used in HIP/SLEEK spec-
ifications to express, for example, that the result of a given
function is a list of the shape XLIST, thus guaranteeing
that the items are arranged as a cyclic doubly-linked list.
However, since HIP/SLEEK supports the combination of shape
information with numerical information, we can be more
expressive. We can, for example, extend the shape predicates
shown above with a natural number n representing the length
of the list and with a bag B containing all the references to
items in the list that are different from the end marker.

XLIST(p, n, B)≡
p 7→xList(n, i, i) ∗ DLS(i, q, i, q, n+1, B1)

∧ B = diff(B1, {i})
∨ p 7→xList(n, i, e) ∗ DLS(e, e1, i, f1, m1, B1)
∗ DLS(i, f1, e, e1, m2, B2) ∧ n=m1+m2−1
∧ B = diff(union(B1, B2), {e})

DLS(p, pv, ob, ib, n, B)≡
p7→xListItem(, pv, ob, ,) ∧ ib=p ∧ n=1∧B={p}

∨ p 7→xListItem(, pv, t, ,) ∗ DLS(t, p, ob, ib, n−1, B1)
∧ B = union(B1, {p})

The highlighted parts show the new numerical information.
Note how in the definition of XLIST, the bag B is defined to
exclude the end marker.

When FreeRTOS is compiled, the user has to define stat-
ically how many priorities the scheduler will support (by
defining the variable configMAX PRIORITIES). To simplify
the verification process, we assume that we have exactly two
different priorities. Also, because the version of HIP/SLEEK
that we have used only has experimental support for arrays,
we encapsulate the lists of tasks that are ready to execute in
a user-defined data node:

data readyTskLists { xList l0; xList l1;}

The data node readyTskLists can be seen as an array with
two lists, l0 and l1. We also provide a function pxReady-
TasksLists that given a priority, returns the corresponding list
of tasks ready to execute. In summary, we model the array
pxReadyTasksLists as a partial function and we assume the
existence of only two priorities.

3.2. On lemmas

User-defined predicates allow expressive descriptions of
data structures with complex invariants. However, we may
want to use properties of the data structures that are not di-
rectly obtained from the user-defined predicates. For example,

from the definition of DLS, the verification system cannot
conclude immediately that two consecutive doubly-linked list
segments can be merged into one doubly-linked list segment.
To overcome this limitation, HIP/SLEEK allows the definition
of lemmas that can be used to relate predicates beyond their
original definitions. We can express lemmas using the reserved
word coercion:

coercion appenddls
DLS(self, pre1, ob2, ib2, n1+ n2, B3)∧B3=union(B1, B2)
←
DLS(self, pre1, ob1, ib1, n1, B1) ∗
DLS(ob1, ib1, ob2, ib2, n2, B2);

This lemma, called appenddls, states that two consecutive
segments (note how ob1 and ib1 match) can be merged
together. This lemma is necessary to verify the function
vListInsertEnd. Another important lemma states that a doubly-
linked list segment of size n can be decomposed into a doubly-
linked list segment of size n−1 followed by a list item (for
n≥2). We call this lemma taildls and define it as:

coercion taildls
DLS(self, prev, ob, ib, n, B) ∧ n≥2
→
DLS(self, prev, ib, nib, n−1, B1) ∗
ib7→xListItem(, nib, ob, c, o) ∧
B = union(B1, {ib});

This lemma is necessary to verify the function vListRemove,
because the function links the element preceding the item to
be removed with the element following it. Since the item to
remove can be preceded by a DLS (as in the second case of
vListRemove’s precondition shown below), we need a lemma
that exposes the last element of the DLS.

3.3. Some examples of verified properties

We now show how some of the desired properties are
verified, by discussing specifications that were successfully
verified by HIP/SLEEK.

Manipulating lists. The scheduler relies on the list API,
so, in order to verify properties of the scheduler, it is required
that we verify first the methods used for manipulating lists.
We have verified all the functions provided by the list API,
but in this section, we only show some relevant functions
together with their specifications. The first of these functions is
vListInitialise, which is used to initialise lists. Using the pred-
icates defined above, its formal specification can be written as
follows:

void vListInitialise(xList pxList)
requires pxList7→xList(, ,)
ensures XLIST(pxList, 0, {})
{ · · · }

The keyword requires refers to the precondition and the
keyword ensures refers to the postcondition. The specifi-
cation expresses that, provided that the argument pxList is
a pointer to an xList structure, the function guarantees that
on termination pxList is of the shape XLIST(pxList, 0, {}).
This simple example is included to illustrate how one aspect
of memory safety is guaranteed: the function guarantees that
the list is properly initialised with no items other than the end
marker (as illustrated in figure 1).

As explained in section 2, function vListInsertEnd is rele-
vant to the way in which the scheduler determines which task
to run next. We can specify it as follows:

void vListInsertEnd(xList pxList,
xListItem pxNewListItem)

requires XLIST(pxList, n, B) ∗
pxNewListItem7→xListItem(, , , , o) ∗
o7→tskTCB(, , pxNewListItem, ,)

ensures XLIST(pxList, n+ 1, B1) ∧
B1 = union({pxNewListItem}, B) ∧
pxList.pxIndex = pxNewListItem;

{ · · · }
The precondition states that the argument pxList has to be
an XLIST of size n with elements given by bag B. The
postcondition assures that, on termination, pxList is an XLIST
of size n+1 and the argument pxNewListItem is the new
element. Moreover, it states that pxList.pxIndex is updated
as expected. Note that by using separating conjunction, the
precondition also states that the new element cannot already
be an element of the list. If we look at the definition of
the function shown in section 2, we see that there are no
restrictions on the item being added to the list. As a result, if
the TCB pointed by the field pxIndex is used as an argument,
the shape of the list is destroyed! Since the list API can be
used by application code, this can be seen as a potential serious
problem. However, if our annotation is included and checked
against all the calls, we can be sure that the problem will never
arise. HIP/SLEEK is quite flexible, so if we want to be more
precise about the shape of the data structures involved, we can
specify vListInsertEnd alternatively as:

void vListInsertEnd(xList pxList,
xListItem pxNewListItem)

requires XLIST(pxList, n, B) ∗
pxNewListItem7→xListItem(, , , , o) ∗
o 7→tskTCB(, , pxNewListItem, ,)

ensures pxList7→xList(n+ 1, pxNewListItem, e) ∗
DLS(e, prev, pxNewListItem, ib, n1, B1) ∗
DLS(pxNewListItem, ib, e, prev, n2, B2) ∧
n = n1+ n2− 2 ∧
union(B, {pxNewListItem}) = union(B1, B2))

{ · · · }

This postcondition states explicitly that pxNewListItem can be
seen as doubly-linked list segment adjacent to the doubly-
linked list segment pxList. We could be even more specific
and state in the postcondition that the TCB pointed by o is
unchanged.

Note that the preconditions above include a reference to a
tskTCB named o that is never used in the postconditions. We
have to include it, because in the last line of the function,
the field pvOwner is dereferenced (see section 2). This can
be seen as another example of memory safety: HIP/SLEEK
cannot verify functions that try to insert a list item with a null
pvOwner field.

Finally, the function vListRemove can be specified as fol-
lows:

void vListRemove(xListItem pxItemToRemove)
requires c7→xList(n, pxItemToRemove, e) ∗

DLS(e, prev, pxItemToRemove, ib1, n1, B1) ∗
DLS(pxItemToRemove, ib1, e, prev, n2, B2) ∧
n = n1+ n2− 1

or c7→xList(n, p, e) ∗ DLS(e, prev, p, ib1, n1, B1) ∗
DLS(p, ib1, pxItemToRemove, ib2, n2, B2) ∗
DLS(pxItemToRemove, ib2, e, prev, n3, B3) ∧
n = n1+ n2+ n3− 1

ensures XLIST(c, n− 1,) ∗
pxItemToRemove7→xListItem(, , , ,);

{ · · · }

The cases in the precondition arise because the item to be
removed can be the one pointed by the field pxIndex. The
postcondition guarantees that the size of the list is decreased
and that the list and the item to remove reside in separate parts
of memory.

Picking the next task. The function shown in figure 3
is where the task that runs next is selected. It can be specified
as follows:

void list GET OWNER OF NEXT ENTRY(ref tskTCB pxTCB,
xList pxList)

requires XLIST(pxList, , B)
ensures XLIST(pxList, , B) ∗

pxTCB′ 7→tskTCB(, , gli, ,) ∧ gli ∈ B
{ · · · }

The primed variable pxTCB′ denotes the value of the pointer
pxTCB after execution of the function. The specification ex-
presses that given an argument list pxList with the tasks
contained in the bag B, the return value pxTCB′ is guaranteed to
be a task that is in the bag B. The field gli in the specification
refers to the xListItem field that is used to place a TCB in a list
(as mentioned before in section 2). This is another example of
memory safety certification: the pointer to the task chosen by
the scheduler to execute next will certainly point to a task in
the list of tasks ready to execute and will never point to the
end marker.

Although list GET OWNER OF NEXT ENTRY is the
function responsible for the change of the running TCB, it is
called by the function vTaskSwitchContext, which is executed
after each clock tick. Assuming that l0 and l1 are lists of
tasks ready to execute with priorities 0 and 1, respectively, we
can specify vTaskSwitchContext as:
The specification states that if the highest priority of the tasks
ready to execute is 0 (i.e., uxTopReadyPriority is 0), then the
list that is chosen is l0. Otherwise, l1 is chosen. It has to
be said that to simplify the verification, we have changed the

xList vTaskSwitchContext()
requires rtl7→readyTskLists(l0, l1) ∗

XLIST(l0, ,) ∗ XLIST(l1, ,) ∧
uxTopReadyPriority = 0

ensures res = l0
requires rtl7→readyTskLists(l0, l1) ∗

XLIST(l0, ,) ∗ XLIST(l1, ,) ∧
uxTopReadyPriority = 1

ensures res = l1
{ · · · }

function to return the list that is chosen; in the original code,
the type of the function is void.

Adding new tasks. The function used to add new tasks to
the list of tasks ready to execute is prvAddTaskToReadyQueue,
which can be specified as follows:

void prvAddTaskToReadyQueue(ref tskTCB pxTCB)
requires pxTCB7→tskTCB(, , gli, , 0) ∗

gli7→xListItem(, , , , pxTCB) ∗
rtl7→readyTskLists(l0, l1) ∗
XLIST(l0, ,) ∗ XLIST(l1, ,)

ensures DLS(gli, ib, e, prev, ,) ∗
l07→xList(, gli, e) ∗
DLS(e, prev, gli, ib, ,) ∧
uxTopReadyPriority′≥0

requires pxTCB7→tskTCB(, , gli, , 1) ∗
gli7→xListItem(, , , , pxTCB) ∗
rtl7→readyTskLists(l0, l1) ∗
XLIST(l0, ,) ∗ XLIST(l1, ,)

ensures DLS(gli, ib, e, prev, ,) ∗
l17→xList(, gli, e) ∗
DLS(e, prev, gli, ib, ,) ∧
uxTopReadyPriority′≥1

{ · · · }

The specification states that the TCB is added to the list
associated with its priority and the global variable uxTo-
pReadyPriority is updated accordingly.

Removing tasks. As explained before, the scheduler uses
vListRemove to remove a task from the list of tasks ready to
execute. This function is described above.

4. Related Work

Much work has been done on the verification of operating
systems; see [10] for an overview on the topic. Here, we focus
on RTOSs, on separation logic, and on FreeRTOS. Verification
of RTOSs has been identified as one of the grand challenges
in software verification [5]. A number of tools have been
developed to verify real system tools. A notable project on
verification of RTOSs is ASTRÉE [11], which proves no run-
time error in the electric flight-control code for the A380.
ASTRÉE detects numeric error and overflows, but with the
restriction that no dynamic memory allocation is in the pro-
gram code. Other tools, like SLAM [12] and BLAST [13], have
been used to ensure that device drivers satisfy the requirement
of system APIs. However, these tools do not handle memory
safety properties. Various other RTOSs claim to be formally

verified, such as OpenComRTOS has been verified by Verhulst
et al. [14]. Baumann et al. [15] uses deductive techniques to
verify the correctness of the PikeOS system. However, these
works only focus on the functional correctness of the systems,
but not the memory safety properties.

Separation logic has been adopted by a number of tools to
verify the memory safety of system code, such as SMALL-
FOOT [16], SPACEINVADER [17] and THOR [18]. However,
most of these tools support only a limited set of predicates,
which limits the capability to verify the full functional cor-
rectness of system code. Finally, a closely related work in
progress is reported in [19], where the authors discuss different
approaches that can be used to verify FreeRTOS. Particularly
relevant is their use of Verifast [20], a verification system based
on separation logic. Although they do not present any details or
annotations, it would be interesting, as future work, to compare
their annotations with ours.

5. Concluding Remarks

This paper shows how the combination of shape and nu-
merical information can be used to specify and verify the
scheduler of FreeRTOS. The results confirm that HIP/SLEEK
can indeed be used to automatically verify important properties
of production code. To the best of our knowledge, this is the
first code-level verification of memory safety and functional
correctness properties of the FreeRTOS scheduler. Since the
properties that we verify are quite general, we envisage that
the same approach can be adopted to verify the scheduler of
other operating systems.

5.1. Future Work

A direction that we want to pursuit is related with inference
and scalability. Although the specifications written so far
have been supplied by us, recent developments [21], [22] in
HIP/SLEEK will allow the automatic inference of properties,
making our approach more scalable.

A challenge that we foresee is extending HIP/SLEEK to sup-
port overlaid structures [23], which are structures that contain
nodes for multiple data structures and these links are intended
to be used at the same time. For example, in FreeRTOS, a
task can be simultaneously in two lists and when it is removed
from one of them, it also has to be removed from the other
(an example is the function xTaskRemoveFromEventList).

Finally, as we verify other components of FreeRTOS, we
will certainly gain more in-depth knowledge about the system.
This means that specifications will possibly be refined and
improved. By tackling some of these challenges, we hope to
develop new theory results and to extend HIP/SLEEK.

Acknowledgements

We would like to thank the anonymous reviewers, who
provided valuable feedback. This work was supported by the
EPSRC Project EP/G042322.
References

[1] “The SafeRTOSTM project website,” URL: http://www.freertos.org/
safertos.html.

[2] T. Hoare, “The verifying compiler: A grand challenge for computing
research,” J. ACM, vol. 50, 2003.

[3] C. Jones, P. O’Hearn, and J. Woodcock, “Verified software: A grand
challenge,” Computer, vol. 39, 2006.

[4] “The FreeRTOSTM project website,” URL: http://www.freertos.org.
[5] J. Woodcock, “Grand challenge in software verification,” in SBMF, 2008.
[6] J. C. Reynolds, “Separation logic: A logic for shared mutable data

structures,” in LICS, 2002.
[7] H. H. Nguyen, C. David, S. Qin, and W.-N. Chin, “Automated veri-

fication of shape and size properties via separation logic,” in VMCAI,
2007.

[8] W.-N. Chin, C. David, H. H. Nguyen, and S. Qin, “Automated veri-
fication of shape, size and bag properties via user-defined predicates
in separation logic,” Science of Computer Programming, vol. In Press,
2010.

[9] N. Klarlund and A. Møller, MONA Version 1.4 User Manual, 2001.
[10] G. Klein, “Operating system verificationan overview,” Sadhana, vol. 34,

pp. 27–69, 2009, 10.1007/s12046-009-0002-4. [Online]. Available:
http://dx.doi.org/10.1007/s12046-009-0002-4

[11] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival, “A static analyzer for large safety-critical
software,” in PLDI, 2003.

[12] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey,
B. Ondrusek, S. K. Rajamani, and A. Ustuner, “Thorough static analysis
of device drivers,” in EuroSys, 2006.

[13] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan, “Abstrac-
tions from proofs,” in POPL, 2004.

[14] B. H. C. Sputh, O. Faust, E. Verhulst, and V. Mezhuyev, “Opencomrtos:
A runtime environment for interacting entities,” in CPA, 2009.

[15] C. Baumann, B. Beckert, H. Blasum, and T. Bormer, “Formal verification
of a microkernel used in dependable software systems,” in SAFECOMP,
2009.

[16] J. Berdine, C. Calcagno, and P. W. O’Hearn, “Smallfoot: Modular
automatic assertion checking with separation logic,” in FMCO, 2005.

[17] H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and
P. W. O’Hearn, “Scalable shape analysis for systems code,” in CAV,
2008.

[18] S. Magill, M.-H. Tsai, P. Lee, and Y.-K. Tsay, “Thor: A tool for
reasoning about shape and arithmetic,” in CAV, 2008.

[19] J. T. Mühlberg and F. Leo, “Verifying freertos: from requirements to
binary code,” in 11th International Workshop on Automated Verification
of Critical Systems (AVoCS), vol. CS-TR-1272. Newcastle University,
September 2011. [Online]. Available: https://lirias.kuleuven.be/handle/
123456789/333258

[20] B. Jacobs, J. Smans, and F. Piessens, “A quick tour of the verifast
program verifier,” in APLAS, ser. Lecture Notes in Computer Science,
K. Ueda, Ed., vol. 6461. Springer, 2010, pp. 304–311.

[21] S. Qin, G. He, C. Luo, and W.-N. Chin, “Loop invariant synthesis in a
combined domain,” in ICFEM, 2010.

[22] S. Qin, C. Luo, W.-N. Chin, and G. He, “Automatically refining partial
specifications for program verification,” in FM, 2011.

[23] O. Lee, H. Yang, and R. Petersen, “Program analysis for overlaid data
structures,” in CAV, 2011.

