
Taming Hot-Spots in DHT Inverted Indexes

Nuno Lopes∗
CCTC-Department of Informatics

University of Minho
Braga, Portugal

nuno.lopes@di.uminho.pt

Carlos Baquero
CCTC-Department of Informatics

University of Minho
Braga, Portugal

cbm@di.uminho.pt

ABSTRACT
DHT systems are structured overlay networks capable of using
P2P resources as a scalable platform for very large data storage
applications. However, their efficiency expects a level of uni-
formity in the association of data to index keys that is often
not present in inverted indexes. Index data tends to follow non-
uniform distributions, often power law distributions, creating in-
tense local storage hotspots and network bottlenecks on specific
hosts. Current techniques like caching cannot, alone, cope with
this issue.

We propose a new distributed data structure based on a decen-

tralized balanced tree to balance storage data and network load

more uniformly across all hosts. The approach is stackable with

standard DHTs and ensures that the DHT storage subsystem re-

ceives an uniform load by assigning fixed sized, or low variance,

blocks.

1. INTRODUCTION
Distributed Hash Tables (DHTs) are structured overlay

networks capable of efficiently storing and locating objects
from a given key. Systems like Chord, Pastry and CAN [20,
18, 16] allow scalability in the number of hosts, requiring
only logarithmic communication steps and routing state. A
hash function is used to uniformly distribute keys to hosts
so that key load is balanced.

This perfect distribution has two intrinsic assumptions:
Keys are uniformly accessed, both in storage and retrieval;
The size of the tuples 〈key, object〉 depict a low variance.
However, these assumptions are often not possible. This
is the case when building term-partitioned inverted indexes
over DHTs [13, 17, 22], where words are mapped to the
locations of the documents where they occur.

Hot spots created by data or query asymmetries will oc-
cur due to the power-law distribution of text keyword fre-
quency [25]. When a single key is accessed very often (e.g.
“Katrina”), a network bottleneck appears on the host stor-
ing that key. This situation known as “query flash crowd”

∗Supported by a Ph.D. Scholarship from FCT - Foundation
of Science and Technology, the Portuguese Research Agency.

Copyright is held by author/owners.
ACM SIGIR Workshop on Large Scale Distributed Systems for
Information Retrieval ’07, Amsterdam, The Netherlands.

can be minimized with caching schemes [19, 14]. On the
other hand, storage hotspots occur when very large objects
of skewed size are stored on individual DHT keys (e.g. the
occurrence set for the word “the”). Although storage is
often not a critical resource, due to the current trend on
secondary storage capacity, storing such large objects cre-
ates an additional network bottleneck on the hosts mapping
these keys. These network bottlenecks limit the scalabil-
ity of term-partitioned indexes [1] and cannot be eliminated
by caching, as caching is effective only when reading data
and not when new data is being inserted into the system.
Furthermore, solutions that dynamically redistribute keys
across hosts [10, 15] are also unable to eliminate the storage
hotspots because the storage unbalance is due to a single
key containing a very large object.

In this paper we propose a solution for load balancing
DHTs when storing (decomposable) objects with high size
variance. We developed a new DEcentralized Balanced tree
(DEB) tree algorithm capable of converting a very large ob-
ject into multiple bounded size blocks suited for being stored
and searched as objects over DHTs. We used the DEB al-
gorithm to build a textual inverted index, allowing multiple
keys retrieval. The system evaluation shows expressive im-
provements in the storage and network load distribution, for
both index population operations and data retrieval.

Our paper is organized as follows: Section 2 shows an
overview of the system interfaces, Section 3 describes the
DEB tree algorithm and Section 4 the text indexing sys-
tem. Section 5 shows our evaluation results, and Section 6
presents the related work and is followed by the Conclusions.

2. SYSTEM OVERVIEW
The system provides an inverted index interface to user

applications and stores the index on a structured P2P over-
lay that is implemented by a DHT algorithm. The system
architecture, depicted in Figure 1, is composed by the index
layer that presents an inverted index interface to client ap-
plications, the tree management layer that implements our
distributed balanced tree algorithm and the routing layer
(the DHT algorithm) responsible for routing messages be-
tween hosts. The index layer receives requests from client
applications and converts them into tree based operations
to be executed by the tree layer. In turn, the tree layer
uses the routing layer to locate the tree block that should
process the operation. Tree blocks are stored on the P2P
sub-system.

2.1 Index Model

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634246?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

KBR

Block Layer

Index Layer

Route(key, msg)

Network

Insert(tree block, item)

Client Application

Insert(keyword, doc_loc)

KBR

Block Layer

Deliver(key, msg)

Data

Figure 1: The system is built with a base DHT over-
lay network for managing hosts membership in a
scalable way. Each host of the system contains three
components: a key-based routing (KBR) layer, the
block storage module and the client index interface.

• insert (keyword, doc loc): status

• remove (keyword, doc loc): status

• search (keywordset): doc locset

(a) Index Layer Interface

• block-item-insert(key,item):status

• block-item-remove(key,item):status

• block-get(key):block

(b) Block Layer Interface

Figure 2: Layered Interface.

A textual inverted index stores relations between text
words (the vocabulary) and sets of document locations (the
occurrences) [2] in the form:

keyword 7→ {document location}SET .

Since a single keyword can occur on multiple documents, we
store a set of document locations for each keyword. Docu-
ment locations are just single opaque objects capable of lo-
cating a document over the system. The pair 〈host address,
docIdlocal〉 is an example of a simple location scheme. Other
location schemes could be used, like an URL link or the
document content hash value, provided the retrieval of the
document is possible from the location value [13, 21].

The index is made accessible to system peers through the
interface on Figure 2(a). User applications, in any given
node, contact the local index library through this interface.
The index insert operation adds a new relation between
a keyword and a document. Likewise, remove cancels an
association. The index search operation retrieves the list of
documents associated with a keyword or a set of keywords.

We only considered the and Boolean operator for multiple
keyword queries, although the remaining Boolean operators
could also be implemented [2].

2.2 DHT Interface

The DEB Tree implementation uses a custom DHT inter-
face that substitutes the typical get/put interface. These
operations, shown in Figure 2(b) allow a fine grain manip-
ulation of the data object associated to a given key. Here
the object has a Set structure and the operations allow the
insertion and removal of individual items. Otherwise, if the
usual get/put operations were used, latency would double
and consistency problems could arise due to lack of atomic-
ity in get,put sequences [4].

The actual custom DHT interface is slightly richer, in or-
der to support other needed operations which are best per-
formed on the node that hosts the block. Their implementa-
tion does not present additional difficulties once a Key Based
Routing interface is available, ROUTE(key, message), which
is the case for all DHT implementations [6].

3. DEB TREE LAYER
We will now describe our DEB tree implementation. This

tree algorithm was based on the B+-tree design [5] and
shares the high-availability requirements present on B-link
trees [9]. However, unlike the B-link tree algorithm which
was designed for a cluster based architecture with global sys-
tem view and centralized environment, our algorithm was
designed for being deployed on wide-area systems requiring
neither global knowledge nor centralized entities.

The DEB-tree algorithm supports a mapping interface for
〈key, value〉 tuples, just like the B+-tree, storing document
locations (the key) and opaque payloads (the value). In this
paper only document locations were used, hence the absence
of a value payload on the block insert operation (see Figure
2(b)). Each DEB tree instance stores the document location
set for a particular keyword. Therefore, each index keyword
will have an unique DEB tree.

3.1 Tree Structure
The tree structure, just like in the B+-tree design, is com-

posed by a root block and child blocks, the last level of
blocks (further away from the root) are called leaf blocks.
Leaf blocks store data items and are all at the same tree
level (any leaf is accessed from the root block with the same
number of block hops). Internal blocks serve exclusively for
locating leaf blocks and do not contain any data, instead
they contain child block keys.

All blocks contain a parent’s field with the key to the
upper level block. To improve availability, each block also
stores the key to the next sibling block, following the B-link
design.

The number of items in any block is bounded by the tree’s
degree t which defines the minimum (t − 1) and maximum
(2t−1) number of elements allowed inside a block [5]. For in-
ternal blocks the degree influences the number of child block
keys it contains. For leaf blocks it influences the number of
document locations the block stores.

In addition to the previous fields, each block contains the
minimum and maximum limits, representing the interval of
data, in terms of key ids, the block is responsible for. The
root block has the whole key interval, covering all data. The
sum of intervals at each tree level also covers the whole in-
terval, and in a given level all intervals are disjoint.

3.2 Block Identification Scheme
Each tree block is identified by an unique key and stored

on the DHT using the hash value of it’s key. Since we store
all tree blocks under the same name space, the DHT hash
domain, we must ensure all blocks will have an unique iden-
tification.

Decentralized generation of (probabilistic) unique block
ids is made by hashing a globally unique triplet that con-
sists of 〈keyword, level, minlimit〉. Notice that each stored
keyword (See index interface) gives rise to a distinct tree,
and that all blocks in that tree will depict a distinct level
number and minimum key limit on their local key range.

3.3 Tree Layer Algorithms
When client applications, in a node, request operations at

the index interface the respective algorithms are executed
and, possibly, tree management algorithms are triggered.
These last algorithms are responsible for splitting or merging
blocks.

Index interface operations are decomposed into one or
more DHT block operations. These operations are issued
from the node hosting the client application. On the con-
trary, tree management operations are triggered and issued
in the node hosting the block that needs splitting or merg-
ing.

All these algorithms are made tolerant to concurrency is-
sues on what concerns structural integrity of the tree and
the stored data. To achieve this, some item insert opera-
tions may be delayed. Notice that inserts can even be made
to timeout and be repeated, since the insert operation is
idempotent.

An index search operation that covers data modified by
a concurrent insert may, or may not, see the effect of the
insert. However, once an insert completes on a client host,
subsequent searches in that host or in any other host will
see the insertion if the data is covered by the search.

This is achieved even in the presence of caching, since the
algorithms only cache internal blocks, and these only contain
references to other blocks. Stale information only enacts a
performance penalty.

3.4 Data Resilience and Structural Repair
Basic resilience to host failures and churn should be pro-

vided by the underlying DHT algorithm. In particular it is
desirable to use DHT solutions, like [14], that replicate more
intensively blocks that are subject to more activity.

However, even in the event of a fault that is not masked
by the DHT layer it is possible to recover the structural
integrity of the tree by making use of the redundancy in the
structure. The loss of an internal block does not remove
relevant data from the tree. Faults at the leafs, however,
lead to lost association between keys and locations. The lost
data in this case can only be recovered by re-announcing at
the clients.

4. INVERTED INDEX OPERATIONS
The index operations amount to inserting references and

searching for keywords. These operations are available at
the client’s host and issue multiple block requests through
the DHT to accomplish the initial index operation.

4.1 Document Insertion
For indexing a document into the system, peer clients use

the insert (keyword , doc location) function, which adds a
document location to a keyword occurrence set. Since the

procedure insert (keyword, doc-location):
1: blk-key ← getRootBlockKey (word)
2: route (blk-key,〈 insert, doc-location〉)
3: answer ← wait for returning message
4: while answer 6= ’ack’:
5: blk-key ← get forward block from answer
6: route (blk-key,〈insert, item〉)
7: answer ← wait for returning message
8: end while

(a) Client side index insertion

procedure insert-block (block, item):
1: if leaf(block):
2: insert(block,item)
3: ret message 〈ack〉
4: else:
5: ret message 〈forward, successor(block, item)〉
6: endif

(b) Block side index insertion

Figure 3: Simple pseudo-code for the index insertion
procedure.

occurrence set is stored on a DEB tree instance, one tree
per keyword, this is to say the document location will be
inserted into the corresponding DEB tree. The client must
call the insert function for every 〈keyword , doc location〉
pair it wishes to index.

Tree insertion is made first by locating the block respon-
sible for storing the item and then by inserting it on the
block’s data. If the tree only contains a single block, the
root block, then the operation finishes after accessing this
block. For bigger trees, the client starts at the root block
and follows child block references until reaching the correct
leaf block. The operation terminates after receiving the ac-
knowledgment of the insertion from the leaf. Figure 3(a)
shows simple pseudo-code for the insertion operation on the
client index side. Removing an index occurrence works in
the same way as for the insertion case.

Inserting a document location on a keyword occurrence set
requires the insertion of an item on the keyword set tree. In-
serting an item on a B-Tree with I items uses O(log I) block
accesses, which corresponds to the tree height [5]. Each
block access is made by the client host using the ROUTE
function supplied by the DHT algorithm, which in turn uses
O(f(N)) messages to locate the host for a key, having f as
the lookup cost function on the DHT (typically the loga-
rithmic function). The number of messages used to insert
an index occurrence on a system will grow O(log I · f(N))
for N hosts. Since some DHT implementations only require
O(1) steps to locate a key [8, 14], this results in O(log I)
complexity. Common DHT algorithms provide a logarith-
mic cost and therefore will use O(log I · log N) messages.

If a client’s local cache is used for caching top level tree
blocks, the client can access the target leaf block directly
for insertion, reducing the complexity even further to O(1 ·
f(N)) for inserting a single reference onto the index.

4.2 Multiple Keyword Search
Queries in this index system follow a multiple keyword

intersection model, using the and Boolean Query operator
for returning the set of document locations that are common
to all the query keywords. To perform this intersection, the
client would need to fetch all the occurrence sets and then
perform a local intersection on the fetched data to determine
the final result set.

This simple solution is clearly not optimal. Fetching a
complete large occurrence set uses network bandwidth to
retrieve data that may not be necessary to effectively answer
the query. Remember that each keyword occurrence set is
stored under a different DEB tree instance.

We opted for an incremental intersection evaluation that
makes a parallel breadth-first traversal of all the trees simul-
taneously. The use of an incremental evaluation enables the
use of two optimization techniques to considerably reduce
the query network bandwidth: early-pruning and term re-
ordering. The early-pruning heuristic was inspired by the
adaptive set intersection algorithm suggested by Li et al.
[11] to minimize data exchange when evaluating set inter-
sections. The heuristic prunes tree sub-branches according
to the rule that intersecting an empty set with any set will
always be empty. By selecting the branches of large trees to
visit according to items already found on smaller trees, and
pruning the remaining branches, the heuristic reduces the
number of visited blocks without affecting the operation’s
correction.

Term re-ordering is a database optimization that consists
in accessing the intersection sets in order from the smallest
to the largest so that the amount of exchanged data is re-
duced to the minimum. The re-ordering was implemented
by accessing first the root blocks of smaller trees. The size
of each keyword set was locally determined by the tree’s
height, which is available at the root blocks.

A single keyword query retrieval requires a tree vertical
traversal until reaching the leaf level and then a linear leaf
block traversal. Just like in the insertion case, a vertical
traversal uses O(log I) block accesses and the leaf level grows
with the number of items in the set O(I), so that the total
cost of the operation will be O(I) on the number of items.
Since each block access requires O(f(N)) host messages, the
total number of messages on the system will be O(f(N) ·
I)). Assuming an O(1) hop DHT is used, a single keyword
retrieval requires O(I) messages.

The number of stored items I follows a power-law distri-
bution on the number of documents. The value of I depends
therefore on the popularity of the keyword. For a few very
popular keywords (in storage frequency), I grows linearly
with the number of documents. For the remaining keywords
it tends to be constant towards the number of documents.

The previous complexity limit assumes that a multi-key-
word query uses multiple independent single keyword re-
trievals. The search optimizations described previously re-
duce the total number of retrieved items significantly, bring-
ing the query cost, in terms of number of retrieved items,
closer to the number of common items instead of the total
number of stored items for all keywords in the query.

5. SYSTEM EVALUATION
We will now evaluate the DEB tree index on a textual

document collection. Document reference insertion and key-

word search will be tested. The evaluation focuses on the
load balance properties of the solution when compared to
the equivalent linear DHT mapping, considering both stor-
age and network resources.

5.1 Setup
Our DEB tree implementation was deployed on a cus-

tom made discrete event simulator implementing a simpli-
fied SSF framework written in Python. The communication
between hosts and DHT message routing, were simulated.
Although our experiments ran over this network simulated
environment, the algorithm implementation is made of ac-
tual code and could be placed on top of a real DHT system
for deployment. In this article, we opted for the simulation
model to test the algorithm under a controlled environment
with a larger number of hosts.

5.2 Index Insertion
The simulation of the insertion procedure consisted in

1000 hosts concurrently inserting word references, in doc-
uments, into the distributed index. Each host was given 10
unique documents to insert. Each document was a newspa-
per article, with an average size of 3Kb. As expected, this
dataset depicts a Zipf distribution, with a few high rank
words present in most of the documents.

We evaluated the algorithm performance by varying the
tree’s block size value. We used a very large block size
(shown as +∞) to represent the case of a direct mapping of
the index on the DHT [13, 7, 17]. This infinite block will
never be full and consequently never split, creating exclu-
sively single root block trees. The other sizes represent the
block maximum size for each simulation.

We will now look at the effective load each host received.
We assumed a perfect mapping between blocks and hosts.
First, we calculated the hash value of the block’s key. Then,
we assigned a host to the block giving it’s hash value. Each
host received an equal size share of the hash domain. This
allocation overcomes the absence of an actual DHT sub-
strate, but the incurred simplification matches the behavior
of an actual DHT with a reasonable number of hosts. It is
asymptotically correct.

Figure 4 shows how the storage load distributes, with dif-
ferent block sizes. The infinite block size case shows the less
uniform distribution. On the other side, the smaller block
sizes show an almost perfect load distribution. However,
very small sizes tend to over-split trees, creating excessive
internal blocks and increasing the total load on the system.
This is the case of the tree with block size 4. A block size of
32 shows an adequate trade-off, and is appropriate to ensure
a mostly uniform storage load distribution from an highly
skewed dataset.

It is also relevant to analyze how the network load is dis-
tributed during insertions. We can expect that root blocks
of popular words will have a high demand. The algorithm
uses block caches to control this demand.

Figure 5 shows that without caching, smaller blocks have
a negative impact as they lead to larger trees and more split
operations, increasing the overall message load. This situa-
tion would not be adequate.

The same figure shows the results of the same insertion
procedure with client cache enabled on hosts. As expected,
the variation between the minimum and maximum loaded
hosts has decreased significantly for any block size. The

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

+oo 256 128 64 32 16 8 4

S
to

re
d

In
de

x
Ite

m
s

(p
er

 H
os

t)

Block Size

1st pct, avg, 99th pct

Figure 4: Storage load when inserting. Showing aver-
ages, 1st and 99th percentiles.

 0

 5000

 10000

 15000

 20000

 25000

+oo 256 128 64 32 16 8 4

In
se

rt
io

n
M

es
sa

ge
s

R
ec

ei
ve

d
(p

er
 H

os
t)

Block Size

nocache
refcache

Figure 5: Message load when inserting. Showing aver-
ages, 1st and 99th percentiles.

Block size +oo 256 128 64
No cache 2799 3947 4270 4793
Cache 2799 3264 3503 3784

Block size 32 16 8 4
No cache 5487 6588 8312 11384
Cache 4183 4864 5972 7955

Figure 6: Average Insertion Messages Received per
Host

simulation with the very large block size, containing only
single root block trees, is identical to the previous simulation
without cache because cache only acts on internal blocks.
As block sizes get smaller, caching reduces the extra load
caused by accessing the top level blocks on larger trees. As
a consequence the network load is better distributed across
hosts. A block size of 32 would also be an adequate choice,
on what concerns data insertion. Table 6 summarizes the
average number of insertion messages received per host for
different block sizes, with and without cache, found in Figure
5.

5.3 Index Searching
The index searching procedure starts from a fully loaded

index. A single host processes a list of multiword search
queries. We generated 20000 queries with a multiple key-
word distribution from the original text collection. Search
keywords follow a Zipf distribution but the rank order was
randomized, so that popular keywords are distinct in searches
and insertions. The Zipf distribution for generating individ-
ual search terms does not consider the correlation between
keywords found in real multi-term query traces. We plan
as future work to run the same evaluation of the algorithm
using a corpus with real query logs.

We measured the index search load by counting the num-
ber of index items replied to the caller. Index items corre-
spond to document locations when accessing leaf blocks and
correspond to children block limits when accessing internal
blocks. We assumed that document locations (and block
limits) have a constant or small variation size in bytes.

We will first show the impact of our query optimizations

on the system bandwidth. Figure 7 shows the cumulative
distribution function (CDF) of the number of block requests
(messages) received at hosts, according to the query opti-
mizations used for a block size of 32 items. The worst result
appears on the basic incremental method (label inc) , which
traverses all trees in a breadth-first order. It is followed by
the early-pruning method (label early) which improves the
basic incremental method by stopping the retrieval of fur-
ther blocks that cannot contribute to the final result set.
We improve further by adding a keyword term reordering
(label sort-loc) that starts by accessing smaller trees first
and leaving larger trees to the end. This term reordering
works in conjunction with early-pruning to interrupt block
retrieval as soon as the final result set can be computed.

The term reordering method was originally developed for
local knowledge, so we also simulated a variation (label
sort-glob) that supplied the client with the global index
keyword frequency. This experiment allowed us to deter-
mine the maximum possible gain from using this heuristic,
although it cannot be used in real systems.

We implemented the reference cache procedure over the
local term re-ordering heuristic (label sort-loc-cache). When
comparing it to the same query method without cache in
Fig. 7 (label sort-loc), one observes that although cache
reduced the overall load, it was only marginally. This per-
formance can be explained by noticing that cache was op-
erating only on internal blocks, having no effect on leaf ac-
cesses. Since leafs are not cached, the hosts storing leaf block
data for popular keywords are overloaded with requests and
hence the high number of messages received at some hosts.
A query “flash crowd” on leaf blocks could be handled di-
rectly by the DHT layer [14].

Having established that the best usable heuristic is the one
depicted by sort-loc-cache, we now proceed to analyze the
impact of different block sizes. Figure 8 shows, in log scale,
for various blocks sizes, the number of items that are sent
by hosts in response to the generated query load.

Although smaller block sizes will lead to more messages,
on what concerns the number of items sent (in a sense, the
bandwidth) smaller blocks are better. Because the block
size is smaller, each block request causes a smaller impact
on the network load of each host (the quantity of data items

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000 7000

H
os

ts
 (

%
)

Block Requests

inc
early

sort-loc
sort-loc-cache

sort-glob

Figure 7: A cumulative distribution function (CDF) of
the number of block requests (messages received) on
hosts for the different searching methods with a block
size of 32 items.

 100

 1000

 10000

 100000

 1e+06

 1e+07

+oo 256 128 64 32

In
de

x
Ite

m
s

S
en

t (
pe

r
H

os
t)

Block Size

1st,avg,99th

Figure 8: The network load distribution (the 1st per-
centile, average and 99th percentile on the quantity of
index items replied to the client) on hosts. The vertical
axis is in logarithmic scale.

transmitted back to the client). This figure also shows that
the DEB Tree algorithm uses less network bandwidth on
average and with a more uniform distribution across hosts,
when executing the same query data set when compared to
the direct DHT mapping.

6. RELATED WORK
The related work is separated in two major groups: key-

word based and range-query searching algorithms. On key-
word search systems the distributed index is either local
to each host (partition-by-document) or shared among all
hosts (partition-by-keyword) [11]. Overcite [21], a P2P im-
plementation of the Citeseer system with keyword searching,
uses a partition-by-document design for their index, requir-
ing clients to search simultaneously on all hosts (or clusters)
where each one maintains a local index. Our algorithm as-
sumes a partition-by-keyword design where clients contact
the host (or hosts) responsible for a specific keyword on the
global index.

Previous work on partition-by-keyword indexing stores
the index directly on the DHT and does not handle the
storage hotspot problem we have identified [13, 7, 17]. Tang
and Dwarkadas [22] proposed a constant factor balancing
to deal with the storage hotspot. Our algorithm adapts
dynamically to the object size, ensuring always an uniform
storage distribution despite the object size variation. All the
previous systems can use our algorithm as a middle layer for
storing large posting lists as smaller bounded size pieces.

Range-query based systems create structures that enable
the search by range limits instead of discrete values. Mer-
cury uses multiple independent rings of peers (based on
chord) to support multiple attribute range queries [3]. Brush-
wood creates a distributed tree using the Skip Graph rout-
ing algorithm to store data with locality properties [23]. The
DEB-tree algorithm can be used with any DHT algorithm
through the basic routing interface and just like the previ-
ous, it can also support range-queries [12].

An additional class of algorithms was designed to run
over generic DHT systems. Those algorithms offer range-
query functionality by constructing tree based structures.

Chawathe et al. proposed the use of a Prefix Hash Tree
(PHT) for for storing (x, y) coordinates of wireless access
points [4]. Zheng et al. presented a Distributed Segment
Tree (DST) algorithm with similar functionality but using a
static load balancing technique [24]. The Deb-tree algorithm
shares with the previous systems it’s tree based structure
over a generic DHT. It differs, however, by using a structure
that adapts dynamically to data, resulting in a perfectly
balanced tree.

7. CONCLUSIONS
Although research in DHT systems is still recent, these

systems have already proven their important role in the sup-
port of scalable distributed data store solutions. However,
their promise of a fair load distribution is only met when
we just consider the allocation of keys to host nodes. If a
key is often accessed or if it holds a huge data object, the
associated host no longer receives a fit load. This is often
the case in real datasets and in particular when constructing
indexes. The world is more often governed by power-laws
than by uniform distributions.

In this article we bring attention to this issue and present
a system that adapts classical and proven techniques, Bal-
anced Trees, to a demanding distributed setting where the
technique can be used to solve the aforementioned problem.
Unlike other solutions, we do not redesign from scratch, but
instead use a simple adaptation over off-the-shelf DHTs and
hopefully benefit from the large amount of research that fo-
cused on efficient DHT designs.

We evaluated our algorithm on a concurrent simulated
environment with a textual reverse index, a highly skewed
dataset, to illustrate it’s load balancing properties on both
storage and network resources.

The results show that the algorithm is capable of balanc-
ing storage load perfectly and reducing the network load
variation by half when compared to a direct DHT use when
inserting data into the index.

Querying the index also revealed a more uniform net-
work load distribution, reducing the standard deviation from
three orders of magnitude to one, when comparing our query

optimized algorithm to the direct DHT case.

Acknowledgments
The authors wish to acknowledge Sylvia Ratnasamy and
Rodrigo Rodrigues from the Eurosys Doctoral Symposium
and the anonymous reviewers for their comments.

8. REFERENCES
[1] R. Baeza-Yates, C. Castillo, F. Junqueira,

V. Plachouras, and F. Silvestri. Challenges on
distributed web retrieval. In IEEE 23rd International
Conference on Data Engineering, April 2007. Invited
Speaker.

[2] R. Baeza-Yates and B. Ribeiro-Neto. Modern
Information Retrieval. ACM Press, NewYork, 1999.

[3] A. Bharambe, M. Agrawal, and S. Seshan. Mercury:
Supporting scalable multi-attribute range queries. In
Proceedings of SIGCOMM 2004, August 2004.

[4] Y. Chawathe, S. Ramabhadran, S. Ratnasamy,
A. LaMarca, J. Hellerstein, and S. Shenker. A case
study in building layered dht applications. In
Proceedings of the ACM SIGCOMM’05 Conference,
pages 97 – 108, 2005.

[5] T. Cormen, C. Leiserson, and R. Rivest. Introduction
to Algorithms. MIT Press, 1989.

[6] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and
I. Stoica. Towards a common api for structured
peer-to-peer overlays. In Proceedings of the 2nd
International Workshop on Peer-to-Peer Systems
(IPTPS’03), Berkeley, USA, February 2003.

[7] O. Gnawali. A keyword-set search system for
peer-to-peer networks. Master’s thesis, Massachusetts
Institute of Technology, May 2002.

[8] A. Gupta, B. Liskov, and R. Rodrigues. Efficient
routing for peer-to-peer overlays. In Proceedings of the
1st Symposium on Networked Systems Design and
Implementation (NSDI’04), pages 113–126, March
2004.

[9] T. Johnson and P. Krishna. Lazy updates for
distributed data structures. In Proceedings of the 1993
ACM SIGMOD international conference on
Management of data, 1993.

[10] D. Karger and M. Ruhl. Simple efficient load
balancing algorithms for peer-to-peer systems. In
Proceedings of the 2nd International Workshop on
Peer-to-Peer Systems (IPTPS’03), Berkeley, CA,
USA, February 2003.

[11] J. Li, B. Loo, J. Hellerstein, M. Kaashoek, D. Karger,
and R. Morris. On the feasibility of peer-to-peer web
indexing and search. In Proceedings of the 2nd
International Workshop on Peer-to-Peer Systems
(IPTPS’03), Berkeley, USA, February 2003.

[12] N. Lopes and C. Baquero. Implementing range queries
with a decentralized balanced tree over dhts. In
Proceedings of 1st International Conference on
Network-Based Information Systems (NBiS2007),
2007. To appear.

[13] Overnet website. http://www.overnet.com/.

[14] V. Ramasubramanian and E. G. Sirer. Beehive: O(1)
lookup performance for power-law query distributions
in peer-to-peer overlays. In Proceedings of the 1st

Symposium on Networked Systems Design and
Implementation (NSDI’04), pages 99–112, March
2004.

[15] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp,
and I. Stoica. Load balancing in structured p2p
systems. In Procs of the 2nd Intl. Workshop on
Peer-to-Peer Systems (IPTPS’03), Berkeley, CA,
USA, February 2003.

[16] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content addressable network. In
Proceedings of the ACM SIGCOMM’01 Conference,
pages 161–172, 2001.

[17] P. Reynolds and A. Vahdat. Efficient peer-to-peer
keyword searching. In Proceedings of the 4th
ACM/IFIP/USENIX International Middleware
Conference, Brazil, 2003.

[18] A. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location, and routing for
large-scale peer-to-peer systems. In Proceedings of the
18th IFIP/ACM International Conference on
Distributed Systems Platforms, Germany, 2001.

[19] T. Stading, P. Maniatis, and M. Baker. Peer-to-peer
caching schemes to address flash crowds. In Procs of
the 1st Intl. Workshop on Peer-to-Peer Systems
(IPTPS’02), Cambridge, MA, USA, March 2002.

[20] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A scalable Peer-To-Peer
lookup service for internet applications. In Proceedings
of the ACM SIGCOMM’01 Conference, pages
149–160, 2001.

[21] J. Stribling, J. Li, I. G. Councill, M. F. Kaashoek, and
R. Morris. Overcite: A distributed, cooperative
citeseer. In Proceedings of the 3rd Symposium on
Networked Systems Design and Implementation
(NSDI’06), 2006.

[22] C. Tang and S. Dwarkadas. Hybrid global-local
indexing for efficient peer-to-peer information
retrieval. In Proceedings of First Symposium on
Networked Systems Design and Implementation, San
Francisco, USA, March 2004.

[23] C. Zhang, A. Krishnamurthy, and R. Wang.
Brushwood: Distributed trees in peer-to-peer systems.
In Proceedings of the 4th International Workshop on
Peer-to-Peer Systems (IPTPS’05), New York, USA,
February 2005.

[24] C. Zheng, G. Shen, S. Li, and S. Shenker. Distributed
segment tree: Support of range query and cover query
over dht. In Electronic publications of the 5th
International Workshop on Peer-to-Peer Systems
(IPTPS’06), California, USA, February 2006.

[25] G. Zipf. Human Behaviour and the Principle of Least
Effort. Addison-Wesley, 1949.

