
An Efficient Distributed Algorithm for Computing Minimal Hitting Sets

†‡Nuno Cardoso and †‡Rui Abreu
†Department of Informatics Engineering ‡HASLab / INESC Tec

Faculty of Engineering of University of Porto Campus de Gualtar
Porto, Portugal Braga, Portugal

nunopcardoso@gmail.com, rui@computer.org

Abstract
Computing minimal hitting sets for a collection
of sets is an important problem in many domains
(e.g., Spectrum-based Fault Localization). Be-
ing an NP-Hard problem, exhaustive algorithms
are usually prohibitive for real-world, often large,
problems. In practice, the usage of heuristic based
approaches trade-off completeness for time effi-
ciency. An example of such heuristic approaches
is STACCATO, which was proposed in the con-
text of reasoning-based fault localization. In this
paper, we propose an efficient distributed algo-
rithm, dubbed MHS2, that renders the sequen-
tial search algorithm STACCATO suitable to dis-
tributed, Map-Reduce environments. The results
show that MHS2 scales to larger systems (when
compared to STACCATO), while entailing either
marginal or small run time overhead.

1 Introduction
Computing Minimal Hitting Sets (MHSs) for a collection of
constraints is an important problem in many domains (e.g.,
DNA analysis [1], crew scheduling [2], model/reasoning-
based fault diagnosis [3; 4; 5; 6; 7], Spectrum-based Fault
Localization [8]). The computation of MHSs can be poly-
nomially reduced to the set cover optimization problem [9],
which is known to be NP-hard. Being an NP-hard prob-
lem, the usage of exhaustive search algorithms (e.g., [3;
10]), is prohibitive for most real-world problems. However,
in most situations, near optimal solutions are often accept-
able and approximation algorithms are used to solve this
problem in a reasonable amount of time. In the particular
case of Spectrum-based Fault Localization (SFL), which is
the context of our work, the strict minimality constraint is
normally relaxed1 and heuristics are used to drive the search
in order to increase the likelihood of finding the best mini-
mal candidate for a particular problem instance [8].

In this paper, we propose a Map-Reduce [11] approach,
dubbed MHS22, aimed at computing MHSs in a parallel or

1We use the term minimal in a more liberal way due to men-
tioned relaxation. A Hitting Set (HS) d is said to be minimal if no
other calculated HS is a proper subset of d.

2MHS2 is an acronym for Map-reduce Heuristic-driven Search
for Minimal Hitting Sets. An implementation of MHS2 is available
at https://github.com/npcardoso/MHS2.

even distributed fashion in order to broaden the search scope
of current approaches.

This paper makes the following contributions:

• We describe the problem in the context of SFL and
present a sequential algorithm to solve it.

• We propose 3 optimizations to the sequential algo-
rithm, which prevent a large number of redundant cal-
culations.

• We propose an approach for dividing the MHS problem
across multiple CPUs.

• We provide an empirical evaluation of our approach,
showing that:

1. The proposed optimizations introduce a consider-
able performance improvement.

2. MHS2 efficiently scales with the number of pro-
cessing units.

2 Preliminaries
In this section we formally define the MHS problem and
explain its relation to SFL.

2.1 Minimal Hitting Set Problem
Definition 1 (Hitting Set). Given a set U = {1, 2, . . . ,M}
(called the universe) and a collection S of N non-empty sets
whose union is equal to the universe (i.e.,

⋃
s∈S s = U), a

set d is said to be a Hitting Set (HS) of S if and only if

HS(U, S, d) : d ⊆ U ∧ ∀s∈S : d ∩ s 6= ∅ (1)

A consequence of Definition 1 is that U is a trivial HS of
S since, by definition, as HS(U, S, U) always holds.

Definition 2 (Minimal Hitting Set). A set d is a Minimal
Hitting Set (MHS) of S if and only if

MHS(U, S, d) : HS(U, S, d) ∧ (6 ∃d′ ⊂ d : HS(U, S, d′))
(2)

i.e., d is a HS and no proper subset of d is a HS.

There may be several MHSs dk for S, which constitute
the MHS collection D. The MHS problem consists thereby
in computing D for a particular pair (U, S).

As an example, consider the universe U = {1, 2, 3} and
S = {{1, 2}, {1, 3}}. For this particular example, two
MHSs exist: {1} and {2, 3}. Even though {1, 2, 3} is also a
HS, it is not minimal as it can be subsumed either by {1} or
{2, 3}.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634244?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2.2 Spectrum-based Fault Localization

SFL approaches work by abstracting the run-time behavior
of the system under analysis in terms of two general con-
cepts: components and transactions. A component is an el-
ement of the system that, for diagnostic purposes, is consid-
ered to be atomic3, whereas a transaction is a set of compo-
nent activations that (1) share a common goal, and (2) the
correctness of the output can be verified. A failed transac-
tion (or more precisely the components involved in a failed
transaction) represents a conflict. Informally, a conflict is a
set of components that cannot be simultaneously healthy to
explain the observed erroneous behavior. Computing mini-
mal diagnosis candidates for a set conflicts is in fact equiva-
lent to computing MHSs for (U, S), where the components
in the system are identified by the elements of U and collec-
tion S encodes the conflict collection [3].

In the remainder of this paper, we capture a set of system
observations in the so called hit spectra data structure [12].

Definition 3 (Hit Spectra). Let N denote the total number of
observed transactions and M denote the number of system’s
component. We define the hit spectra data structure as being
the pair (A, e), where A is a N ×M activity matrix of the
system and e the error vector, defined as

Aij =

{
1, if component j activated in transaction i

0, otherwise
(3)

ei =

{
1, if transaction i failed
0, otherwise

(4)

3 Algorithm
A naïve, brute-force approach to compute the collection D
of MHSs for S would be to iterate through all elements of
the power set of U checking (1) whether it is a HS, and
(2) (if it is a HS) whether it is minimal, i.e., not subsumed
by any other set of lower cardinality (cardinality of a set d,
|d|, is the number of elements in the set). Since many of
the sets turn out not to be MHSs, this approach is extremely
inefficient.

In this section we present MHS2, a efficient sound and
complete4 depth-first search5 algorithm to compute solu-
tions to a MHS problem. This algorithm uses an heuristic
to guide the search towards high potentials, yielding high
efficiency and accuracy gains (in the case of large prob-
lems). Our algorithm (Algorithm 1) is based upon STAC-
CATO [8] to which we propose 3 optimizations as well as a
Map-Reduce parallelization approach.

3.1 STACCATO

In Algorithm 1 (ignoring, for now, the highlighted lines) a
simplified version of STACCATO that captures its fundamen-

3In a software environment, a component can be for instance a
statement, a function, a class, or a service.

4For small enough problems.
5The reason for using a depth-first search is related to the

fact that large real-world problems generate search trees with a
large branching factor, making a breadth-first search approach very
costly.

Algorithm 1 STACCATO/MHS2 map task
Inputs:

Spectra (A, e)
Set d (default: ∅)
Hitting set collection D (default: ∅)

Parameters:
Ranking heuristicH
Branch level L
Load division function SKIP

Output:
Minimal hitting set collection D

1 if ∃i 6 ∃j : ei = 1 ∧Aij = 1 then # opt. 3
2 return D
3 if ∃i : ei = 1 then # divide task
4 R← RANK(H, A, e)
5 for all (s, j) : (s, j) ∈ R ∧ s = 0 do # opt. 2
6 R← R \ {j}
7 A← STRIP_COMPONENT(A, j)

8 for j ∈ R do
9 if SIZE(d′) + 1 = L ∧ SKIP() then

10 A← STRIP_COMPONENT(A, j) # opt. 1
11 continue
12 (A′, e′)← STRIP(A, e, j)
13 D ← STACCATO(A′, e′, D, d ∪ {j})
14 A← STRIP_COMPONENT(A, j) # opt. 1
15 else # conquer task
16 if 6 ∃d′ ∈ D : d′ ⊆ d then
17 D ← D \ {d′ | d′ ∈ D ∧ d ⊆ d′}
18 D ← D ∪ {d}
19 return D

tal mechanics is presented6. The algorithm works in a divide
and conquer fashion by, at each stage of its execution, per-
forming one of two different tasks (lines 3–4, 8, and 12-13
or 15–18), depending on whether or not the set d is a HS.

The first task, which is triggered whenever d is not a HS7

(line 3), aims at dividing the initial problem in smaller sub-
problems. This goal is achieved by iterativelly selecting a
component j from an heuristically ordered set of compo-
nents R (lines 4 and 8) and creating a temporary spectra
(A′, e′) where all rows Ai such that Aij = 1 as well as col-
umn j are omitted (function STRIP, line 12). Finally, the
algorithm makes a recursive call in order to solve the sub-
problem (A′, e′) with set d ∪ {j} (line 13).

The second task, which occurs whenever d is a HS (lines
7–9), aims at collecting HSs while guaranteeing that all HSs
in D do not have a proper subset also contained in D. The
first step in this task is to check if d is minimal (line 16) with
regard to the already discovered MHS collection D. If d is
minimal, all super-sets of d in D are purged (line 17) and,
finally, d is added to D (line 18).

To illustrate how STACCATO works, consider the exam-

6For simplicity, the cut-off conditions were omitted and, as a
result, a direct implementation of the algorithm will not be suitable
to large problems. Both the details regarding search heuristics and
cut-off parameters are outside the scope of this paper (refer to [8]
for more information - the algorithm was also explained in [13] as
well as [14]).

7Due to the divide and conquer nature of the algorithm, d is a
HS whenever all failing transactions are striped from the original
spectra.

Algorithm 2 MHS2 reduce task
Inputs:

Partial minimal hitting set collections D′
1, ..., D

′
K

Output:
Minimal hitting set collection D

1 D ← ∅
2 D′ ← SORT(

⋃K
k=1 D

′
k)

3 for d ∈ D′ do
4 if MINIMAL(D, d) then
5 D ← D ∪ {d}
6 return D

A e

d D
Return

1 0 1 1
1 1 0 1
1 0 0 0
{} {}
{{1}, {2, 3}}

1 0 1 1
1 1 0 1
1 0 0 0
{2} {}
{{1, 2}, {2, 3}}

1 0 1 1
1 1 0 1
1 0 0 0
{1} {{1, 2}, {2, 3}}
{{1}, {2, 3}}

1 0 1 1
1 1 0 1
1 0 0 0
{3} {{1}, {2, 3}}
{{1}, {2, 3}}

1 0 1 1
1 1 0 1
1 0 0 0
{1, 2} {}

{{1, 2}}

1 0 1 1
1 1 0 1
1 0 0 0
{2, 3} {{1, 2}}
{{1, 2}, {2, 3}}

1 0 1 1
1 1 0 1
1 0 0 0
{1, 3} {{1}, {2, 3}}
{{1}, {2, 3}}

1 0 1 1
1 1 0 1
1 0 0 0
{2, 3} {{1}, {2, 3}}
{{1}, {2, 3}}

1

4

5

2

3

6

7

Figure 1: Example search tree

ple in Figure 18 which represents a possible search tree for
STACCATO. Each node in the search tree represents a call to
the function (all the parameters as well as the return value
are encoded as a table). Gray spectra elements represent
the portions of the original spectra filtered by STRIP func-
tion. Leaf nodes represent function calls for which d is a
HS whereas intermediate nodes represent function calls for
which d is not a HS.

In the outer call to the algorithm (the leftmost node), as
∃i : ei = 1, the algorithm performs the divide task. After
exploring the sub-tree starting with d = {2} (calls 1–3), the
algorithm yields the collection D = {{1, 2}, {2, 3}}.

We can see that at this point, if the execution were to be
interrupted, {1, 2}would be erroneously considered a MHS.
However, after exploring the sub-tree starting with d = {1}
(call 4), the set {1, 2} is removed yielding the collection
D = {{1}, {2, 3}}.

The inspection of the sub-tree starting with d = {3} (call
5–7) does not make further changes to collection D. On the
one hand, the HS {1, 3} is a proper super-set of {1}. On the
other hand, the HS {2, 3} is already contained in D.

As expected, the result for this example would be the col-
lection D = {{1}, {2, 3}}.

3.2 MHS2

In this section we propose MHS2, our distributed MHS
search algorithm. The proposed approach can be viewed
as a Map-Reduce task [11]. The map task, presented in Al-
gorithm 1 (now also including highlighted lines), consists of
an adapted version of the sequential algorithm just outlined.
In contrast to the original algorithm, we added 3 optimiza-
tions that prevent redundant calculations.

The first optimization (lines 10 and 14) prevents multiple

8Note that for this example the order of node exploration (and
consequently the shape of the tree) was selected for illustrative pur-
poses.

examinations of the same set, as it was the case of {2, 3} in
the example from the previous section9.

The second optimization (lines 5–7) preemptively filters
components with heuristic score equal to 0. This optimiza-
tion works under the assumption that the heuristic scores are
non-negative and components with heuristic score equal to
0 are not members of any conflict set (and, consequently,
guaranteed not to form non-minimal HSs). As this filter-
ing process reduces the spectra size, the heuristic calculation
overhead (which normally is O(N ×M)) is decreased.

The third optimization (lines 1–2) prevents the examina-
tion of branches that contain empty conflict sets. If a branch
exhibits such property, any node in its sub tree will always
contain at least one unsolved conflict thus guaranteeing no
MHS will be found.

To parallelize the algorithm, we added a parameter L that
sets the split-level, i.e., the number of calls in the stack mi-
nus 1 or |d|, at which the computation is divided among
the processes. When a process of the distributed algorithm
reaches the target level L, it uses a load division function
(SKIP) in order to decide which elements of the ranking to
skip or to analyze (line 9). The value of L implicitly con-
trols the granularity of decision of the load division function
at the cost of performing more redundant calculations. Im-
plicitly, by setting a value L > 0, all processes redundantly
compute all HS such that |d| <= L.

With regard to the load division function SKIP, we
propose two different approaches. The first, referred to
as stride, consists in assigning elements of the ranking
R to processes in a cyclical fashion. Formally, a pro-
cess pk∈[1..np] is assigned to an element Rl ∈ R if (l
mod np) = (k − 1).

The second approach, referred to as random, uses a
pseudo-random generator in order to divide the computa-
tion. This random generator is then fed into an uniform dis-
tribution generator that assures that, over time, all pk get
assigned a similar number of elements in the ranking R al-
though in random order (specially for large values of L).
This method is aimed at obtaining a more even distribution
of the problem across processes than stride10. A particular-
ity of this approach is that the seed of the pseudo random
generator must be shared across process in order to assure
that no further communication is needed.

Finally, the reduce task, responsible for merging all par-
tial MHS collections D′

k∈[1..np] originating from the map
task (Algorithm 1), is presented in Algorithm 2. The re-
ducer works by merging all HSs in a list ordered by cardi-
nality. The ordered list is then iterated, adding all MHSs to
D. As the HSs are inserted in an increasing cardinality or-
der, it is not necessary to look for subsumable HSs (line 17
in Algorithm 1) in D.

4 Results
To assess the performance of our algorithm we conducted
two sets of benchmarks (all the benchmarks were conducted
in a single computer with 2× Intel Xeon CPU X5570 @
2.93GHz, 4 cores each). The first is focused on evaluating

9This optimization generalizes over the optimization proposed
in [8], which would be able to ignore the calculation of {1, 2} but
not the redundant reevaluation of {2, 3}.

10A consequence of the proposed optimizations is that, as the
size of (A′, e′) is different for all components j ∈ R, the time that
the recursive call takes to complete may vary substantially.

the impact of each of the proposed optimizations. The sec-
ond is focused on evaluating the algorithm’s parallelization
approach.

For our benchmarks, we generated several (A, e) by
means of a Bernoulli process, with parameters M (num-
ber of transactions), N (number of components), and R
(probability of component activation in each transaction,
also known as activation rate). The presented results rep-
resent the average over 100 test cases for each combination
(M,N,R). To ease the comparison of results, all transac-
tions in all generated cases fail11. Both due to space con-
straints and the fact that the algorithm’s diagnosis accuracy
has already been studied in [8], we only analyze the compu-
tational gains introduced by our approach.

●

●

● ● ● ● ● ●
●

●

1e
1

1e
3

1e
5

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

R

|D
| (

lo
g)

M = N = ●10 20 30 40

●

●

● ● ● ● ● ●
●

●

1e
1

1e
3

1e
5

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

R

|D
| (

lo
g)

M = N = ●10 20 30 40

●

●
●

●
● ● ● ● ● ●

5
10

15

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

R

M
H

S
 C

ar
di

na
lit

y

M = N = ●10 20 30 40

Figure 2: (M,N,R) parameters’ impact

To better understand how the parameters affect the prob-
lem’s solution, consider the following observations (Fig-
ure 2):

1. For the same (M,N) parameter values:

(a) The average MHS cardinality for problems gener-
ated with smaller R values is larger than the aver-
age MHS cardinality for problems generated with
larger R values (i.e., the MHS cardinality is nega-
tively correlated with the R value).

(b) The average solution size (i.e., |D|) was minimal
for problems generated with R = 0.05.

(c) |D|was not maximal for problems generated with
R = 0.95.

2. Problems generated with larger (M,N) values have
the maximal |D| value for smaller R values than prob-
lems generated with smaller (M,N) values (i.e., the
value of R for maximal |D| is negatively correlated
with (M,N)).

11To illustrate the potential problems of having successful trans-
actions in the test cases, consider the extreme case of a set of test
cases with no failures versus a set of test cases with no nominal
transactions. For the first scenario, all test cases only have one
MHS (the empty set) whereas, for the second scenario, a poten-
tially large number of MHSs may exist, thus having a large impact
on the algorithms’ run-time.

4.1 Optimizations
Small problems

● ● ● ● ● ● ● ● ● ●

0.
0e

+
00

2.
5e

+
08

5.
0e

+
08

7.
5e

+
08

0.
0e

+
00

2.
5e

+
08

5.
0e

+
08

7.
5e

+
08

0.
0e

+
00

2.
5e

+
08

5.
0e

+
08

7.
5e

+
08

0.
0e

+
00

2.
5e

+
08

5.
0e

+
08

7.
5e

+
08

M
 =

 N
 =

 10
M

 =
 N

 =
 20

M
 =

 N
 =

 30
M

 =
 N

 =
 40

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

R

R
un

 T
im

e

●Baseline Heuristic Opt 1 Opts 1−2 Opts 1−3

● ● ● ● ●
● ●

●
●

●1e
3

1e
5

1e
7

1e
9

1e
3

1e
5

1e
7

1e
9

1e
3

1e
5

1e
7

1e
9

1e
3

1e
5

1e
7

1e
9

M
 =

 N
 =

 10
M

 =
 N

 =
 20

M
 =

 N
 =

 30
M

 =
 N

 =
 40

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

R

R
un

 T
im

e
(lo

g)

●Baseline Heuristic Opt 1 Opts 1−2 Opts 1−3

●
●

●
●

●
● ●

●
●

●

1e
0

1e
2

1e
4

1e
0

1e
2

1e
4

1e
0

1e
2

1e
4

1e
0

1e
2

1e
4

M
 =

 N
 =

 10
M

 =
 N

 =
 20

M
 =

 N
 =

 30
M

 =
 N

 =
 40

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

R

T
hr

ou
gh

pu
t (

lo
g)

●Baseline Heuristic Opt 1 Opts 1−2 Opts 1−3

Figure 3: Small problems’ results

The first benchmark in this section is aimed at eval-
uating the impact of each optimization for small prob-
lems, for which all MHSs can be calculated (M = N ∈
{10, 20, 30, 40}, and R ∈ {0.05, 0.15, ..., 0.95}).

In Figure 3, we observe the run-times/throughputs12 for 5
different implementations of the algorithm with a decreas-
ing number of features13. At one end of the scale, Opts 1–3
represents an implementation with both all of the proposed

12The throughput metric is calculated as the number of gen-
erated MHSs divided by the total run-time and is measured in
MHSs/sec. When calculating this metric, we took care to discard
all non-minimal HSs.

13The test subjects were removed from the benchmark when the
execution of individual test cases exceeded 1000 seconds.

optimizations14 as well as the heuristic15. At the other end,
Baseline represents an implementation with no optimiza-
tions as well as no heuristic (i.e., random ranking). Even
though the performance of STACCATO (the algorithm that
served as starting point for our research) was not directly
considered, it should be bounded by the performances of
Heuristic (in a worst case) and of Opt 1 (in the best case).

The analysis of the results shows that the heuristic by it-
self introduces a significant performance improvement over
Baseline for M = N = 10 (5× faster on average, note the
log scale). Such results present a strong evidence that us-
ing an heuristic to drive the search not only improves the
quality of the computed MHSs (as shown in [8]) but also
improves the computational efficiency of the algorithm. For
such small cases, and in comparison to the Heuristic per-
formance, all of the optimizations showed an improved per-
formance of at least 1.5× (Opt 1 for R = 0.95), at most
170000× (Opts 1–3 for R = 0.05), and on average 34000×,
8000×, and 1700× for Opts 1–3, Opts 1–2, and Opt 1 re-
spectively.

Analyzing the remaining tests cases (M = N ∈
{20, 30, 40}), we can see that, with the increase of the prob-
lem size, the relative contribution of each optimization be-
comes more significant (for M = N ∈ {10, 20, 30}, R =
0.05, Opts 1–3 performs 30×, 7000×, and 1000000× faster
than Opt 1, respectively). We also observe that, on aver-
age and for all combinations of (M,N,R), Opts 1–3 was
the algorithm with the best performance, implying that the
computational savings introduced by optimization 3 should,
on average, outweigh its overhead.

It also worth understanding how each optimized imple-
mentation improves over Heuristic. A closer inspection of
the results reveals the following patterns emerge:

1. All algorithms have similar performances for large R
values.

2. The optimizations are more effective for smaller values
of R.

3. Optimizations 1 and 2 have a considerable effect for
all R values whereas optimization 3 is only effective
for small R values.

Pattern 1 can be explained by recalling that MHS2 is a
divide and conquer algorithm and the observations made
about Figure 2. As the average MHS cardinality is nega-
tively correlated with the R value, we see that for problems
with large R values, the algorithms’ search trees are shal-
low and, consequently, the algorithms spend most of their
time performing the conquer task16. Given that all the op-
timizations focus on improving the search tree exploration,
for shallow trees the performance impact is less significant.

Conversely, pattern 2 can be explained using the com-
plimentary argument. For small R values, as the search
trees become deeper, the non-optimized algorithms perform
a large amount of unnecessary divide tasks, thus leaving (ex-
ponentially) more room for improvements.

14The numbers of the optimizations are presented in Algo-
rithm 1.

15All the benchmarks including an heuristic were conducted us-
ing the Ochiai heuristic (see [8]).

16Intuitively and simplifying the problem, performing the con-
quer task increases the throughput, whereas performing the divide
task decreases the throughput.

To explain pattern 3, we shall look at the optimizations
individually:
• Optimization 1 prevents the exploration of paths com-

posed of the same components although in different or-
ders. Such inefficiencies occur whenever the MHSs are
composed of more than 1 element.

• Optimization 2 reduces the overhead associated with
the heuristic calculation. The overhead reduction also
occurs whenever the MHSs are composed of more than
1 element.

• Optimization 3 performs a look-ahead verification to
assess whether or not the current sub-tree is a dead-end
(i.e., no MHSs will be generated in such sub-tree) and
terminate the exploration if a dead-end is reached. The
impact of this optimization is contingent on how far
ahead it detects the dead-end which, in turn, is depen-
dent on the deepness of the search tree. As the deep-
ness of the search tree is negatively correlated with R,
this optimization is more effective for small R values.

Large problems
The second benchmark is aimed at evaluating the impact
of each optimization for large problems where it is im-
practical to calculate all MHSs (M = N = 103, and
R ∈ {0.05, · · · , 0.95}). In all of the following test cases
a time based cut-off of 30 seconds was enforced.

● ● ● ● ● ● ● ● ● ●

0.
0e

+
00

2.
5e

+
08

5.
0e

+
08

7.
5e

+
08

0.
0e

+
00

2.
5e

+
08

5.
0e

+
08

7.
5e

+
08

0.
0e

+
00

2.
5e

+
08

5.
0e

+
08

7.
5e

+
08

0.
0e

+
00

2.
5e

+
08

5.
0e

+
08

7.
5e

+
08

M
 =

 N
 =

 10
M

 =
 N

 =
 20

M
 =

 N
 =

 30
M

 =
 N

 =
 40

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

R

R
un

 T
im

e

●Baseline Heuristic Opt 1 Opts 1−2 Opts 1−3

● ● ● ● ● ● ● ● ● ●

0%
25

%
50

%
75

%
10

0%

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

R

M
in

im
al

●Baseline Heuristic Opt 1 Opts 1−2 Opts 1−3

●

●
●

● ● ● ● ● ● ●

1e
1

1e
2

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

R

A
vg

. C
ar

d.
 (

lo
g)

●Baseline Heuristic Opt 1 Opts 1−2 Opts 1−3

●

●
● ● ● ● ● ● ● ●1e

3
1e

5

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

R

H

S
s

(lo
g)

●Baseline Heuristic Opt 1 Opts 1−2 Opts 1−3

●
● ● ● ● ● ● ● ● ●

1e
−

2
1e

0
1e

2
1e

4

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

R

T
hr

ou
gh

pu
t (

lo
g)

●Baseline Heuristic Opt 1 Opts 1−2 Opts 1−3

Figure 4: Large problems’ results

The first two plots in Figure 4 present both the percentage
of HSs that were minimal (MHS%) as well as the average
HS cardinality for each of the 5 implementations. For large
problems, we observe that the heuristic plays an important
role in assuring that the computed HSs are in fact minimal
(98% vs. 0% minimality for Heuristic and Baseline, on av-

erage). Even though the MHS% of Opts 1–2 and Opts 1–3
are lower when compared to Opt 1, we can see that the aver-
age HS cardinality of the former implementations is compa-
rable to cardinality of the later, implying that the number of
extraneous elements in the non-minimal HSs is small (spe-
cially when compared to Baseline).

Despite the lower MHS percentage of the fully opti-
mized algorithm, in absolute terms it computes a signifi-
cantly larger amount of HSs than Opt 1. The remainder of
Figure 4 presents the number of HSs as well as the through-
put for all implementations. While Baseline, Heuristic, and
Opt 1 compute 500 HSs on average, the remaining imple-
mentations compute 93000 HSs on average (186× better).
Taking into account the number of computed HSs, despite
the lower MHS percentage, the absolute number of MHS for
optimizations 2 and 3 is effectively higher than the number
of MHS calculated by the other approaches.

Finally, it is interesting to note that even though we in-
creased the problem size by 25× factor, the throughput of
MHS2 is comparable to the throughput observed in Sec-
tion 4.1. The practical implications of such observation is
that the fully optimized MHS2 efficiently scales to large
problems whereas STACCATO does not (since STACCATO’s
performance should be bounded by the performances of
Heuristic and Opt 1).

4.2 Parallelization
Small Problems
The first parallelization benchmark, is aimed at observing
the behavior of MHS2 for small problems (M = N = 40,
R ∈ {0.25, 0.5, 0.75}).

R = 0.25 R = 0.50 R = 0.75

●

●
●

●
●

● ● ●

●
●

●
●

● ● ● ●

●
●

●
● ● ● ● ●

2
4

6

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

CPUs

S
pe

ed
up

Setup ●Random Stride

R = 0.25 R = 0.50 R = 0.75

● ●

●
●

●
●

●
●

●

● ●

● ●
●

●
●

●
●

●

●

●
●

●
●

40
%

60
%

80
%

10
0%

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

CPUs

E
ffi

ci
en

cy

Setup ●Random Stride

R = 0.25 R = 0.50 R = 0.75

●●
●● ●● ●● ●● ●● ●● ●●

●● ●● ●● ●● ●● ●● ●● ●●

●●
●● ●● ●● ●● ●● ●● ●●

1e
0

1e
2

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

CPUs

R
un

 T
im

e
(lo

g)

Setup ● ●Random Stride

R = 0.25 R = 0.50 R = 0.75

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

●
●

●
●

●
●

● ●

1e
4

2e
4

3e
4

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

CPUs

T
hr

ou
gh

pu
t

Setup ●Random Stride

Figure 5: Small problems’ results

In Figure 5, we observe both the speedup (defined as

SUP(np) = T1

Tnp
, where Tnp is the time needed to solve

the problem for np processes) and the efficiency (defined
as EF(np) = SUP(np)

np) for both the Stride and Random load
distribution functions. Also, Figure 5, shows both the run-
times 17 as well as the throughput for both load distribution
functions.

The analysis of Figure 5 shows different
speedup/efficiency patterns for different values of R.
This difference is due to the large difference in run-time
for different values of R: ≈ 200, 5.7 and 0.1 seconds for
R = {0.25, 0.5, 0.75}, respectively. On the one hand, when
the run-time is smaller, the parallelization overhead has
a higher relative impact in the performance (in extreme
cases, the run-time can even increase with the number of
processes). On the other hand, when both the cardinality
and the amount of MHSs increase (small values of R) the
parallelization overhead becomes almost insignificant.

For R = 0.25 and in contrast to R ∈ {0.5, 0.75}, the
speedup/efficiency of Random is much superior to the per-
formance of Stride. The reason of such efficiency difference
is that the cool-down period (i.e., the period in which at least
one process is idle and another is active) of Stride was longer
than the one observed for Random. The smaller cool-down
period of Random shows that the usage of a stochastic ap-
proach evenly divides an unbalanced search tree, leading to
a better load division.

Finally, we observe that Random experiences super linear
speedups (i.e, efficiency above 100%). This pattern emerges
due to the fact that the complexity of the operations per-
formed on D (lines 16 – 17 in Algorithm 1)) are not linear
with the number of elements stored in it. As a consequence,
by reducing size of D to 1

np effectively reduces the cost of
the operations by a factor greater than np. The corollary of
such observation is that a better data structure for encoding
D is likely to exist18

Large Problems
The second benchmark is aimed at observing the behavior
of MHS2 for large problems (M = N = 103, and R ∈
{0.25, 0.5, 0.75}).

Figure 6 shows the minimality percentage, the number
of HSs, and the throughput for large problems when using
time based cutoffs of 1, 2, 4, 8, and 16 seconds per process
with a varying number of processes (entailing a total CPU
time of approximately rttotal × np, where rttotal is the to-
tal run-time, including both map and reduce tasks, which
must be greater than the cutoff value). It appears that, for
large problems, there is no significant difference in terms of
the amount of generated MHSs between Random and Stride.
Performing a two-tailed T-test we determined, with a 99%
confidence interval, that both approaches should have, on
average, equal throuhgputs.

Regarding the minimality percentage of both approaches,

17In this plot, each cluster is composed of 1 data point per test
case (100 data points for each load distribution function). The hor-
izontal displacement inside each cluster was only added to improve
the visualization of the results.

18In our implementation we make use of a trie to encode D. We
envision this data structure to function similarly to an hashtable:
the hashtrie data structure should be composed of multiple tries
which are used to divide the load according to an HS hashing func-
tion. After all additions are made to D, the individual tries must
be merged to remove non-minimal HSs.

R = 0.25 R = 0.50 R = 0.75

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

80
%

90
%

10
0%

80
%

90
%

10
0%

R
andom

S
tride

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

CPUs

M
in

im
al

Cutoff Time ●1 sec 2 sec 4 sec 8 sec 16 sec

R = 0.25 R = 0.50 R = 0.75

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

●
●

●
●

● ●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ● ●

●
●

●
●

0
2e

5
4e

5
6e

5
0

2e
5

4e
5

6e
5

R
andom

S
tride

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

CPUs

H

S

Cutoff Time ●1 sec 2 sec 4 sec 8 sec 16 sec

R = 0.25 R = 0.50 R = 0.75

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

●
●

● ● ● ● ● ●

●
●

●
● ● ● ● ●

●
● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

1e
4

2e
4

3e
4

1e
4

2e
4

3e
4

R
andom

S
tride

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

CPUs

T
hr

ou
gh

pu
t

Cutoff Time ●1 sec 2 sec 4 sec 8 sec 16 sec

Figure 6: Large problems’ results

we observed similar results to those presented in Section 4.1
even though different cutoff values were used: for R =
{0.25, 0.5}, 97% minimality while for R = 0.75 the per-
centage decreases to around 75%. Also, the throughput is
consistent with all previous benchmarks.

Figure 7 shows the number of MHSs and throughput after
applying a data transformation. In spite of using the number
of processes as the x-axis, we use the total algorithm run
time. Each data point is represented by a number, which
encodes the number of used CPUs. We can see that, as ex-
pected, running the algorithm for 8 seconds on 8 CPUs ac-
counts approximately for the same total run-time as running
the algorithm for 16 seconds on 4 CPUs.

Using this plot we can easily see that for a given total
calculation time, it is always preferable to divide the task
among the maximum possible number of CPUs (eventually,
given enough CPUs, this trend should hit a maximum). This
patterns can again be explained by the trie non-optimally
argument presented before.

4.3 Related Work
Several approaches to solve the MHS problems have been
proposed. In [3], the authors proposed a breath-first search
algorithm that uses the so called HS-trees and, in [10;
15], some improvements over the base algorithm have been
suggested. In [7] a method using set-enumeration trees to
derive all MHSs in the context of model-based diagnosis
is presented. All of the above algorithms make use of a
constraint solver to check whether or not a set d is a HS,
thus not requiring an explicit conflict set availability. While
sound and complete, such algorithms do not gracefully scale

to large real-world problems.
In [5], the authors propose a stochastic search algorithm,

that starts with a HS d for (U, S) and iterativelly removes
elements from d while guaranteeing that the resulting set
still is a HS. In [16; 17; 18; 19] several genetic algorithms
to compute MHSs are proposed. While scalable to large
problems, these algorithms do not guarantee soundness nor
completeness.

As shown in the previous sections, our heuristic-driven
depth-first search algorithm is able to guarantee soundness
and completeness in small problems as also efficiently scale
to large problems while guaranteeing a high minimality per-
centage (above 75%).

5 Conclusions
In this paper, we proposed an optimized and distributed ver-
sion of STACCATO, dubbed MHS2, for computing Minimal
Hitting Sets/minimal diagnostic candidates. This algorithm
is not only more efficient in single CPU scenarios than the
original sequential algorithm but is also able to efficiently
use the processing power of multiple CPUs to calculate
MHSs.

The results showed that, the proposed optimizations have
a large impact on the algorithm’s performance and also that
the algorithm is able to horizontally scale with negligible
overhead. The usage of parallel processing power enables
the exploration of a larger number of potential candidates,
increasing the likelihood of actually finding the “best” HS
for a particular instance of the problem.

Future work would include the analysis of the algorithm’s
performance with a larger set of computation resources as
also the analysis of its performance under a wider set of
conditions.

Acknowledgements
We would like to thank Lígia Massena, André Silva and
José Carlos de Campos for the useful discussions during
the development of our work. This material is based upon
work supported by the National Science Foundation un-
der Grant No. CNS 1116848, by the scholarship num-
ber SFRH/BD/79368/2011 from Fundação para a Ciência
e Tecnologia (FCT), and by the ERDF through the Pro-
gramme COMPETE, the Portuguese Government through
FCT - Foundation for Science and Technology, project ref-
erence FCOMP-01-0124-FEDER-020484.

References
[1] D. P. Ruchkys and S. W. Song. A parallel approxi-

mation hitting set algorithm for gene expression analy-
sis. In Symposium on Computer Architecture and High
Performance Computing, pages 75–81, 2002.

[2] J. Rubin. A Technique for the Solution of Massive Set
Covering Problems, with Application to Airline Crew
Scheduling. 1973.

[3] R. Reiter. A theory of diagnosis from first principles.
Artificial Intelligence., 32(1):57–95, 1987.

[4] Johan de Kleer and Brian C. Williams. Readings in
model-based diagnosis. In Readings in model-based
diagnosis, chapter Diagnosing multiple faults, pages
100–117. 1992.

R = 0.25 R = 0.50 R = 0.75

1

1
1 1 12

2
2 2 23

3
3 3 3

4

4
4 4 4

5

5
5 5 5

6

6
6 6 6

7

7
7 7 7

8

8
8 8 8

1

11 1 1
2

22 2 2
3

33 3 3
4

44 4 4

5

55 5 5

6

66 6 6

7

77 7 7

8

88 8 8

1

1

1 1
12

2
2 2 2

3

3
3 3 3

4

4
4 4 4

5

5
5 5 5

6

66 6 6

7

77 7 7
8

88 8 8
1e

4
1e

5
1e

6

R
andom

100 101 102 100 101 102 100 101 102

Total CPU Time (log)

M

H
S

s
(lo

g)

Cutoff Time ● ● ● ● ●1 sec 2 sec 4 sec 8 sec 16 sec

R = 0.25 R = 0.50 R = 0.75

1

1

1
1

1

2

2

2
2

2

3

3

3
3

3

4

4

4
4

4

5

5

5
5

5

6

6

6
6

6

7

7

7
7

7

8

8

8
8

8

1

1

1

1

1

2

2

2

2

2

3

3

3
3

3

4

4

4
4

4

5

5

5
5

5

6

6

6
6

6

7

7

7
7

7

8

8

8
8

8

1

1

1
1

1

2

2

2

2
2

3

3

3
3

3

4

4

4
4

4

5

5

5
5

5

6

6

6
6

6

7

7

7
7

7

8

8

8
8

8

1e
3

1e
4

1e
5

R
andom

100 101 102 100 101 102 100 101 102

Total CPU Time (log)

T
hr

ou
gh

pu
t (

lo
g)

Cutoff Time ● ● ● ● ●1 sec 2 sec 4 sec 8 sec 16 sec

Figure 7: Large problems’ results (with x-axis transformation)

[5] Alexander Feldman, Gregory Provan, and Arjan J. C.
van Gemund. Computing minimal diagnoses by
greedy stochastic search. In Proceedings of the 23rd
national conference on Artificial intelligence - Volume
2, AAAI’08, pages 911–918, 2008.

[6] Ingo Pill and Thomas Quaritsch. Optimizations for
the boolean approach to computing minimal hitting
sets. In European Conference on Artificial Intelli-
gence, ECAI’12, pages 648–653, 2012.

[7] Xiangfu Zhao and Dantong Ouyang. Improved algo-
rithms for deriving all minimal conflict sets in model-
based diagnosis. In International Conference on Intel-
ligent Computing, ICIC’07, pages 157–166, 2007.

[8] Rui Abreu and Arjan J. C. van Gemund. A low-cost
approximate minimal hitting set algorithm and its ap-
plication to model-based diagnosis. In Proceedings of
the 8th Symposium on Abstraction, Reformulation, and
Approximation, SARA’09, 2009.

[9] Michael R. Garey and David S. Johnson. Comput-
ers and Intractability; A Guide to the Theory of NP-
Completeness. 1990.

[10] Franz Wotawa. A variant of Reiter’s hitting-set algo-
rithm. Information Processing Letters, 79(1):45–51,
2001.

[11] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: sim-
plified data processing on large clusters. In Sympo-
sium on Opearting Systems Design & Implementation,
OSDI’04, pages 137–150, 2004.

[12] Mary Jean Harrold, Gregg Rothermel, Rui Wu, and
Liu Yi. An empirical investigation of program spectra.

In Proceedings of the 1998 ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and
engineering, PASTE’98, pages 83–90, 1998.

[13] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van
Gemund. Diagnosing multiple intermittent failures us-
ing maximum likelihood estimation. Artificial Intelli-
gence, 174(18):1481–1497, 2010.

[14] Rui Abreu. Spectrum-based Fault Localization in Em-
bedded Software. PhD thesis, Delft University of
Technology, November 2009.

[15] Russell Greiner, Barbara A. Smith, and Ralph W.
Wilkerson. A correction to the algorithm in Reiter’s
theory of diagnosis. Artificial Intelligence, 41(1):79–
88, 1989.

[16] Staal A. Vinterbo and Aleksander Øhrn. Minimal ap-
proximate hitting sets and rule templates. Int. J. Ap-
prox. Reasoning, 2000.

[17] Lin Li and Jiang Yunfei. Computing minimal hitting
sets with genetic algorithm. Technical report, DTIC
Document, 2002.

[18] Uwe Aickelin and Kathryn A Dowsland. An indi-
rect genetic algorithm for a nurse-scheduling problem.
Computers & Operations Research, 2004.

[19] Wen-Chih Huang, Cheng-Yan Kao, and Jorng-Tzong
Horng. A genetic algorithm approach for set covering
problems. In International Conference on Evolution-
ary Computation, 1994.

