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Abstract—Despite being staggeringly error prone, spread-
sheets are a highly flexible programming environment that
is widely used in industry. In fact, spreadsheets are widely
adopted for decision making, and decisions taken upon wrong
(spreadsheet-based) assumptions may have serious economical
impacts on businesses, among other consequences.

This paper proposes a technique to automatically pinpoint
potential faults in spreadsheets. It combines a catalog of spread-
sheet smells that provide a first indication of a potential fault,
with a generic spectrum-based fault localization strategy in order
to improve (in terms of accuracy and false positive rate) on these
initial results. Our technique has been implemented in a tool
which helps users detecting faults.

To validate the proposed technique, we consider a well-
known and well-documented catalog of faulty spreadsheets. Our
experiments yield two main results: we were able to distinguish
between smells that can point to faulty cells from smells and those
that are not capable of doing so; and we provide a technique
capable of detecting a significant number of errors: two thirds
of the cells labeled as faulty are in fact (documented) errors.

I. INTRODUCTION

Spreadsheet systems are a landmark in the history of
generic software products. They have achieved an astonishing
success in terms of both the number of users and the variety
of domains in which they are nowadays used. Just as an
indication, it is estimated that 95% of all U.S. companies use
spreadsheets for financial reporting [1], and that 90% of all an-
alysts in the industry perform calculations in spreadsheets [1].
Furthermore, as shown in a recent study performed at an asset
management company, 52% of all spreadsheets were used for
calculation tasks, and are the basis for decisions within that
company [2].

This importance, however, has not been coupled with
effective mechanisms for error prevention, as shown by several
studies [3], [4], and by a long list of horror stories with huge
social and economic impact1.

One particularly regrettable example in this list involves
Portugal, which currently undergoes a financial rescue plan
based on intense austerity whose merit was co-justified

1This list is available at: http://www.eusprig.org/horror-stories.htm

upon [5]. The fact is that the conclusions drawn there have
been publicly questioned given that a formula range error was
found in the spreadsheet supporting the authors’ calculations.
While the authors have later re-affirmed their original conclu-
sions, the public pressure was so intense that a few weeks
later they felt the need to publish an errata of their 2010
paper. It is furthermore unlikely that the concrete social and
economical impacts of that particular spreadsheet error will
ever be determined.

In practice, all these evidences seem to suggest that
spreadsheet error prevention, detection and debugging tech-
niques are much needed. The natural trend of incorporating
well-established programming language features under spread-
sheets has been witnessed, for example, by the integration of
spectrum-based fault localization methods under a spreadsheet
system [6] and the identification of spreadsheet bad smells [7],
[8], [9], [10]. Note that both these techniques are well es-
tablished for general purpose programming languages: [11]
and [12], respectively.

In this paper, we combine bad smell detection and fault
localization techniques to create a new debugging framework
for spreadsheets. We proceed in three distinct phases.

Firstly, we analyze the extensive catalog of spreadsheet
smells that has been published in the literature [7], [8], [9],
[10]. Indeed, as a smell does not necessarily correspond to an
error, we seek to divide this catalog into two: i) the one of fault-
inducing smells, i.e., the smells that are capable, on their own,
of signaling spreadsheet errors and ii) the one of perceived
smells, that by nature do not contribute to this goal. This
analysis relies on the independent spreadsheet corpus [13],
which is composed of 73 spreadsheets that contain errors that
have previously been documented in detail.

Secondly, the cells that are signaled by fault-inducing
smells are provided as input to a fault localization algorithm.
In this step, we seek to confirm the faulty nature of certain
cells, and we also attempt to identify spreadsheet cells that
may have contributed to a fault.

Finally, we have extensively evaluated the debugging
method that we propose, again by using the corpus of [13]. Our
results show that, on average, two out of three cells identified
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(a) Spreadsheet with errors. (b) Spreadsheet with faults located.

Fig. 1: The same spreadsheet before and after our fault detection technique is applied.

by our techniques are (documented) errors, and that we are
able to locate ∼70% of the existing errors.

This paper makes the following contributions:

• we have implemented in a tool a state-of-the-art,
extensive catalog of spreadsheet smells;

• we have made a first distinction of these smells by
their natural ability of signaling spreadsheet errors;

• we proposed a method that, for the first time, combines
smell detection with spectrum-based fault localization;

• our method has also been fully implemented in a tool;

• for a concrete and independent set of documented
spreadsheets, we have analyzed the results that we
obtain using our method.

This paper is organized as follows. We start by present-
ing an example to motivate our approach in Section II. In
Section III we briefly review the smells proposed for spread-
sheets. We continue in Section IV introducing the current
techniques for spectrum-based fault localization. The tool we
have implemented is explained in detail in Section V. In
Section VI we evaluate how each smell would behave as
a fault detector and filter out those that cannot explain any
fault. Section VII details how to use smells as inputs to a
spectrum-based fault localization algorithm to find errors in
spreadsheets. In Section VIII we discuss related work and
finally in Section IX we draw some conclusions and present
future work.

II. MOTIVATION

This section motivates our approach using a spreadsheet
taken from the spreadsheet corpus of [13]. This spreadsheet can
be seen in Figure 1a and represents the estimated expenses and
revenues of a company for two different years, with parameters
like labor, rent, and taxes. This spreadsheet has ten cells whose
observed values are wrong (marked with red2 in Figure 1a).
As the net income depends on other values that are wrong
(since B15=B13-B13 and C15=C13-c14), the ultimate goal
of using such a spreadsheet is compromised and will produce
incorrect estimations.

In our approach, the first step to find these faulty cells is to
apply spreadsheet smells, individually or in combination, and
label the cells that are considered smelly (but not necessarily
faulty). In a second step of our approach, the cells identified
previously as smelly act as input to a fault localization algo-
rithm that points out potential problematic cells. Finally, we
signal toxic cells, i.e., cells that work as dependencies of faulty
ones. Finally, we point a set of cells that we indicate as being
potentially faulty.

Let us consider the spreadsheet of Figure 1a. Just by
considering a single spreadsheet smell – Multiple References3

– combined with a fault-localization algorithm allows us to
identify the errors marked with blue in the spreadsheet of
Figure 1b.

We see that, in this particular case, 8 out of 10 errors were
found by our method. Moreover, in this example, our approach

2We assume colors are visible on final digital/printed versions of this paper.
3This smell appears when a formula references too many cells, reducing its

understandability.



did not produce any false positives. That is to say that it did not
mark as faulty any correct cell. In this paper we consider a full
catalog of spreadsheet smells and a large corpus of documented
faulty spreadsheets. Our approach is able to locate more than
70% of the corpus’ faulty cells. About 2 out of 3 cells that we
identify correspond to a (documented) fault.

III. SPREADSHEET SMELLS

The concept of code smell (bad smell, or just smell) was
introduced by Martin Fowler as a first symptom that may
correspond to a deeper problem in a system [12]. This means
that a smell does not always imply an error. For example,
a method with ten parameters, despite being smelly, may be
perfectly implemented.

Along with the definition of smell, Martin Fowler also
proposed an initial catalog of potential problems in the form of
smells. Although this catalog was originally defined for source
code, the smells identified in it may sometimes be applied to
other artifacts, such as spreadsheets.

Fowler’s work inspired several authors to propose different
catalogs of smells for spreadsheets. We have taken the union
of all the proposed catalogs, obtaining the comprehensive list
shown below. The first six smells in this list were proposed
in [9], [14], and exploit, for example, statistical properties of
spreadsheet data in the same row/column. The following five
smells have appeared in [8], and refer to spreadsheet formulas.
Finally, the last four smells in this list deal with inter-worksheet
smells [7]. Each smell has a number which will be used later
on for identification:

1 – Standard Deviation: This smell detects, for a group of
cells holding numerical values, the ones that do not follow
their normal distribution.

2 – Empty Cell: Cells that are left empty but that occur in a
context that suggests they should have been filled in are
detected by this smell.

3 – Pattern Finder: This smell finds patterns in a spread-
sheet such as a row containing only numerical values
except for one cell holding a label/formula or being
empty.

4 – String Distance: Typographical errors are frequent when
inputing data. In order to try to detect these type of errors
in spreadsheets, this smell signals string cells that differ
minimally with respect to other surrounding cells.

5 – Reference to Empty Cells: The existence of formulas
pointing to empty cells is a typical source of spreadsheet
errors. This smell detects such occurrences.

6 – Quasi-Functional Dependencies: In [15] it is described
a technique to identify dirty values using a slightly relaxed
version of Functional Dependencies (FD) [16]. There
exists a FD from a column A to a column B if multiple
occurrences of the same value in A always correspond to
the same value in B, except for a small number of cases.

7 – Multiple Operations: This smell is inspired by the well-
known code smell Long Method. As in long methods,
formulas with many different operations will likely be
hard to understand. This is especially problematic in
spreadsheets since in most spreadsheet systems, there is
limited space to view a formula, causing long ones to be
cut off.

8 – Multiple References: This smell appears when a formula
references many different cells, reducing its understand-
ability. An example is: SUM(A1:A5; B7; C18; C19;
F19).

9 – Conditional Complexity: As also happens in source
code, this smell detects formulas with many condi-
tional operations. For example: IF(A3=1, IF(A4=1,
IF(A5<34700, 50)), 0).

10 – Long Calculation Chain: Spreadsheet formulas can
create chains of calculations since they can refer to other
formulas. To understand the purpose of such formulas,
users must trace along multiple steps to find the origin of
the data and intermediate calculations.

11 – Duplicated Formulas: This smell indicates that similar
snippets of code are used throughout a class. This also
happens in spreadsheets since some formulas are partly
the same as others. For example, SUM(A1:A6)+10% and
SUM(A1:A6)+20% have the first part duplicated.

12 – Inappropriate Intimacy: This smell was proposed to
flag classes with too many dependencies of another class.
In spreadsheets this can be adapted to recognize a work-
sheet that is too much related to a second one.

13 – Feature Envy: This smell appears when a formula is
more interested in cells from another worksheet, which
suggests it should be moved to it.

14 – Middle Man: A middle man is a class that delegates
most of its operations to other classes, and does not
contain enough logic to justify its own existence. In
spreadsheets this occurs if a ’middle man’ formula con-
tains only a reference to other cells, like the formula
=Sheet1!A2.

15 – Shotgun Surgery: This happens in spreadsheets when a
formula is referred by many different formulas in different
worksheets, which implies that one change results in the
need of making a lot of little changes

IV. SPECTRUM-BASED FAULT LOCALIZATION

In this section we describe the Spectrum-based Fault Lo-
calization (SFL) approach to software debugging, and present
its application to find faults in spreadsheets.

A. Software Debugging with SFL

SFL is a debugging technique that calculates the likelihood
of a software component being faulty [17]. SFL exploits cov-
erage data collected from passed/failed system runs. A passed
run is a program execution that is completed correctly (thus
behaving as expected), and a failed run is an execution where
an error was detected [11]. The criteria for determining the
execution outcome can be from a variety of different sources,
namely test case results and program assertions, among others.
The coverage data is collected at runtime, via instrumentation,
and is used to build a hit-spectra matrix.

The hit spectra of N executions constitutes a binary N×M
matrix A, where M corresponds to the instrumented compo-
nents of the program. In this binary matrix, each column i
represents a system component and each row j represents an
execution (e.g., a test case). A matrix entry aij represents
whether component i was touched (1) or not (0) during
execution j. The information of passed and failed runs is



gathered in an N -length vector e, called the error vector. The
pair (A, e) serves as input to the SFL technique.

After gathering the input information, the next step consists
in determining what columns of the matrix A resemble the
error vector e the most. This is done by quantifying the
resemblance between these two vectors by means of similarity
coefficients [18]. These coefficients are used to estimate the
suspiciousness of a given software component being faulty, as
its similarity coefficient (relative to the error vector) and its
failure probability are directly related [19].

Several similarity coefficients do exist [11]. One of the
best performing similarity coefficients for fault localization is
the Ochiai coefficient [19], [20]. This coefficient was initially
used in the molecular biology domain [21], and is defined as
follows:

sO(j) =
n11(j)√

(n11(j) + n01(j)) · (n11(j) + n10(j))
(1)

where npq(j) is the number of runs in which the component
j has been touched during execution (p = 1) or not touched
during execution (p = 0), and where the runs failed (q = 1)
or passed (q = 0). For instance, n11(j) counts the number
of times component j has been involved in failed executions,
whereas n10(j) counts the number of times component j has
been involved in passed executions. Formally, npq(j) is defined
as:

npq(j) = |{i | aij = p ∧ ei = q}| (2)

In fact, the Ochiai coefficient can be regarded as the cosine
between two vectors in n-dimensional space.

The similarity coefficients that are computed can rank
the system components according to their suspiciousness of
containing the fault. A list of components, sorted by their
similarity coefficient, is then presented to the user, helping pri-
oritize his/her inspection of software components to pinpoint
the root cause of the observed failure.

B. Spreadsheet Fault Localization with SFL

In order to use a traditional software debugging technique
(like SFL) to aid spreadsheet fault localization, adaptations
to this scope need to be performed [6], [22]. This happens
because, in the spreadsheet paradigm, the concept of test case
executions is non-existent. Code coverage also does not exist
since there are no explicit lines of code like in traditional
programming paradigms.

As an alternative to code coverage, cells and cell references
can be used to compute a hit-spectra matrix, one of the
inputs to the SFL technique. Here, a cone represents the data
dependencies of each cell, and is given by:

Cone(c) = c ∪
⋃

c′∈ refs(c)

Cone(c′) (3)

where refs(c) is the set of cells that cell c references. For each
cell, its cone can be computed.

From these cones, a hit-spectra matrix can be generated,
where each row j has the dependencies of the output cell
cj . Output cells of a spreadsheet are the set of cells that
are not referenced by any other cell. As each row of the
matrix corresponds to one of the output cells, the error vector
represents their correctness.

The hit-spectra matrix and the error vector allow the use
of the SFL algorithm to compute the failure suspiciousness of
each spreadsheet cell. We have chosen the Ochiai coefficient
as the suspiciousness metric for spreadsheet subjects because,
according to a recent empirical study comparing similarity
measures to diagnose spreadsheets [22], this coefficient was
shown to be one of the best performing.

V. THE FaultySheet Detective FRAMEWORK

We have extended our SmellSheet Detective tool [14] in
order to fully implement all the smells in the spreadsheet
catalog, and to implement the algorithms for fault localization.
This is an extension from previous works [9], and the upgraded
version of this tool was used to perform the experiments
presented in this paper. This new tool is termed FaultySheet
Detective [23].

The FaultySheet Detective supports both spreadsheets writ-
ten in the desktop spreadsheet system Excel and spreadsheets
hosted on the Google Drive cloud platform. The support for
online spreadsheets was added because migration from desktop
to online-based applications is becoming very common, with
popular office suites seeing online versions.

The use of Google Drive’s variant of our tool requires a
registered and valid login on that platform. Our tool allows the
analysis of one spreadsheet at a time, but within it the user can
choose either a single worksheet or the full spreadsheet.

This tool uses the Java API Apache POI4, in its version
3.8, for manipulating various file formats based upon the
Office Open XML standards (OOXML). To read and write
Microsoft’s Excel files, it uses the Microsoft’s OLE 2 Com-
pound Document format API.

To be able to access Google’s Drive accounts, we used the
Google Data API5. The Google Data Protocol, which we used
in version 1.47.1, is a Google owned technology for reading,
writing, and modifying information on the web. To develop the
FaultySheet Detective we used the Java version of the Google
Spreadsheets API, which enables the creation of applications
that read and modify data in spreadsheets stored in Google
Drive accounts.

The implementation of the smells strictly follows the
guidelines provided by their original source and are individual
components of the tool, i.e., the tool always runs the smells in-
dividually and sequentially but filters, intercepts and processes
their results as a whole. These results are used by SFL.

Figure 2 briefly describes our framework for spreadsheet
analysis. Files coming either from local or network storage
are used to instantiate and populate an internal Apache POI
object. This object is used, via our abstractions on Apache POI,

4http://poi.apache.org
5https://developers.google.com/gdata/
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Fig. 2: The Spreadsheet Analysis Framework we used.

to perform a set of analysis that go from smells detection to
fault localization and toxic cells analysis.

The smells are implemented using this simpler abstraction
over Apache Poi and information can be displayed either
as meta-information, via standard output streams or via the
creation of new spreadsheets, where the user also has options to
color different cells or add side information to either individual
cells or the whole sheets.

The FaultySheet Detective together with a video demon-
strating its use and the analysis framework are available at
http://ssaapp.di.uminho.pt.

VI. FILTERING OUT PERCEIVED SMELLS

The first step of the proposed technique consists in ana-
lyzing the individual performance in terms of error detection
for all the smells already proposed in the literature. Our aim
here was to filter out the smells that by their nature do not
contribute to identifying spreadsheet errors, and, for all other
smells, to rank their potential ability to detect errors.

In order to realize this step, we have devised the following
experiment.

A. Experimental Setting

We analyzed a set of well-known spreadsheets – the Hawaii
Kooker Corpus – containing 73 spreadsheets created from a
real world problem by third-year undergraduate students and
MBA students at the University of Hawaii. The errors in
these spreadsheets were not “seeded” as they were naturally
created by students. Part of the corpus was used in a study by
Aurigemma and Panko to compare detection rates for static
inspection and human inspection [13].

This corpus was developed aiming at analyzing both how
end users structure their data in a spreadsheet, and how
correct their solution is. This corpus also includes a correct
spreadsheet to compare all others against. In order to prepare
the corpus for automatically locating end-user faults with our
tool, we needed to:

• First, we manually inspected and compared the correct
solution to the end-users solutions. As a result of this
comparison, we marked all errors in the spreadsheets.
By error, we mean a cell that does not have a correct
value. We also consider that a cell defined by a correct
formula is an error when it depends on a cell marked
with an error.

• Second, we manually defined the spreadsheets’ total
number of cells. The total number of cells is given

by the number of cells of the smallest rectangle that
contains all the non-empty cells of the spreadsheet.
This consideration will not influence the computation
of the Empty Cell smell, since in its definition an
empty cell must be surrounded by non-empty ones.

B. Analyzing the Smells

We have performed a first analysis of the corpus without
any aid from the SFL. In this step we only applied all the
smells, individually, on all the spreadsheets of the corpus and
gathered the results, which can be seen in Table I.

TABLE I: Bad smells individual performance.

# Smell True Positives False Positives
11 Duplicated Formulas 436 114
8 Multiple References 313 29

14 Middle Man 305 172
10 Long Calculation Chain 88 13
6 Quasi-Functional Dependencies 86 19

12 Inappropriate Intimacy 46 125
3 Pattern Finder 16 29
9 Conditional Complexity 6 16
7 Multiple Operations 6 16

15 Shotgun Surgery 0 1
13 Feature Envy 0 0
5 Reference to Empty Cells 0 0
4 String Distance 0 21
2 Empty Cell 0 0
1 Standard Deviation 0 0

In this table we can see a list of smells (their number and
name), how many cells they pointed that really represented
faulty cells (True Positives) and how many cells they marked
that were perfectly correct (False Positives). The smells in this
table are sorted by the descending number of true positives.

In this phase we were not concerned with sorting the smells
based on how good they perform. The objective was to analyze
if their correlation with actual faults. As we can see from the
table, the last 6 smells cannot detect any cell with faults, with
the 15 and 4 detecting only cells that contain no faults at all
(false positives). From these results, we have split the smells
into two groups:

a) Fault-Inducing Smells: This group contains the
smells 11, 8, 14, 10, 6, 12, 3, 9, 7. These smells have different
degrees of success, but to some extent they are all capable of
detecting cells that really contain faults. This is important as
we will use a two step strategy - smell detection and SFL -
where the final responsibility for the results is on the latter
step.

b) Perceived Smells: This group contains the smells 15,
13, 5, 4, 2, 1. None of these smells was capable of detecting
at least one cell with a fault. In fact, two of these smells
pointed to correct cells. This result means we can discard
these smells. In fact, if we used these cells to feed into our
fault localization framework, we would obtain a misguided
diagnosis. This happens because there was no error in the
indicted input cells.

Before this study, none of these smells was ever used to
detect faults, with the exception of the duplicated formulas,
that was shown to be correlated with the existence of faults in
spreadsheets [8].



This step fulfilled two objectives. First, we were capable
of completely discarding a group of smells from the existing
literature. This does not mean they are not relevant, as they
still point bad practices when designing spreadsheets. It just
means that, to what fault localization is concerned, they do not
produce any interesting results. Second, it will provide us with
a set of smells that we can use to apply our technique. In the
next section, we will describe how to do so.

VII. FAULT-INDUCING SMELLS MEET SPECTRUM-BASED
FAULT LOCALIZATION

In the previous section we have selected the smells that
can detect cells that have faults.

In this section we will combine this fault detection method
with an SFL algorithm. This will allow to validate the faults
detected by the smells, and further locate other existing faults
in the spreadsheet that were not yet detected.

Next we present the algorithm we devised to implement
this new technique.

A. The Algorithm

The algorithm of the approach is depicted in Algorithm 1.
The inputs of our approach are 1) the spreadsheet under test
(S) and 2) the threshold value for the suspiciousness score
given to each cell (C).

Algorithm 1 Smells as input to SFL.
Input:

Spreadsheet S
Suspiciousness Threshold C

Output:
Diagnostic Report R

1: L ← CALCULATESMELLS(S, T ) . Compute the smell listing
2: references← ø . Cell references computation
3: cones← ø
4: for all cells c in S do
5: cones[c]← CONE(c)
6: references← references ∪ cones[c]
7: end for
8: output← S \ references . Output cells
9: M ← |output|

10: ∀i∈{1...M} : A(i)← ø . Hit spectra computation
11: ∀i∈{1...M} : e(i)← 0
12: for i = 1→M do
13: A(i)← cones[output[i]]
14: if HASSMELL(L, output[i]) then
15: e(i)← 1
16: end if
17: end for
18: R← SFL(A, e) . Fault Localization
19: R← FILTER(R, C) . Prune suspiciousness listing
20: R← R∪ TOXICCELLS(L)
21: return R

As SFL computes a ranking of cells, sorted by their
suspiciousness of containing a fault, the last input of our
algorithm, C, is used as a way to ensure that not every cell
with nonzero suspiciousness gets inspected. In the software
debugging domain, we often use a metric called Ce that
evaluates the effort required by the user to pinpoint faulty
locations. This metric indicates the number of components

(e.g., statements) that the user must inspect until the fault
is reached. In the spreadsheet domain, we adopted a similar
route, by setting a threshold on the cells to be inspected.
This threshold can be either by value (i.e., only consider cells
whose suspiciousness is greater than the threshold), or by
percentile (i.e., only consider cells whose suspiciousness is
above a certain percentile). This way, we are able to not only
evaluate the effort required by the user in his inspection of
the diagnostic ranking, but also measure the amount of faults
found and the amount of false positives given by our approach.

First, on line 1 the list of smelled cells is computed. After
that, on lines 2 to 7 the cones for every cell are calculated.
A cone represents the dependencies of a cell – either direct
or indirect references. Also computed is the set of all cells
that are references of other cells (useful for finding out output
cells). The worst case time complexity of this step is O(N2),
whereas the spatial complexity is O(N).

On line 8, the set of output cells is calculated. Output
cells are not referenced by any other cell, therefore they can
be computed by subtracting the set of referenced cells to
the spreadsheet. With the information about output cells, cell
cones, and smelled cells, we are able to compute the inputs to
SFL – a hit spectra matrix, and an error vector. As depicted in
lines 10 to 17, each line of the hit spectra matrix is the cone
of an output cell, and its corresponding error vector entry is
either 1 if the output cell has a smell, and 0 otherwise. This
step has a time complexity of O(N) and a spatial complexity
of O(N).

With the hit spectra matrix A and the error vector e, the
fault localization is performed, by calling the SFL method
on line 18, having time complexity of O(N2) and a spatial
complexity of O(N).

Finally, the suspiciousness filtering step removes any com-
ponent from list R that is below the C threshold. This step
has both time and space complexities of O(N), and the last
step expands the listing to include toxic cells, that are cells
whose references are smelly cells. These steps have a worst
case space complexity of O(N2) and a time complexity of
O(N), where N is the total number of non-empty cells of a
spreadsheet.

Overall, our approach has a worst-case time complexity of
O(N2) and a spatial time complexity of O(N), where N is
the total number of non-empty cells of a spreadsheet.

B. Analyzing the Algorithm Results

The SFL algorithm uses smell-marked cells to compute a
ranking of faulty cells: cells with higher rank have a higher
likelihood of containing errors. We can configure our algorithm
with a threshold that defines the effort to pinpoint faulty
locations. Therefore, we will consider two possibilities: first,
we only mark as faulty those cells whose suspiciousness score
is 1.0, so that we maximize true positives. Second, we consider
a percentile: we mark as faulty the top 10% of cells with
highest suspiciousness.

We start by considering the first threshold. This is the
approach a programmer would follow when considering the
results produced by an SFL algorithm for regular programming
languages: programmers will focus on searching for errors in



0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

1 
Sm

ell

2 
Sm

ell
s

3 
Sm

ell
s

4 
Sm

ell
s

5 
Sm

ell
s

0.67 0.66 0.65

0.6
0.58

Number of smells considered

%
 tr

ue
 p

os
iti

ve
s

Fig. 3: Percentage of true positives.

the parts marked by the algorithm as being tagged as very
suspicious.

We also want to understand if combining smells improves
the results. Thus, we consider all possible combinations of 1, 2,
3, 4, and 5 smells. Figure 3 shows, on average, the percentage
of cells marked by our algorithm that are in fact documented
errors in the spreadsheets (i.e., the true positives). We do not
consider combinations of 6 smells of more as we did not find,
in the corpus we are using, a cell containing such a value: 5
was the absolute maximum.

The best results are achieved when we give as input to
SFL cells detected by a single smell: on average in three
cells marked as faulty, two cells do have an error, value that
decreases when more smells are added. When combining 5
smells, only one cell out of two marked cells on average is
an error. Intuitively, this happens because the more smells we
consider, the more cells will be marked by the algorithm, and
thus the more cells SFL will also consider faulty. Since the
number of faults is always the same, the ratio will become
worse every time a new smell is considered.

Next, we present the results of combining each of the 9
fault-inducing smells individually with SFL. Figure 4 shows,
for each smell, the percentage of errors found over the total
number of cells labeled as smelly by our algorithm (left y-
axis), and the percentage of errors found over the total of
existing errors (right y-axis).

We can see that the five smells that combined with SFL
locate more errors are: Multiple References with 72.5% of the
total errors, Long Calculation Chain with 53.1%, Standard
Deviation with 50.6%, Multiple Operations with 14.5% and
References to Empty Cells with 14.2% of the total errors
found. These are also the smells that produce the best true/false
positives ratio. For example, Multiple References produces 3

times more true positives than false ones. On practice this
means that every three out of four marked cells contain an
error.

In Figure 3 we can see the average results of combining
different smells. Next, we consider the combination of the
best smells, according to the results shown in Figure 4. The
results of the combinations of 1 up to 5 smells are presented
in Figure 5. Again, the left y-axis represents the ratio of real
faults over all the marked (smelly) cells, and the right y-axis
represents the real smells over the real faults.

As expected, by giving more smelly cells to the SFL
algorithm the number of detected errors increases. We are able
to locate 77.9% of errors with this setting. However, because
different smells may mark the same cells as smelly (this is
the case of smells 8 and 10), this represents only a small
improvement with a high cost: the number of false positives
doubles, which increases the work of a user of our technique
to detect errors.

Next, let us consider the 10% percentile threshold, which
marks as faults 10% of the marked cells with highest suspi-
ciousness. Figure 6 presents such results when considering the
combination of (up to) five smells.

It is quite clear that the best case scenario in this case is
worst than the worst case scenario in the approach where we
use only the faults marked by SFL with the 100% threshold
(see Figure 3).

We can conclude that the combination of smells and SFL
produces good results when a single smell is considered and a
suspiciousness score threshold of 1.0. A combination of smells
does (slightly) improve the number of detected errors, but at
a high cost: the increase of false positives, which implies an
increase in the work to locate faults in a spreadsheet.

C. Threats to validity

The main threat to external validity of these empirical
results is the fact that, although the subjects were all real
spreadsheets, it is plausible to assume that a different set of
subjects, having inherently different characteristics, may yield
different results. This is particularly true if we consider inter-
worksheet smells.

A second threat is the fact that we use only one corpus of
spreadsheets. Although this is the case, it is also true that it
is the largest corpus of spreadsheets with documented errors,
and it was created with the goal of providing a research corpus
for spreadsheet error detection. This is a necessary condition
to execute such a study. If the errors are not known, we can
not provide an analysis that is not speculative.

Threats to internal validity are related to faults in our
underlying implementation, such as smell detection, hit spectra
generation, or fault localization. To minimize this risk, some
testing and individual result checking were performed before
the experimental phase.

VIII. RELATED WORK

The work presented in this paper focuses on identifying
smells in a spreadsheet and feeding them into a fault local-
ization framework. Other efforts related to using spreadsheet
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Fig. 4: True positive over false positives and percentage of errors found using single smells.
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Fig. 5: Combination of 1 up to 5 of the smells with better results.

smells and metrics to detect errors in spreadsheets have been
proposed before [24], [25]. Hermans et al. [7] proposed an
approach to locate spreadsheet smells and communicate them
to users via data flow diagrams. Recently, an approach to
detect and visualize data clones (i.e., formulas whose values
are copied as plain text to a different location) was also
described [26].

GoalDebug [27] is a spreadsheet debugger targeted at end
users. Whenever the computed output of a cell is incorrect, the
user can supply that cell’s expected value. This expected value
is used by the system to generate a list of change suggestions
for cell formulas, ranked using a set of heuristics. A drawback
of this approach is that users are expected to detect errors in
the spreadsheet, and provide the system with the correct output
value. In our approach, the error detection phase is automated
by testing spreadsheets against our smell catalog.

There are several spreadsheet analysis tools that try to
find inconsistencies in spreadsheet formulas [28], [29], [30],

[31], [32], [33], which differ in the rules they employ and the
amount of user effort required to provide additional input. Most
of these approaches require the user to annotate the spreadsheet
cells with additional information. An exception is the UCheck
system [34], which can perform unit analysis automatically by
exploiting header inference techniques [28].

Other approaches that aim at minimizing the occurrence
of errors in spreadsheets include code inspection [35], refac-
toring [10] and the adoption of better spreadsheet design
practices [36], [37], but none of these approaches focuses on
spreadsheets’ debugging.

IX. CONCLUSION

In this paper we described an approach to automatically
locate faults in spreadsheets. This approach uses a catalog
of 15 well-known documented spreadsheet smells to perform
smell detection and provide an indication of possible faults in
the spreadsheet.
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This set of smells was divided into two: one containing
smells that actually point out faulty smells, and another with
the smells that cannot find cells with faults.

The cells detected by the good smells, the first set, are fed
into a spectrum-based fault localization framework, commonly
used in the software debugging field, as a way to improve
the quality of the diagnosis. Our empirical experiments, using
a well-known faulty spreadsheet catalog, have shown that
our approach is able to detect more than 70% of errors in
spreadsheets in a setting where two out of three identified
faulty cells are documented errors.

There are several research questions that still require further
investigation. First, we plan to provide natural and intuitive
visualizations to improve user’s comprehension of diagnostic
data. Second, we plan to study ways to provide fix suggestions
to users, namely by mutating spreadsheets [38].

ACKNOWLEDGEMENTS

This work is partially funded by the ERDF through the
Programme COMPETE, the Portuguese Government through
FCT - Foundation for Science and Technology, project ref-
erence FCOMP-01-0124-FEDER-020484. The second author
also supported by the FCT grant SFRH/BPD/73358/2010.

REFERENCES

[1] R. R. Panko and N. Ordway, “Sarbanes-oxley: What about all the
spreadsheets?” CoRR, vol. abs/0804.0797, 2008. [Online]. Available:
http://dblp.uni-trier.de/db/journals/corr/corr0804.html#abs-0804-0797

[2] F. Hermans, M. Pinzger, and A. van Deursen, “Supporting professional
spreadsheet users by generating leveled dataflow diagrams,” in Proc.
of the 33rd Int. Conf. on Software Engineering, ser. ICSE ’11.
New York, NY, USA: ACM, 2011, pp. 451–460. [Online]. Available:
http://doi.acm.org/10.1145/1985793.1985855

[3] R. Panko, “Spreadsheet errors: What we know. what we think we
can do.” Proceedings of the 2000 European Spreadsheet Risks Interest
Group (EuSpRIG), 2000.

[4] ——, “Facing the problem of spreadsheet errors,” Decision Line, 37(5),
2006.

[5] C. M. Reinhart and K. S. Rogoff, “Growth in a time of debt,”
American Economic Review, vol. 100, no. 2, pp. 573–78, September
2010. [Online]. Available: http://www.aeaweb.org/articles.php?doi=10.
1257/aer.100.2.573

[6] B. Hofer, A. Riboira, F. Wotawa, R. Abreu, and E. Getzner, “On the
empirical evaluation of fault localization techniques for spreadsheets,”
in Proc. of the 16th Int. Conf. on Fundamental Approaches to Software
Engineering, 2013, pp. 68–82.

[7] F. Hermans, M. Pinzger, and A. van Deursen, “Detecting and visualizing
inter-worksheet smells in spreadsheets,” in ICSE, M. Glinz, G. C.
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