
Probabilistic Estimation of Network Size and Diameter

Jorge C. S. Cardoso
E.Artes / CITAR

Universidade Católica Portuguesa (UCP)
Porto, Portugal

Email: jorgecardoso@ieee.org

Carlos Baquero and Paulo Sérgio Almeida
DI/CCTC

Universidade do Minho
Braga, Portugal

Email: {cbm, psa}@di.uminho.pt

Abstract—Determining the size of a network and its diameter
are important functions in distributed systems, as there are a
number of algorithms which rely on such parameters, or at least
on estimates of those values.

The Extrema Propagation technique allows the estimation of
the size of a network in a fast, distributed and fault tolerant
manner. The technique was previously studied in a simulation
setting where rounds advance synchronously and where thereis
no message loss.

This work presents two main contributions. The first, is the
study of the Extrema Propagation technique under asynchronous
rounds and integrated in the Network Friendly Epidemic Mul-
ticast (NeEM) framework. The second, is the evaluation of
a diameter estimation technique associated with the Extrema
Propagation. This study also presents a small enhancement to
the Extrema Propagation in terms of communication cost and
points out some other possible enhancements.

Results show that there is a clear trade-off between time and
communication that must be considered when configuring the
protocol—a faster convergence time implies a higher communi-
cation cost. Results also show that its possible to reduce the total
communication cost by more than18% using a simple approach.
The diameter estimation technique is shown to have a relative
error of less than 10% even when using a small sample of nodes.

Keywords-Aggregation; Network Size Estimation; Network Di-
ameter Estimation; Probabilistic Estimation;

I. I NTRODUCTION

Determining the size of a network is an important function
in a distributed system. There are a number of algorithms
which rely on an estimate of the network size, or that would
at least benefit from such an estimate, for example: distributed
hash tables can take advantage of having an estimate of the
network size to adjust the size of the routing table that each
node keeps; gossip-based protocols [1], [2] can use an estimate
of the network size to better adjust the gossiping fanout
parameter;

Although important, determining the size of a network, in
a distributed manner, is not trivial. Algorithms that do this
should be fast, to cope with high churn; fault-tolerant, to
cope with link and node failures; and use a small number of
messages, in order not to impose a high overhead in network
bandwidth.

Another important network parameter is its diameter—the
maximum shortest-path length between any two pairs of nodes.
Knowing the diameter, or at least having an estimate of its
value is important to configure, for example, the time-to-live
field on many protocols.

In a previous work, [3], [4] introduced the Extrema Propa-
gation technique, which allows the estimation of the size ofa
network. This technique is fast because it produces estimates
in a number of steps close to the theoretical minimum;
completely distributed, because every node determines the
estimate by itself; does not require global identifiers; and
tolerates message loss. Also, it is possible to adapt it in order
to have it produce an estimate of the network diameter.

However, the Extrema Propagation technique was originally
studied in a simulation setting where rounds advance syn-
chronously and where there is no message loss. In a real
scenario, networks and nodes are often not synchronous, some
nodes may fail, links have different latencies and messages
may be lost in transit. The purpose of this work is to:

• study the Extrema Propagation technique under asyn-
chronous rounds;

• extend the technique in order to have it produce an
estimate of the network diameter;

• evaluate an optimization to the original message size of
the Extrema Propagation technique.

In order to study the technique in a more realistic setting,
we adapted and integrated it in the Network Friendly Epidemic
Multicast [5] (NeEM) framework1 since NeEM could also
benefit from the estimates produced by Extrema.

This paper is organized as follows: Section II describes
some algorithms that perform data aggregation across a net-
work and compares them to the algorithm used in this paper.
Section III describes the NeEM software that was modified and
used in this work. Section IV gives an overview of the Extrema
Propagation technique for estimating the size of a network and
how it can be adapted to estimate the network’s diameter. Sec-
tion V describes the general experimental procedure and the
various experiments performed. Section VI presents the results
from the experiments and, finnaly, Section VII concludes.

II. RELATED WORK

There are numerous algorithms for estimating the size of a
network or, more generally, for performing data aggregation
across a network.

Some algorithms, more directly related to this study are
described next.

1NeEM is a software framework for group communication based on gossip
protocols.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634242?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The work in [6] presents two methods for estimating the
size of a network: the Hops Sampling and the Interval Density
methods.

In the Hops Sampling method, an initiator node starts
the process by sending a message togossipTo nodes. The
message contains a hop count that is incremented prior to
being sent. Messages sent from a nodep are only sent to
nodes from whichp has not received any message. After
gossipResults rounds have elapsed the initiator collects a
sample of hop counts fromgossipSample other nodes and
uses the average of the hop counts as an estimate oflog(N).
However, contrary to the Extrema technique, this methods
requires that each node is able to maintain a membership list
chosen uniformly at random from the system. Also, only the
initiator node will have an estimate of the size.

In the Interval Density method, the process identifiers are
hashed and mapped to a point in the interval[0, 1]. The
initiator node then calculates the number of processes,X ,
in an interval I < 1. The estimate of the network size
is then calculated asX/I. In order to collect the samples
(identifiers) the authors propose piggybacking messages from
a membership maintenance protocol with information about
the interval used in the estimates. In this method, the difficulty
is in defining the intervalI, since it depends on the network
sizeN .

Push-sum [7] introduces a different approach for computing
sums and averages and can provide high precision estimates
after a sufficient number of rounds. Each node keeps two
variables:s andw initialized toxi (the contribution of nodei
to the sum) and1 (the initial weight of this contribution),
respectively. In each round, nodes select another node at
random and sends

2
and w

2
to that node (and keeps

2
and w

2

to themselves). Each pair ofs and w received by a node is
added to the current ones. In each round, the estimate of the
average is given locally bys

w
. After a number of rounds all

nodes converge to the same result, the global average.

The push-pull algorithm [8] introduces a similar approach
but in this case information is exchanged in a symmetric
manner. A nodeA randomly selects another nodeB to
exchange its valueva and sends him a Push message with
va. Upon receipt of a Push message, node B will send a Pull
message with its own valuevb to the node A. After receiving
a Push or a Pull message both nodes will update their value
v:

v =
va + vb

2

This technique (as well as the one by [7]) is sensitive to
message loss. Both algorithms require that the total system
“mass” is kept constant. A lost message will break this
requirement. In Extrema, message loss does not affect in the
long run the result of the algorithm since “each message is
made obsolete by subsequent ones: if a message from A to
B containing vectorx is lost, a subsequent message will have
contenty, wherey ≤ x (in pointwise order)” [4].

III. N EEM

NeEM – Network Friendly Epidemic Multicast [9] – is
an epidemic multicast protocol which relies on connection-
oriented transport connections (TCP/IP) in order to take ad-
vantage of the built-in end-to-end congestion control.

When gossiping, NeEM combines different strategies. If the
message to be gossiped is small (smaller than a predefined
value), then it is always pushed until its time-to-live (TTL)
has expired. If the message is large, then it is pushed dur-
ing PushTTL rounds, and thenadvertised until TTL has
expired. BothTTL andPushTTL are preconfigured.

NeEM has been implemented in Java2 and its main compo-
nents are:

Multicast channel Provides applications with an interface
for joining and leaving the network and for receiving and
multicasting messages. In order to join the network, a peer
needs to know, at least, another peer already in the network
which will act as the entry point. A peer is identified by a
randomly generated universally unique identifier (UUID).

Gossip Layer Takes care of gossiping messages using the
strategies described earlier. Keeps a cache of messages so
that it can respond to pulling by peers. It also keeps a list
of known message advertisers in order to pull advertised
messages. Messages are identified by a randomly generated
UUID. When gossiping, it randomly selectsFanout peers
from the partial membership kept by the overlay layer.

Overlay Layer Manages the overlay network and a partial
membership list. The overlay tries to maintain a fixed number
of peers in the local membership list (in NeEM’s implementa-
tion this is also calledFanout but is different from the gossip
Fanout). Membership is dynamic as the overlay will shuffle
peers periodically, by randomly selecting two peers from the
current list and informing them of one another. Those peers
will then randomly decide if they add the other one to the
current list, eventually purging another.

Transport Layer The transport layer manages TCP con-
nections between peers, maintaining queues of messages per
connection.

NeEM’s structure can be seen as layer stack as depicted in
Figure 1.

Application
Multicast Channel

Gossip
Overlay

Transport

Fig. 1. NeEM’s layer stack.

NeEM is implemented in a way that allows easy integra-
tion of other protocols. The transport layer allows different
handlers to be registered and will demultiplex messages based
on a logical port and deliver them to the appropriate handler.

2See the project’s sourceforge web page: http://neem.sourceforge.net/index.
html.



Peers join a NeEM group by contacting another known peer,
however, even if all peers join through the same known peer,
the overlay topology will always tend to a random network,
since NeEM shuffles peers periodically by performing a ran-
dom walk.

IV. EXTREMA PROPAGATION

The Extrema Propagation technique is a probabilistic data
aggregation technique which works as follows.

“[...] if we generate a random real number in
each node using a known probability distribution
(e.g. Gaussian or exponential), and aggregate across
all nodes using the minimum function, the resulting
value has a new distribution which depends on
the number of nodes. The basic idea is then to
generate a vector of random numbers at each node,
aggregate each component across the network using
the pointwise minimum, and then use the resulting
vector as a sample from which to infer the number
of nodes (by a maximum likelihood estimator).” [4]

Basically, each node generates a vector ofK exponentially
distributed random numbers (Minimums vector in the rest
of this document) and sends it to its neighbours. Each node
aggregates and resends vectors from neighbours using the
pointwise minimum—an idempotent operation. After conver-
gence (determined by each node, after a predefined number of
rounds have passed without changing theMinimums vector)
the resulting vector—with theK global minimums—can be
used to estimate the number of nodes in the network.

The technique’s focus is on speed not on accuracy, since
aiming at very low errors would need very large vectors. For
example, an error of1% with 95% confidence would require

K = 2 +

(

1.96

error

)2

= 2 +

(

1.96

0.01

)2

= 38418.

A 10% error, however, only requiresK = 387.
In order to optimize the message’s size, the technique en-

codes the values using only the exponent of its representation
(mantissa, exponent). Furthermore, for most cases only5 bits
need to be used to represent the exponent. This means that a
vector withK = 387 needs only

5 × 387 bits = 242 bytes.

Convergence is determined by a predefined number of
rounds without changes (no news rounds,T ) occurring in the
Minimums vector. The minimum number of no news rounds
to wait depends on the network topology and size, but a safe
value can be used to accommodate, at least, a wide range of
expected network sizes.

The technique was studied by simulating runs (with syn-
chronous rounds) for several values ofK and for different
types of networks (geometric 2D, random and preferential
attachment networks) and sizes (100, 1000 and10000 nodes).
For each run, the average and maximum number of rounds
needed to converge where recorded, as well as the maximum
number of rounds with no news.

Results show that, for random and preferential attachment
networks,T = 5 is sufficient whenK = 10 or K = 100
and T = 4 is sufficient whenK = 1000. For geometric 2D
networks,K should be100 or 1000 sinceK = 10 would lead
to a large overhead of the no news rounds over the average
number of rounds needed to converge. ForK = 100 a T = 19
would suffice and forK = 1000, T = 11. These are all
conservative values to ensure that all nodes have converged.

The Extrema Propagation technique is resilient to message
failures: if a message (with vectorx) from nodeA to node
B is lost, in the next round, it will be superseded by another
message (vectorx′) with x′ ≤ x.

The synchronous version of the basic algorithm, though,
does not cope with message loss since nodes are made to wait
for all neighbours. A single message loss would deadlock the
system. It is easy to adapt the algorithm and cope with message
loss. As suggested in [4], the algorithm can be modified to,
instead of waiting for every neighbour, forever:

• Wait for all neighbours, until a timeout occurs
(ONLY TIMEOUT strategy).

• Wait for all neighbours minusF (ONLY F strategy).
• Wait for all neighbours, until a timeout and then wait for

all minusF (TIMEOUT PLUS F strategy).

For sake of completeness, there is one more variant that can
be used:

• Wait for all neighbours minusF , until a timeout occurs
(F PLUS TIMEOUT) strategy.

These variants, besides allowing to cope with message
failures, make the algorithm more robust in face of slow links.
In the original algorithm, although not fatal, a single slowlink
would slow down the entire system. By introducing timeouts
and the possibility of not waiting for every neighbour, a slow
link can be regarded as a message failure. This means that
the algorithm may not wait for nodes behind slow links, thus
not slowing the entire round. Messages sent on slow links will
arrive and be accounted for in the following rounds.

In Section V, one discusses experimental results that can
guide the proper configuration of the timeout andF in
practical asynchronous settings.

A. Diameter Estimation

The Extrema Propagation technique can be augmented to
also give an estimate of the network diameter: for each entry
in theMinimums vector of the Extrema technique, one adds a
corresponding entry in a new vectorHops. TheHops vector
is initialized at every node with zeroes. Every time that a
node updates theMinimums vector because it has received
a smaller value from one of its neighbours, it also updates
the corresponding entry in theHops vector with the value
received from that neighbour. TheHops vector is also updated
when a node receives a smaller entry in theHops vector for an
equal value in theMinimums vector (meaning that a shorter
route to that minimum was found). A copy of theHops vector,
with values increased by1, is sent along with theMinimums
vector, to every neighbour, in each round.



After convergence, in each nodemax(Hops) is an estimate
of its eccentricity and the network diameter that can be
determined across the network by aggregating a maximum of
these eccentricities. In particular, if one of the minimumswas
generated in a periphery node the final diameter estimate will
be exact.

B. Message Size Optimization

The standard message in the Extrema Propagation is a
message withK values,5 bits each, corresponding to the
minimums vector that each node stores. This vector is updated
when one (or several) new minimums is received, but is sent
in every round even if it is equal to the last vector sent. Also,
the same vector is sent to every neighbour, regardless of what
that neighbour already “knows”.

This means that potentially old information is sent in each
message. A simple way to mitigate this inefficiency is to store
the last vector that each neighbour sent and use it as a way to
determine what needs to be sent to that neighbour in the next
round. This way, messages are differentiated by neighbour.A
message only needs to contain values that are smaller than the
ones in the current copy of that neighbours’ vector.

Instead of sendingK ∗ 5 bits, each node can send onlyN
pairs of(index, value) entries – the number of values smaller
than the ones in the current copy of that neighbour’s vector.
In order to correctly interpret the message, the receiving node
needs to know also how many pairs were sent. This message
will only save bandwidth if the number of pairs(index, value)
is sufficiently small. If not, the standard format should be used
instead.

Optimizing the message size in this way means trading off
bandwidth usage for memory usage since each node now has
to keep the last vectors received from each neighbour.

The final message structure uses one of two types:

Type 0 1 bit
Number of pairs (N ) ceil(log2(K)) bit
(Index, Value) pairs (ceil(log2(K)) + 5) ∗ N bit

Type 1 1 bit
Minimums vector K ∗ 5 bit

In order for Type 0 to be used it must save bandwidth, which
means that:

ceil(log2(K)) + (ceil(log2(K)) + 5) ∗ N ≤ K ∗ 5 (1)

This results in:

N ≤
K ∗ 5 − ceil(log2(K))

ceil(log2(K)) + 5
(2)

V. EXPERIMENTS

A. Setup

The evaluation of the integration of the Extrema Propagation
technique in NeEM was done using Modelnet [10] as the
simulation platform.

The following is a description of the general simulation
setup and procedures that were used.

The experiment network consisted of two computers –
one emulator and one application host with the following
characteristics:

Emulator:
• Pentium 4 CPU at 3.40 GHz
• 2 Gb RAM
• 3Com Etherlink XL 10/100 PCI TX NIC
Application host:
• Pentium 4 CPU at 3.40 GHz
• 1.5 Gb RAM
• Broadcom NetXtreme Gigabit Ethernet
Modelnet’s graph file was created with the following com-

mand:

inet -n 3037 | inet2xml -l -p 800 \
among 50 stubs min-client-stub 1000 1 0\
max-client-stub 1000 50 0

Which creates a network of 3037 nodes (the minimum for
inet) and 800 clients3 attached among 50 stubs4. The command
also specifies the bandwidth of the client-stub link to be
1000 kbps, latency between[1, 50] milliseconds and no packet
drops. All the other link types have default parameters, except
for latency which is inferred from the node distance.

The experiments were controlled by a set of shell scripts
that invoked specific JMX (Java Management Extensions)
functions on a Java class that represented the experiment.
This class was responsible for loading all instances of the
modified multicast channel, connecting them, starting the
Extrema protocol and wait for it to finish.

The process of running an experiment consisted of:
1) Loading the main experiments class;
2) Adding N nodes by randomly picking N virtual node

addresses from the set assigned to the machine;
3) Configuring each node according to the experiment

settings;
4) Randomly connecting nodes among themselves;
5) Letting overlay network settle for a few seconds;
6) Starting the extrema protocol on one randomly chosen

node;
7) Waiting until a preconfigured number of rounds had

elapsed;
8) Stopping the experiment;
9) Saving the log files.
The log files recorded the following:
• Message send timestamp;
• Message receive timestamp;
• After each round: round number, currentMinimums

vector, currentHops vector, timestamp, number of total
sent messages.

3A client node in Modelnet’s terminology is an edge node in thevirtual
network corresponding to a computer attached to the wide area internet [11,
p. 10].

4A stub is a gateway for client nodes to access the network [11,p. 10].



Running several instances of the protocol on the same
machine has two potential bottlenecks: the CPU and the
network interface.

In the case of our experiments, the communication load of
each node was fairly small so bandwidth was not a problem.
On the other hand, running several threads of the protocol in
the Java virtual machine turned out to be very CPU intensive.

The latency between nodes, for an increasing number of
nodes and for different configurations, was measured and
the results showed that, for some configurations and number
of nodes, the latency between nodes increased beyond that
imposed by Modelnet (and the message processing overhead
at the machine).

This restriction led to the use the following maxi-
mum values in most of the experiments:K = 10,
MaximumNumberOfNodes = 75 andOverlayFanout =
10.

In all experiments that used this modified NeEM im-
plementation, the network topology used was the one that
emerges through NeEM’s automatic shuffling of peers: an
approximately random network.

B. Timeout and F

In order to determine the best combination ofT imeout and
F to use in the NeEM Extrema protocol, several combinations
were tested.

The base values for the tested parameters wereT imeout =
200, F = 0.8 (in the rest of this document,F is the fraction
of neighbours to wait for) and theF PLUS TIMEOUT
strategy.

For each of the three parameters, several values were tested,
maintaining the other parameters with the base values. Thisled
to the variations enumerated in Table I.

Timeout Strategy F
200 F PLUS TIMEOUT 0.8
400 F PLUS TIMEOUT 0.8
600 F PLUS TIMEOUT 0.8
400 ONLY TIMEOUT 0.8a

400 TIMEOUT PLUS F 0.8
400b ONLY F 0.8
400 F PLUS TIMEOUT 0.5
400 F PLUS TIMEOUT 0.9

TABLE I
CONFIGURATIONS FOR THENEEM EXTREMA IMPLEMENTATION .

aThe ONLY TIMEOUT strategy does not takeF into account.
bThe ONLY F strategy does not takeT imeout into account.

For each configuration,100 runs were executed and the log
files were analyzed to determine the number of rounds, and
the total time until convergence of theMinimums vector.

C. Diameter Estimation

1) Relative Error: In order to estimate the expected ac-
curacy of the diameter estimation technique, we simulated
the method using three different network topologies (random

networks, preferential attachment networks and random ge-
ometric 2D networks) and sizes (50, 500 and 5000 nodes
networks).

For each topology and size,150 graphs were generated. For
random and preferential attachment graphs, average degrees of
5, 10 and15 were used. For each,50 graphs were created. For
2D graphs,1.3, 1.6 and1.9 relative radius were used and50
graphs were created for each.

For each graph, three different values ofK were simulated,
50 times each.

For a graph of sizeN , the simulation consisted of:

1) GeneratingK random exponentially distributed values
coded according to [4] for each node in the graph;

2) Calculating theK global minimums across the graph;
3) Determining the nodes that generated each of the global

minimums;
4) For each global minimum, calculating the shortest paths

from all nodes to the nodes that generated the minimum
and taking the minimum shortest path length;

5) Calculating the estimated diameter as the maximum of
the previous values across all nodes.

For each graph, the diameter, radius and the eccentricitiesof
all nodes were also calculated and recorded. This allowed to
calculate the error in the diameter estimation and percentage
of nodes in the periphery of the graph.

2) Rounds to converge: Convergence of theHops vector
cannot be determined by examining the log files, in normal
circumstances. This happens because the overlay topology
changes over time (NeEM “shuffles” peers periodically).

In order to get a rough idea of how long it might take for
the Hops vector to converge in a static topology, a different
test was performed. Before starting the Extrema protocol, all
nodes were configured to disable shuffling, thus freezing the
current overlay topology. A snapshot of the topology was then
taken and recorded in a graph file for posterior analysis.

Two configurations were tested: one in which rounds are
fast, because only half the neighbours are required in order
to advance; and one in which rounds are slow, because nodes
wait for every neighbour until a timeout and then proceed after
a fraction of neighbours have responded. This correspondedto
the following parameters:

• Fast rounds: T imeOut = 400, Strategy =
F PLUS TIMEOUT , F = 0.5.

• Slow rounds: T imeOut = 400, Strategy =
TIMEOUT PLUS F , F = 0.8.

For each value ofK ∈ {10, 100}, 100 runs were executed
and recorded.

The log files were analyzed (specifically theHops vector)
to determine the error in the diameter estimation in the rounds
after convergence of theMinimums vector. The overlay graph
file served as reference for the true diameter of the network.

D. Message Optimization

In order to evaluate the message size improvements pre-
sented in Section IV-B, the implementation of Extrema in



NeEM was extended in order to log, in each round, the number
of values in theMinimums vector that needed to be sent
to each neighbour, based on the comparison of the current
Minimums vector and the last vector received from each
neighbour. The same was done for theHops vector.

The analysis was done considering two cases separately:
messages without the Hops vector (only size estimation would
be performed); and messages with the Hops vector (both size
and diameter estimation would be performed).

The message size improvement procedure for the message
with the Hops vector is analogous to the one presented in
Section IV-B.

Five hundred runs were executed with parameters:
T imeout = 400, F = 0.5, Strategy =
F PLUS TIMEOUT and K = 10. Only networks
with 65 nodes were tested.

VI. RESULTS AND DISCUSSION

A. Timeout and F

The average number of rounds until convergence for the
different combinations is shown in Figure 2.

20 30 40 50 60 70

0
1

2
3

4
5

Number of Nodes

R
ou

nd
s

200 F_PLUS_TIMEOUT 0.8
400 F_PLUS_TIMEOUT 0.8
600 F_PLUS_TIMEOUT 0.8
400 ONLY_TIMEOUT 0.8
400 TIMEOUT_PLUS_F 0.8
400 ONLY_F 0.8
400 F_PLUS_TIMEOUT 0.5
400 F_PLUS_TIMEOUT 0.9

Fig. 2. Average number of rounds ellapsed until convergence.

The plots on Figure 2 indicates, from the number of rounds
perspective, that:

• Trying to receive all possible messages before ad-
vancing round produces the best results. This is
what happens in theONLY TIMEOUT and the
TIMEOUT PLUS F settings.

• Waiting for only half of the neighbours is the worst
setting. Clearly, in that setting, the timeout is not being
triggered, meaning that rounds are advancing with only
half the messages received increasing the number of
needed rounds.

• A timeout of 400 milliseconds seems to be
enough for most nodes to communicate, since the
ONLY TIMEOUT setting is very similar to the

TIMEOUT PLUS F with F = 0.8. This means that
at least80% of the neighbours communicate within the
400 milliseconds interval.

Figure 3 shows the average time a node needs to achieve
convergence. It indicates, from the total time perspective, that:

• Slower rounds, although implying less number of rounds,
produce worst results. This can be seen from the top lines,
which correspond to the better settings from the number
of rounds point of view.

20 30 40 50 60 70
0

20
0

40
0

60
0

80
0

Number of Nodes

T
im

e 
(m

s)

200 F_PLUS_TIMEOUT 0.8
400 F_PLUS_TIMEOUT 0.8
600 F_PLUS_TIMEOUT 0.8
400 ONLY_TIMEOUT 0.8
400 TIMEOUT_PLUS_F 0.8
400 ONLY_F 0.8
400 F_PLUS_TIMEOUT 0.5
400 F_PLUS_TIMEOUT 0.9

Fig. 3. Average time until convergence.

Comparing both Figures, its apparent that there is a trade-
off between time and communication (the number of rounds
is an indirect measure of messages sent): faster convergence
means higher communication cost.

1) No news Rounds: Although convergence of the
Minimums vector can be determined by examining the log
files, it cannot be determined by individual nodes. Nodes have
to assume convergence after a predefined number of rounds
have elapsed without changes in theMinimums vector.

In the previous tests, the maximum number of no news
rounds (NN) observed were the following:

Timeout Strategy F NN
200 F PLUS TIMEOUT 0.8 5
400 F PLUS TIMEOUT 0.8 3
600 F PLUS TIMEOUT 0.8 4
400 ONLY TIMEOUT 0.8 2
400 TIMEOUT PLUS F 0.8 2
400 ONLY F 0.8 4
400 F PLUS TIMEOUT 0.5 7
400 F PLUS TIMEOUT 0.9 3

Although the values are fairly similar, it appears that faster
rounds lead to a larger NN value than slower rounds.

B. Diameter Estimation

1) Relative Error: Table II summarizes the result of the
simulation.



Results indicate that the diameter is estimated with a max-
imum relative error of about10%, whenK = 10. However,
increasingK to 100, reduces this error to less than4%.

From the absolute error perspective, random geometric 2D
networks are clearly the worst type of network for the diameter
estimation technique. In these networks, the number of nodes
in the periphery is almost always very low. This leads to the
highest average absolute error, from all types of networks.
However, since geometric 2D networks also have the highest
diameter, the relative error ends up being in the same order of
magnitude (or very close) for all network types.

2) Rounds to Converge: Figure 4 shows the average ab-
solute error in the diameter estimation as a function of the
number of rounds after convergence of theMinimums vector,
for different values ofK.

In both configurations, it is apparent that theHops vector
(used to estimate the diameter) takes more time to converge
than the Minimums vector. This happens because some
shorter paths are slower than longer paths. So it may happen
that a hop count is substituted by a lower count that came from
a shorter, slower path. However, the same node may already
have the finalMinimums vector. Slower rounds, in which
nodes wait a long time before advancing, tend to mask this
effect since nodes on fast paths will still have to wait a long
time before advancing.

C. Message Optimization

Table III summarizes the results and shows the average
message size reduction in a run of the algorithm, per node,
for different values of T, with and without theHops vector
included in the message.

As expected, the overall message size reduction increases
asT increases. This happens because, near the final rounds of

Average Average
Network Network Average Absolute Relative
Type Size Diameter Error Error

K = 10

2d 50 9.9 0.5997 6.03%
Attach 50 3.0 0.1116 3.68%
Random 50 2.4 0.0340 1.05%
2d 500 35.1 3.2631 9.43%
Attach 500 3.7 0.3396 8.14%
Random 500 4.0 0.4376 10.10%

K = 100

2d 50 9.9 0.0117 0.12%
Attach 50 3.0 0.0001 0%
Random 50 2.4 0.0017 0.06%
2d 500 35.1 0.6669 2.00%
Attach 500 3.7 0.1588 3.73%
Random 500 4.0 0.1081 2.65%

K = 1000

2d 50 9.9 0 0%
Attach 50 3.0 0 0%
Random 50 2.4 0 0%
2d 500 35.1 0.0116 0.03%
Attach 500 3.7 0.0048 0.11%
Random 500 4.0 0.0019 0.05%

TABLE II
DIAMETER ESTIMATION ACCURACY

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fast Rounds

Rounds After Minimums Convergence

A
bs

ol
ut

e 
E

rr
or

10
100

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Slow Rounds

Rounds After Minimums Convergence

A
bs

ol
ut

e 
E

rr
or

10
100

Fig. 4. Additional rounds needed to estimate the diameter.

Without Hops vector
T Average Standard Average vector

reduction deviation length
0 3.37% 1.38% 7.94
1 8.62% 1.26% 6.88
2 13.91% 1.03% 5.94
3 18.34% 0.86% 5.19
4 21.85% 0.75% 4.61
5 24.66% 0.67% 4.14
6 26.95% 0.62% 3.77

With Hops vector
T Average Standard Average vector

reduction deviation length
0 7.97% 2.12% 7.95
1 15.63% 1.95% 6.92
2 23.18% 1.61% 5.98
3 29.44% 1.34% 5.24
4 34.40% 1.15% 4.65
5 38.38% 1.02% 4.18
6 41.62% 0.93% 3.80

TABLE III
AVERAGE MESSAGE SIZE REDUCTION ACHIEVED USING THE

IMPROVEMENTS PRESENTED INSECTION IV-B.



the algorithm, almost all nodes have the final vectors and their
neighbours know this. This allows each node to send only a
few values to each neighbour instead of the totalK values.

When considering the combined techniques for size and
diameter estimation (message withMinimums and Hops
vector), the reduction in message size is more pronounced than
when considering only the size estimation (onlyMinimums
vector). This happens because, in our implementation, each
value in the Hops vector was coded using8 bit, which in
most cases would be too conservative a value. This leads to
a greater reduction in size when using the improved message
format.

The average vector length column in Table III shows the
average number of values sent by each node to each neighbour
(K was set to10). With three safe-guard rounds (T = 3) only
about five values out of ten have to be sent, on average. For the
two cases (onlyMinimums vector andMinimums plusHops
vector) the average vector length is very similar (which might
contradict the difference in the values of the average reduction
column, but that was explained in the previous paragraph).

VII. C ONCLUSIONS

This article presented a study on the behaviour of the
Extrema Propagation technique on asynchronous scenarios,
with different configuration settings. It also presented and
evaluated a novel diameter estimation technique based on the
Extrema Propagation technique.

When arbitrary delays and failures are allowed in the system
model, the original Extrema Propagation algorithm has to
be slightly modified. Instead of waiting for every neighbour,
which could lead to deadlocks, each node should only wait
for a fraction of its neighbours, wait until a timeout occurs,
or a combination of the two.

Results show that there is a clear trade-off that must be
considered. Fast rounds – rounds in which each node advances
rapidly either because they wait for a small fraction of the
neighbours or because a small timeout was configured – lead
to a faster convergence of theMinimums vector and hence a
faster estimation of the network size. However, fast roundsalso
lead to a larger number of rounds needed, which is an indirect
measure of the number of messages exchanged. Slow rounds
– in which each node waits for a large number of neighbours
– lead to slower estimation but also to a smaller number of
messages exchanged. The trade-off between communication
cost and time must the considered.

Although the Extrema Propagation technique is already very
efficient in terms of number of steps, since it come very
close to the theoretical minimum ofDiameter steps (with
only a small constant increase due to the extra safe-guard
rounds needed), it is still amenable to improvements in the
size of the message that is used. The proposed improvement
described in section IV-B shows that its possible to reduce
the total communication cost using a simple approach. Even
without considering additional safe-guard rounds, there is an
average reduction of3.4% in message size when considering
only the basic Extrema Propagation technique and almost8%

when combining the diameter estimation technique. When
aditional safe-guard rounds are used, the savings are even more
substantial, rising to18% and29% for 3 aditional safe-guard
rounds.

A diameter estimation technique based on the Extrema
Propagation was presented and evaluated. The technique takes
advantage of the generation of a fixed number of global
minimums that act as a node sampling means to calculate the
eccentricities of those nodes. If one of the “sampled” nodesis
a peripheral node and enough rounds are allowed to pass, then
the exact network diameter can be calculated. The accuracy
can be adjusted by the parameterK, the number of minimums
to generate. Results from simulations show that even with a
very small number of minimums (K = 10), the relative error
in the estimation is only about10%.

VIII. A KNOWLEDGMENTS

The authors would like to thank José Orlando Pereira and
Nuno Carvalho for their help in the NeEM integration and
testing. This work has been partially supported by FCT and
POCI 2010, co-funded by the Portuguese Government and
European Union in the FEDER Program.

REFERENCES

[1] P. Eugster, S. Handurukande, R. Guerraoui, A. Kermarrec, and
P. Kouznetsov, “Lightweight probabilistic broadcast,” 2001. [Online].
Available: citeseer.ist.psu.edu/eugster01lightweight.html

[2] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulie, “Peer-to-peer mem-
bership management for gossip-based protocols,”IEEE Transactions on
Computers, vol. 52, no. 2, pp. 139–149, 2003.

[3] C. Baquero, P. Almeida, and R. Menezes, “Extrema propagation: Fast
distributed estimation of sums and network sizes,” Universidade do
Minho, Tech. Rep., May 2006.

[4] C. Baquero, P. S. Almeida, and R. Menezes, “Fast estimation of
aggregates in unstructured networks,” inInternational Conference on Au-
tonomic and Autonomous Systems (ICAS), Valencia, Spain, 20/04/2009-
25/04/2009. http://www.computer.org: IEEE Computer Society, april
2009.

[5] “Neem – network-friendly epidemic multicast,” http://neem.sourceforge.
net/index.html.

[6] D. Psaltoulis, D. Kostoulas, I. Gupta, K. Birman, and A. Demers,
“Practical algorithms for size estimation in large and dynamic groups,”
University of Illinois, Urbana, Tech. Rep., 2004.

[7] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of
aggregate information,”Foundations of Computer Science, 2003. Pro-
ceedings. 44th Annual IEEE Symposium on, pp. 482–491, October 2003.

[8] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-based aggregation
in large dynamic networks,”ACM Trans. Comput. Syst., vol. 23, no. 1,
pp. 219–252, 2005.

[9] J. Pereira, L. Rodrigues, M. J. Monteiro, R. Oliveira, and A.-M.
Kermarrec, “Neem: Network-friendly epidemic multicast,”in Proc.
22nd International Symposium on Reliable Distributed Systems, IEEE.
Florence, Italy: IEEE Computer Society, October 2003.

[10] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic,
J. Chase, and D. Becker, “Scalability and accuracy in a large-scale
network emulator,” inProceedings of 5th Symposium on Operating
Systems Design and Implementation (OSDI), December 2002. [Online].
Available: http://www.cs.ucsd.edu/∼vahdat/papers/modelnet.pdf

[11] D. Becker and K. Yocum, “Modelnet howto,” Duke University., Tech.
Rep., 2003, http://modelnet.ucsd.edu/howto.html. [Online]. Available:
http://modelnet.ucsd.edu/howto.html


