
A Portable Lightweight Approach to NFS ReplicationRaquel Menezes� Carlos BaqueroyUniversidade do Minho/INESC,Departamento de Inform�atica,Campus de Gualtar,4700 Braga,PORTUGALfmesram,mescbm,fsmg@di.uminho.pt Francisco Mouraz
AbstractUnder normal circumstances, NFS provides transparent access to remote�le systems. Nevertheless, a failure on a single �le server compromises theoperation of all clients, and thus various replication schemes have been devisedto increase �le system availability.The approach described in this paper is lightweight in the sense that itstrives to make no changes to the NFS protocol nor to the standard NFS clientand server code. Rather, a thin layer is introduced between the clients andthe original server daemons, which intercepts all NFS requests and propagatesthe updates to the replicas. Replication is hidden under a primary-secondaryupdate policy and an improved automounter. If the primary server fails, theautomounters elect a new primary and remount the relevant �le systems. Sec-ondary server failures remain unnoticed by the clients.A prototype version is operational and preliminary results under the An-drew benchmark are presented. The �gures obtained show that while readoverhead is negligible, the performance of updates is at present impaired bythe naive synchronous multi-server write operation.1 IntroductionWith the introduction of personal computers, individual users achieved a largeindependence from centralized host systems. However, the consequent partitioningof a unique �le system resulted in a major waste of valuable resources. It was usualto �nd identical data on unshared �le systems. On the other hand, although NFShas been quite successful in supporting data sharing on local area networks, it does�Financed by JNICT grant BM / 2646 / 92-IAyFinanced by JNICT grant BM / 3556 / 92-IAzUnder contract JNICT PMCT 163/90 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634239?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

so at the expense of reintroducing dependencies, often centralized ones. Once again,the failure of a single �le server can block several client machines.This problem motivated the introduction of replication schemes, which increasethe availability of a remote �le service with a moderate increase in processor and�le system resources. This is the case of the repNFS system (replicated NFS)described in this paper. It is aimed at providing NFS-compatible �le services in thepresence of occasional server failures, but with almost no changes to the underlyingsystem software | both client and server.The goal here is simplicity (hence its lightweight approach). Reducing the num-ber of changes to the original software is likely to ease the switch from NFS torepNFS, especially in heterogeneous networks. It also means fewer administratorand end-user surprises, such as unfamiliar behaviour or error messages. Finally,simplicity will hopefully lead to small overheads.2 Previous ApproachesSystems such as Coda [2, 4], Locus [7] and Echo [10, 1] achieve high availabilityusing their own �le system (and kernel), instead of the standard NFS. Althoughensuring tight integration, this approach requires a considerable commitment to aspecialized system, thus reducing portability and being of limited value for networkswith existing heterogeneous systems.Other systems try to comply with the NFS protocol, though changing the tra-ditional NFS client and providing new server daemons that enforce data replicationpolicies. Examples of this approach are the RNFS system [5], its follow-upDeceit[8], and Ficus [3]. Since the changes to the NFS client code usually involve kernelmanipulation, this approach also implies a strong investment on particular Unix im-plementations. The NFS client must be enhanced with the capability to commuteto another server upon server failures. By contrast, repNFS avoids kernel changesby using an improved automounter as an alternative switching mechanism.The use of special-purpose NFS server daemons also contributes to operatingsystem dependencies with respect to the local �le system interface, as speci�c (Unix)
avours and versions must be accommodated. The alternative used in the repNFSsystem is to provide the necessary capabilities in a special layer over the normal NFSserver daemons. Despite its potential overhead, this solution is highly portable.Table 1 compares several systems on the basis of the client kernel code thatdeals with �le system operations, the daemons on the replicated servers and thecommunication protocol.3 repNFS System OverviewThe repNFS system o�ers a highly available �le service by coordinating �le repli-cation among an arbitrary number of machines and applying �le coherence politics.This is achieved by a small extension to the NFS system, in the user level processes,2

Client Kernel Server Code ProtocolCoda Speci�c Speci�c Speci�c with CallbacksLocus Speci�c Speci�c Speci�cEcho Speci�c Speci�c Speci�cRNFS NFS slightly Modi�ed NFS Modi�ed NFS and ISISDeceit NFS slightly Modi�ed NFS Modi�ed NFS and ISISFicus NFS Modi�ed NFS Modi�ed NFS Modi�edrepNFS Same Intercepted NFSTable 1: Comparison of approaches to replicationthereby avoiding kernel changes. This use of user level processes to provide addi-tional capabilities to the �le system has been previously advocated in Ficus [3],with the notion of stackable layers of �le system services.On the client side, repNFS uses AMD[6], an improved automounter that en-ables run-time server switches between a group of servers. The traditional Sunautomounter is able to choose a server among some alternatives, but once chosen itis committed to that server. In the case of failure it cannot select a di�erent one.By contrast, the AMD automounter constantly monitors the known servers, andonce one server is found to be unavailable any a�ected mounts are removed andan alternative server is chosen for its replacement. At the moment, the sequenceof election among available servers is pre-de�ned by assigning di�erent weights toeach server.On the servers side, the server that is elected by the AMD automounter becomesthe primary server. In addition to providing normal �le system service to theremote clients, it propagates relevant calls to the secondary servers. Under normalcircumstances, all servers are therefore synchronized.The basic idea in repNFS is to intercept the client NFS calls before they reachthe original NFS server daemons. This is accomplished by changing the NFS serverdaemons RPC registration numbers, and registering our repNFS daemons instead.Although this approach requires the modi�cation of the NFS daemons, it is verylocalized, as it just requires the change of two numbers (associated with mountd andnfsd). In our case, the source code of the publicly available Linux NFS daemonswas used; it compiled cleanly under SunOS 4.1.3 and successfully replaced SunOSNFS daemons.Replicated servers for a speci�c �le system are organized in groups. To each�le system fi 2 F (any exportable subtree of �les), a subset Srfi of replicatedservers is associated so that Srfi � S, being S the set of all servers. This set isde�ned as the group of servers that keep a replica of that �le system. With thisinformation one can derive, for each server sj 2 S, the set Sasj � S of associatedservers, the servers that share some �le system with the server sj . For each sj 2 S,Sasj =[i (Srfi : fi 2 F ^ sj 2 Srfi).The associations Srfi are stored in a single text �le in the format de�ned for3

AMD maps. This �le is distributed to all machines (servers and clients) by actualcopy or using NIS[9]. As an example, the following AMD mapf1 type:=nfs ; rfs:=/dir_f1 \rhost:=A rhost:=B rhost:=Cf2 type:=nfs ; rfs:=/dir_f2 \rhost:=B rhost:=Cf3 type:=nfs ; rfs:=/dir_f3 \rhost:=C rhost:=Dde�nes the replicated servers sets Srf1 = fA;B; Cg, Srf2 = fB;Cg, Srf3 = fC;Dg,and the correspondent associated servers sets SaA = fA;B; Cg, SaB = fA;B; Cg,SaC = fA;B; C;Dg, SaD = fC;Dg.The current implementation forces the replication groups to be disjoint, althoughpermitting multiple �le systems replicated within each group. This restriction cov-ers the most useful topology of replication; a non-disjoint approach would lead tounclear interdependencies among machines without o�ering signi�cant advantages.This restriction can be formalized as 8fi; fj 2 F; (Srfi \Srfj) = ;_ (Srfi \Srfj) =Srfi = Srfj which implies that for each fi 2 F; 8sj 2 Srfi it holds Sasj = Srfi.As a result, the group of replicated servers can be determined for each machinesj 2 S, regardless of the �le system that the client call addresses. This group Srsjis identi�ed by any Srfi to which the local machine belongs, i.e. Srsj = (Srfi : sj 2Srfi). Additionaly we can observe that Srsj = Sasj .repNFS uses a primary-secondary server update policy. This was promptedby statistics collected throughout a 5-month period in our department's main Unixserver. These showed that only roughly 10% of all NFS operations are updates. Theother are read requests or can be satis�ed from the local cache. In this asymmetricapproach, upon a client mount request, the selected server sj is responsible forsatisfying all read requests and replicating all update requests among Srsj . It alsomanages the translation of �le handles among the replicated servers. The replicatedupdate commands originated in the primary server are delivered to its own NFSdaemons and to those in the other servers, using the changed RPC registrationnumber.In the case of failure of one server, a subsequent respawn of the repNFS andNFS daemons will put them in a recovery mode that prevents assuming server func-tions should a client issue a mount request. In recovery mode the server ignoresAMD queries, therefore appearing unavailable. Normal mode of operation is re-sumed once they are updated by another server in the same group. If the failingserver was the primary server | the one that receives the clients mount requests| the AMD automount daemon on each clients commutes to the next alternativeserver in the group. As this implies the removal of any client mounts on the previousserver, any �le handle to �le name associations cached on the clients are automat-ically destroyed. This prevents any inconsistent use of �le handles with the newlyselected primary server.The primary server is also responsible for detecting among his group of serversthose requiring recovery. Should it be necessary, a separate recovery process is4

launched, the servers are updated and then returned to the normal mode of opera-tion. This de�nes three possible states to a replicated server, as shown in �gure 1.
Administrative Startup

Normal Startup

Recovery
Process

Death & Respawn

Death & Respawn

AMD

Primary

Secondary

RecoveringFigure 1: State transitions in repnfs servers.If all servers in a group fail at the same time, as in a local power down, thedetection of the server with the most recent changes is made by querying all serversin that group, as every server keeps track of other servers' status (every sj shouldknow the status of all the servers in Sasj). Only when that server is up and available,or by external administrative procedures, can the system be synchronized to themost recent state, and other servers switched to the normal operation mode.4 ArchitectureFigure 2 shows how the repNFS (rep.*) daemons couple with the NFS daemons(rpc.*). The standard NFS services RPC registration numbers are 0x100003 (2049)and 0x100005, the numbers 0x100040 and 0x100041 are the new registration num-bers for the NFS daemons. We can also see how the operations are redirected tothe appropriate daemons.All NFS operations use �le handles to refer to �les or directories. Each NFSserver generates its own �le handles and returns them to the client for later use.With multiple servers, the same logical replica is referred to by di�erent �le handles.Since each client only knows one of the multiple �le handles, an association between�le handles that denote the same logical replica must be kept.The repNFS layer maintains a list of tuples that associate �le handles denotingthe same �le/directory across di�erent servers; the primary key to this list is the�le handle of the primary server. The complete �le name is also stored, as it5

rep.mountd

rpc.mountd

rep.nfsd

rpc.nfsd

rep.mountd

rpc.mountd

rep.mountdrep.nfsd

rpc.nfsd

rep.nfsd

rpc.mountd rpc.nfsd

mnt

write readmnt

write
read

mnt

write

write

mnt

kernel

CLIENT

SECONDARY
 SERVER

SECONDARY
 SERVER

PRIMARY SERVER

0x1000030x100005

0x1000400x100041

(port 2049)

Figure 2: Client servers interaction, in the presence of the repNFS layer.will be necessary in the context of the recovery procedure. Incoming NFS requestare validated and then forwarded with their �le handles properly translated. TheNFS request received in the primary server include the credentials of the user thatgenerated those requests. These same credentials must be used on the forwardedrequests, otherwise a user anonymous would be implied.An unfortunate consequence of �le handle translation is the fact that the updatepackets addressed to the replicas have (slightly) di�erent contents. This precludesthe use of a broadcast approach to packet delivery, and leads to the use of multipleRPC calls (one for each server in Srsj , where sj is the primary server), with thecorresponding performance penalty.If, in the course of an update request, a server unavailability is detected bythe primary server, this is registered in a black list on persistent storage on theremaining servers of the group, marking the state of the �le systems as \stale". Theblack list in each server sj keeps information on the state of all servers in Sasj .For each associated server, the list holds an entry with its name, a
ag denotingif the �les systems on that server are up to date, a
ag indicating if the entry isvalid or not, and the time of the last update to the entry. When a server movesinto recovering mode (see �gure 1) all the entries in its black list are marked as6

invalid. In this mode the server tries to recover the elements on the list by queryingother servers in Sasj . When queried about an element of its black list, a server onlyanswers if that element is marked valid. In all modes, a server is available to changethe information on the list accordingly to other servers requests. This set of rulesensures that if at least one of the servers in a group remains operational, the blacklist is valid and can be used to update the other machines.In case of global failure within one group, each machine, in a subsequent reboot,will �rst try to update its black list by querying the other machines. Since thosemachines cannot give an accurate answer as the entries are invalid on all machines,a second protocol is initiated. One �xed machine within each group will request allthe entries with the associated time stamps, from the other machines in that group.The information with the most recent time stamp is chosen and disseminated asvalid to the other machines. It is assumed that all machines will be rebooted, inorder to determine the most recent state, and so the use of a �xed machine to applythese queries is not an additional constraint. Naturally, administrative procedurescan circumvent this behaviour.The recovery process is initiated on a primary server that detects the availabil-ity of a server marked down. When this process, by constantly monitoring theunavailable server, learns that it was just rebooted, it asks the repNFS daemonto start logging all the updates directed to that server. Since these �le handles aredi�erent from server to server, the logged operations must refer them by \free" vari-ables. These free variables are represented by the complete pathnames associatedto the �le handles. When the log is processed these variables are replaced by thecorresponding �le handles generated in the server being brought up to date.After requesting the generation of the log, the recovery process compares the�le systems of the primary server sp and the one being recovered sr . This is accom-plished by mounting the sr �le system in the primary server sp and transversingboth trees in parallel. Based on timestamps (and giving some margin for clockskews), the appropriate operations are issued to get the two servers almost synchro-nized, i.e. except for the operations that were requested in the meantime, whichare in log. Whole �les are transferred.As the synchronization of the two �le systems is done concurrently with potentialchanges to the sp �le system, the version of the sr �le system that will be obtainedin the secondary server may already incorporate some of the logged operations. Ifwe tag as �t0 the �le system state of sp when the log is started, and �t1 its statewhen the transversal of the �le system trees ends, the state �tx of the obtained sr�le system will be �t0 � �tx � �t1 . However, the information registered in the logsu�ces to derive �t1 from �t0. Since NFS operations are idempotent, we can obtain�t1 in server sr by applying the log operations to its state �tx .Before executing the logged operations on server sr , one must query for the�le handles of the newly created �les in order to update the list maintained in theprimary server sp. The free variables (pathnames) on the log will be instantiatedwhile executing log operations on sr. When the log is empty, the repNFS layerstops logging client update requests and all servers in the group Sasr update their7

black lists. The server sr is now up to date and so it can can now resume normalmode of operation, in a secondary state (see �gure 1). Note that although triggeredby a client update request, the recovery process does not entail substantial delaysother than those associated to log maintenance.Figure 1 also shows that the system may be started in two di�erent modes. Priorto the �rst execution, the system administrator must ensure that all the replicasare synchronized and then launch the daemons in a special mode indicating thatall the machines are coherent and that the black list can be constructed and placedin persistent storage. The other mode of launching the daemons will be typicallyselected in a startup �le, and assumes that the other servers must be queried toobtain the current state.5 ConclusionsThe �rst version of the repNFS system is operational. It was tested with theAndrew benchmark [2, 8], also used elsewhere to measure Coda, Deceit and Ficusperformance. This test showed the relatively small overhead introduced by ourapproach to replication.The benchmark involved operations on a subtree of 125 �les totaling 670kbytesin size. Five distinct phases named MakeDir, Copy, ScanDir, ReadAll and Makewere timed. As noted above, the large majority of the tra�c corresponds to phasesthat do not require update operations. With 1 to 3 replicated servers, the overheadimposed by repNFS ranges from 2.5% to 2.8% over the time taken by the nativeSun NFS system. This shows that the overhead introduced by the additional levelof indirection and book-keeping operations is minimal.The average of all phases (including updates) already shows overheads with re-spect to SUN NFS of 18%, 86% and 110%, for 1 to 3 replicated servers, respectively.These �gures clearly indicate that the repNFS performance is dominated by theupdate policy of the alternative servers: we simply use a sequence of synchronousRPC calls. Since server updates can proceed in parallel (e.g. using a multi-threadedlayer), we estimate that repNFS overhead can be reduced to the 18% value, as thewait time for replication will be conditioned only by the time of the slowest update.If this is con�rmed, the system will then be tested in a production environment.The repNFS system is intended to be lightweight both in the overheads intro-duced and in the interference with the underlying operating system. Other alter-natives involve kernel changes in the client, which are here avoided by the use of aspecial automounter. The changes to the NFS server daemons are also minimized byintercepting and redirecting the client requests in a wrapper process. This, and thefact that repNFS solely relies on the widely accepted NFS protocol, avoiding directinteraction with the local �le system, leads to greater portability and adaptabilityto changes. 8

References[1] A. Birrell, A. Hisgen, C. Jerian, T. Mann, and G. Swart. The Echo distributed�le system. Technical Report 111, Digital, Systems Research Center, 130 Lyt-ton Avenue, Palo Alto, September 1993.[2] M. Satyanarayanan et al. Coda: A highly available �le system for a distributedworkstation environment. IEEE Trans. Computers, 39(4):447{459, April 1990.[3] Richard G. Guy, John S. Heidemann, Wai Mak, ThomasW. Page, Jr., Gerald J.Popek, and Dieter Rothmeier. Implementation of the Ficus replicated �lesystem. In USENIX Conference Proceedings, pages 63{71. USENIX, June 1990.[4] J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda �lesystem. ACM Transactions on Computer Systems, 10(1):3{25, February 1992.[5] K. Marzullo and F. Schmuck. Supplying high availability with a standardnetwork �le system. In Eighth Intl. Conf. on Distributed Computing Systems,pages 447{453, May 1988.[6] J. Pendry and N. Williams. Amd, The 4.4 BSD Automounter. Imperial Collegeand University of California, March 1991.[7] G. J. Popek and B. J. Walken. The Locus Distributed System Architecture.MIT Press, 1985.[8] Alexander Siegel. Deceit architecture. June 1991.[9] Hal Stern. Managing NFS and NIS. O'Reilly & Associates, Inc., 1991.[10] G. Swart, A. Birrel, A. Hisgen, and T. Man. Availability in the echo �le system.Technical Report 112, Digital, Systems Research Center, 130 Lytton Avenue,Palo Alto, August 1993.
9

