-

View metadata, citation and similar papers at core.ac.uk brought to you byji CORE

provided by Universidade do Minho: RepositoriUM

A Portable Lightweight Approach to NFS Replication

. +
Raquel Menezes* Carlos Baquero! Francisco Moura*

Universidade do Minho/INESC,
Departamento de Informdtica,
Campus de Gualtar,

4700 Braga,
PORTUGAL

{mesram,mescbm,fsm }@di.uminho.pt

Abstract

Under normal circumstances, NFS provides transparent access to remote
file systems. Nevertheless, a failure on a single file server compromises the
operation of all clients, and thus various replication schemes have been devised
to increase file system availability.

The approach described in this paper is lightweight in the sense that it
strives to make no changes to the NFS protocol nor to the standard NFS client
and server code. Rather, a thin layer is introduced between the clients and
the original server daemons, which intercepts all NFS requests and propagates
the updates to the replicas. Replication is hidden under a primary-secondary
update policy and an improved automounter. If the primary server fails, the
automounters elect a new primary and remount the relevant file systems. Sec-
ondary server failures remain unnoticed by the clients.

A prototype version is operational and preliminary results under the An-
drew benchmark are presented. The figures obtained show that while read
overhead is negligible, the performance of updates i1s at present impaired by
the naive synchronous multi-server write operation.

1 Introduction

With the introduction of personal computers, individual users achieved a large
independence from centralized host systems. However, the consequent partitioning
of a unique file system resulted in a major waste of valuable resources. It was usual
to find identical data on unshared file systems. On the other hand, although NFS
has been quite successful in supporting data sharing on local area networks, it does

*Financed by JNICT grant BM / 2646 / 92-TA
"Financed by JNICT grant BM / 3556 / 92-IA
‘Under contract INICT PMCT 163/90

https://core.ac.uk/display/55634239?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

so at the expense of reintroducing dependencies, often centralized ones. Once again,
the failure of a single file server can block several client machines.

This problem motivated the introduction of replication schemes, which increase
the availability of a remote file service with a moderate increase in processor and
file system resources. This is the case of the repNFS system (replicated NF'S)
described in this paper. It is aimed at providing NFS-compatible file services in the
presence of occasional server failures, but with almost no changes to the underlying
system software — both client and server.

The goal here is simplicity (hence its lightweight approach). Reducing the num-
ber of changes to the original software is likely to ease the switch from NFS to
repNFS, especially in heterogeneous networks. It also means fewer administrator
and end-user surprises, such as unfamiliar behaviour or error messages. Finally,
simplicity will hopefully lead to small overheads.

2 Previous Approaches

Systems such as Coda [2, 4], Locus [7] and Echo [10, 1] achieve high availability
using their own file system (and kernel), instead of the standard NFS. Although
ensuring tight integration, this approach requires a considerable commitment to a
specialized system, thus reducing portability and being of limited value for networks
with existing heterogeneous systems.

Other systems try to comply with the NFS protocol, though changing the tra-
ditional NFS client and providing new server daemons that enforce data replication
policies. Examples of this approach are the RNF'S system [5], its follow-up Deceit
[8], and Ficus [3]. Since the changes to the NF'S client code usually involve kernel
manipulation, this approach also implies a strong investment on particular Unix im-
plementations. The NFS client must be enhanced with the capability to commute
to another server upon server failures. By contrast, repINFS avoids kernel changes
by using an improved automounter as an alternative switching mechanism.

The use of special-purpose NFS server daemons also contributes to operating
system dependencies with respect to the local file system interface, as specific (Unix)
flavours and versions must be accommodated. The alternative used in the repNFS
system is to provide the necessary capabilities in a special layer over the normal NFS
server daemons. Despite its potential overhead, this solution is highly portable.

Table 1 compares several systems on the basis of the client kernel code that
deals with file system operations, the daemons on the replicated servers and the
communication protocol.

3 repNFS System Overview

The repNF'S system offers a highly available file service by coordinating file repli-
cation among an arbitrary number of machines and applying file coherence politics.
This is achieved by a small extension to the NFS system, in the user level processes,

Client Kernel Server Code Protocol

Coda Specific Specific Specific with Callbacks
Locus Specific Specific Specific

Echo Specific Specific Specific

RNFS | NFS slightly Modified | NFS Modified NFS and ISIS
Deceit | NFS slightly Modified | NFS Modified NFS and ISIS
Ficus NFS Modified NFS Modified NFS Modified
repNFS Same Intercepted NFS

Table 1: Comparison of approaches to replication

thereby avoiding kernel changes. This use of user level processes to provide addi-
tional capabilities to the file system has been previously advocated in Ficus [3],
with the notion of stackable layers of file system services.

On the client side, repNFS uses AMD[6], an improved automounter that en-
ables run-time server switches between a group of servers. The traditional Sun
automounter is able to choose a server among some alternatives, but once chosen it
is committed to that server. In the case of failure it cannot select a different one.
By contrast, the AMD automounter constantly monitors the known servers, and
once one server is found to be unavailable any affected mounts are removed and
an alternative server is chosen for its replacement. At the moment, the sequence
of election among available servers is pre-defined by assigning different weights to
each server.

On the servers side, the server that is elected by the AMD automounter becomes
the primary server. In addition to providing normal file system service to the
remote clients, it propagates relevant calls to the secondary servers. Under normal
circumstances, all servers are therefore synchronized.

The basic idea in repNF'S is to intercept the client NFS calls before they reach
the original NFS server daemons. This is accomplished by changing the NF'S server
daemons RPC registration numbers, and registering our repINFS daemons instead.
Although this approach requires the modification of the NFS daemons, it is very
localized, as it just requires the change of two numbers (associated with mountd and
nfsd). In our case, the source code of the publicly available Linux NF'S daemons
was used; it compiled cleanly under SunOS 4.1.3 and successfully replaced SunOS
NFS daemons.

Replicated servers for a specific file system are organized in groups. To each
file system f; € F' (any exportable subtree of files), a subset Sry, of replicated
servers is associated so that Sry, C S, being S the set of all servers. This set is
defined as the group of servers that keep a replica of that file system. With this
information one can derive, for each server s; € .9, the set Sa;, C .5 of associated
servers, the servers that share some file system with the server s;. For each s; € 9,
Sas, =U (Srgt fie FAs;j€Sry).

The associations Sry, are stored in a single text file in the format defined for

AMD maps. This file is distributed to all machines (servers and clients) by actual
copy or using NIS[9]. As an example, the following AMD map

f1 type:=nfs ; rfs:=/dir_f1 \
rhost:=A rhost:=B rhost:=C

f2 type:=nfs ; rfs:=/dir_f2 \
rhost:=B rhost:=C

f3 type:=nfs ; rfs:=/dir_£f3 \
rhost:=C rhost:=D

defines the replicated servers sets Sry, = {A, B,C}, Sry, ={B,C}, Srg, = {C, D},
and the correspondent associated servers sets Say = {A, B,C}, Sag = {A, B,C},
Sac ={A,B,C,D}, Sap ={C, D}.

The current implementation forces the replication groups to be disjoint, although
permitting multiple file systems replicated within each group. This restriction cov-
ers the most useful topology of replication; a non-disjoint approach would lead to
unclear interdependencies among machines without offering significant advantages.
This restriction can be formalized as Vf;, f; € F,(Sr;,NSry,) =0V (Sry,NSry,) =
Sty = Sry, which implies that for each f; € F,Vs; € Sry, it holds Sas, = Sry,.

As a result, the group of replicated servers can be determined for each machine
s; € 9, regardless of the file system that the client call addresses. This group Srs,
is identified by any Sry, to which the local machine belongs, i.e. Sr,, = (S7y, @ s; €
Sty,). Additionaly we can observe that S, = Sas,.

repNFS uses a primary-secondary server update policy. This was prompted
by statistics collected throughout a 5-month period in our department’s main Unix
server. These showed that only roughly 10% of all NF'S operations are updates. The
other are read requests or can be satisfied from the local cache. In this asymmetric
approach, upon a client mount request, the selected server s; is responsible for
satisfying all read requests and replicating all update requests among S7s,. It also
manages the translation of file handles among the replicated servers. The replicated
update commands originated in the primary server are delivered to its own NFS
daemons and to those in the other servers, using the changed RPC registration
number.

In the case of failure of one server, a subsequent respawn of the repNFS and
NFS daemons will put them in a recovery mode that prevents assuming server func-
tions should a client issue a mount request. In recovery mode the server ignores
AMD queries, therefore appearing unavailable. Normal mode of operation is re-
sumed once they are updated by another server in the same group. If the failing
server was the primary server — the one that receives the clients mount requests
— the AMD automount daemon on each clients commutes to the next alternative
server in the group. As this implies the removal of any client mounts on the previous
server, any file handle to file name associations cached on the clients are automat-
ically destroyed. This prevents any inconsistent use of file handles with the newly
selected primary server.

The primary server is also responsible for detecting among his group of servers
those requiring recovery. Should it be necessary, a separate recovery process is

launched, the servers are updated and then returned to the normal mode of opera-
tion. This defines three possible states to a replicated server, as shown in figure 1.

Administrative Startup

AMD
Secondary

Normal Startup

Figure 1: State transitions in repnfs servers.

If all servers in a group fail at the same time, as in a local power down, the
detection of the server with the most recent changes is made by querying all servers
in that group, as every server keeps track of other servers’ status (every s; should
know the status of all the servers in Sa,). Only when that server is up and available,
or by external administrative procedures, can the system be synchronized to the
most recent state, and other servers switched to the normal operation mode.

4 Architecture

Figure 2 shows how the repNFS (rep.*) daemons couple with the NF'S daemons
(rpc.*). The standard NF'S services RPC registration numbers are 0x100003 (2049)
and 0x100005, the numbers 0x100040 and 0x100041 are the new registration num-
bers for the NFS daemons. We can also see how the operations are redirected to
the appropriate daemons.

All NFS operations use file handles to refer to files or directories. Each NFS
server generates its own file handles and returns them to the client for later use.
With multiple servers, the same logical replica is referred to by different file handles.
Since each client only knows one of the multiple file handles, an association between
file handles that denote the same logical replica must be kept.

The repNFS layer maintains a list of tuples that associate file handles denoting
the same file/directory across different servers; the primary key to this list is the
file handle of the primary server. The complete file name is also stored, as it

CLIENT

0100005 i | repfed | OX100003 (port 2049)

(0x100041 /Wr it rea} (0x100040

mnt

rpc.mountd rpc.nfsd
PRIMARY SERVER

mnt

write
rep.mountd | /Tep.nfsd Write i\ | epmountd | rep.nfsd
¥ ¥ Q)
rpc.mountd | rpc.nfsd rpc.mountd | rpc.nfsd
SECONDARY SECONDARY
SERVER SERVER

Figure 2: Client servers interaction, in the presence of the repINF'S layer.

will be necessary in the context of the recovery procedure. Incoming NF'S request
are validated and then forwarded with their file handles properly translated. The
NFS request received in the primary server include the credentials of the user that
generated those requests. These same credentials must be used on the forwarded
requests, otherwise a user anonymous would be implied.

An unfortunate consequence of file handle translation is the fact that the update
packets addressed to the replicas have (slightly) different contents. This precludes
the use of a broadcast approach to packet delivery, and leads to the use of multiple
RPC calls (one for each server in Sr, , where s; is the primary server), with the
corresponding performance penalty.

If, in the course of an update request, a server unavailability is detected by
the primary server, this is registered in a black list on persistent storage on the
remaining servers of the group, marking the state of the file systems as “stale”. The
black list in each server s; keeps information on the state of all servers in Sas,.
For each associated server, the list holds an entry with its name, a flag denoting
if the files systems on that server are up to date, a flag indicating if the entry is
valid or not, and the time of the last update to the entry. When a server moves
into recovering mode (see figure 1) all the entries in its black list are marked as

invalid. In this mode the server tries to recover the elements on the list by querying
other servers in Sas,. When queried about an element of its black list, a server only
answers if that element is marked valid. In all modes, a server is available to change
the information on the list accordingly to other servers requests. This set of rules
ensures that if at least one of the servers in a group remains operational, the black
list is valid and can be used to update the other machines.

In case of global failure within one group, each machine, in a subsequent reboot,
will first try to update its black list by querying the other machines. Since those
machines cannot give an accurate answer as the entries are invalid on all machines,
a second protocol is initiated. One fixed machine within each group will request all
the entries with the associated time stamps, from the other machines in that group.
The information with the most recent time stamp is chosen and disseminated as
valid to the other machines. It is assumed that all machines will be rebooted, in
order to determine the most recent state, and so the use of a fixed machine to apply
these queries is not an additional constraint. Naturally, administrative procedures
can circumvent this behaviour.

The recovery process is initiated on a primary server that detects the availabil-
ity of a server marked down. When this process, by constantly monitoring the
unavailable server, learns that it was just rebooted, it asks the repNFS daemon
to start logging all the updates directed to that server. Since these file handles are
different from server to server, the logged operations must refer them by “free” vari-
ables. These free variables are represented by the complete pathnames associated
to the file handles. When the log is processed these variables are replaced by the
corresponding file handles generated in the server being brought up to date.

After requesting the generation of the log, the recovery process compares the
file systems of the primary server s, and the one being recovered s,. This is accom-
plished by mounting the s, file system in the primary server s, and transversing
both trees in parallel. Based on timestamps (and giving some margin for clock
skews), the appropriate operations are issued to get the two servers almost synchro-
nized, i.e. except for the operations that were requested in the meantime, which
are in log. Whole files are transferred.

As the synchronization of the two file systems is done concurrently with potential
changes to the s, file system, the version of the s, file system that will be obtained
in the secondary server may already incorporate some of the logged operations. If
we tag as oy, the file system state of s, when the log is started, and oy, its state
when the transversal of the file system trees ends, the state o, of the obtained s,
file system will be o4, < 0y, < 04,. However, the information registered in the log
suffices to derive oy, from o,. Since NFS operations are idempotent, we can obtain
in server s, by applying the log operations to its state oy,.

Before executing the logged operations on server s,, one must query for the
file handles of the newly created files in order to update the list maintained in the
primary server s,. The free variables (pathnames) on the log will be instantiated
while executing log operations on s,. When the log is empty, the repNFS layer
stops logging client update requests and all servers in the group Sa,, update their

Utl

black lists. The server s, is now up to date and so it can can now resume normal
mode of operation, in a secondary state (see figure 1). Note that although triggered
by a client update request, the recovery process does not entail substantial delays
other than those associated to log maintenance.

Figure 1 also shows that the system may be started in two different modes. Prior
to the first execution, the system administrator must ensure that all the replicas
are synchronized and then launch the daemons in a special mode indicating that
all the machines are coherent and that the black list can be constructed and placed
in persistent storage. The other mode of launching the daemons will be typically
selected in a startup file, and assumes that the other servers must be queried to
obtain the current state.

5 Conclusions

The first version of the repINFS system is operational. It was tested with the
Andrew benchmark [2, 8], also used elsewhere to measure Coda, Deceit and Ficus
performance. This test showed the relatively small overhead introduced by our
approach to replication.

The benchmark involved operations on a subtree of 125 files totaling 670kbytes
in size. Five distinct phases named MakeDir, Copy, ScanDir, ReadAll and Make
were timed. As noted above, the large majority of the traffic corresponds to phases
that do not require update operations. With 1 to 3 replicated servers, the overhead
imposed by repNFS ranges from 2.5% to 2.8% over the time taken by the native
Sun NFS system. This shows that the overhead introduced by the additional level
of indirection and book-keeping operations is minimal.

The average of all phases (including updates) already shows overheads with re-
spect to SUN NF'S of 18%, 86% and 110%, for 1 to 3 replicated servers, respectively.
These figures clearly indicate that the repNFS performance is dominated by the
update policy of the alternative servers: we simply use a sequence of synchronous
RPC calls. Since server updates can proceed in parallel (e.g. using a multi-threaded
layer), we estimate that repNF'S overhead can be reduced to the 18% value, as the
wait time for replication will be conditioned only by the time of the slowest update.
If this is confirmed, the system will then be tested in a production environment.

The repINF'S system is intended to be lightweight both in the overheads intro-
duced and in the interference with the underlying operating system. Other alter-
natives involve kernel changes in the client, which are here avoided by the use of a
special automounter. The changes to the NF'S server daemons are also minimized by
intercepting and redirecting the client requests in a wrapper process. This, and the
fact that repNF'S solely relies on the widely accepted NF'S protocol, avoiding direct
interaction with the local file system, leads to greater portability and adaptability
to changes.

References

[1]

[2]

[3]

A. Birrell, A. Hisgen, C. Jerian, T. Mann, and G. Swart. The Echo distributed
file system. Technical Report 111, Digital, Systems Research Center, 130 Lyt-
ton Avenue, Palo Alto, September 1993.

M. Satyanarayanan et al. Coda: A highly available file system for a distributed
workstation environment. IEEE Trans. Computers, 39(4):447-459, April 1990.

Richard G. Guy, John S. Heidemann, Wai Mak, Thomas W. Page, Jr., Gerald J.
Popek, and Dieter Rothmeier. Implementation of the Ficus replicated file
system. In USENIX Conference Proceedings, pages 63—-71. USENIX, June 1990.

J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda file
system. ACM Transactions on Computer Systems, 10(1):3-25, February 1992.

K. Marzullo and F. Schmuck. Supplying high availability with a standard
network file system. In Eighth Intl. Conf. on Distributed Computing Systems,
pages 447-453, May 1988.

J. Pendry and N. Williams. Amd, The 4.4 BSD Automounter. Imperial College
and University of California, March 1991.

G. J. Popek and B. J. Walken. The Locus Distributed System Architecture.
MIT Press, 1985.

Alexander Siegel. Deceit architecture. June 1991.
Hal Stern. Managing NFS and NIS. O’Reilly & Associates, Inc., 1991.

G. Swart, A. Birrel, A. Hisgen, and T. Man. Availability in the echo file system.
Technical Report 112, Digital, Systems Research Center, 130 Lytton Avenue,
Palo Alto, August 1993.

