
On the Accuracy of Spectrum-based Fault Localization∗

Rui Abreu Peter Zoeteweij Arjan J.C. van Gemund

Software Technology Department
Faculty of Electrical Engineering, Mathematics, and Computer Science

Delft University of Technology
P.O. Box 5031, NL-2600 GA Delft, The Netherlands

{r.f.abreu, p.zoeteweij, a.j.c.vangemund}@tudelft.nl

Abstract

Spectrum-based fault localization shortens the test-
diagnose-repair cycle by reducing the debugging effort.
As a light-weight automated diagnosis technique it can
easily be integrated with existing testing schemes. How-
ever, as no model of the system is taken into account,
its diagnostic accuracy is inherently limited. Using
the Siemens Set benchmark, we investigate this diag-
nostic accuracy as a function of several parameters
(such as quality and quantity of the program spectra
collected during the execution of the system), some of
which directly relate to test design. Our results indicate
that the superior performance of a particular similar-
ity coefficient, used to analyze the program spectra, is
largely independent of test design. Furthermore, near-
optimal diagnostic accuracy (exonerating about 80% of
the blocks of code on average) is already obtained for
low-quality error observations and limited numbers of
test cases. The influence of the number of test cases
is of primary importance for continuous (embedded)
processing applications, where only limited observation
horizons can be maintained.

c©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

Keywords: Test data analysis, software fault diag-
nosis, program spectra.

1 Introduction

Testing, debugging, and verification represent a ma-
jor expenditure in the software development cycle [12],
which is to a large extent due to the labor-intensive
tasks of diagnosing the faults (bugs) that cause tests
to fail. Because under typical market conditions, only

∗This work has been carried out as part of the TRADER
project under the responsibility of the Embedded Systems In-
stitute. This project is partially supported by the Netherlands
Ministry of Economic Affairs under the BSIK03021 program.

those faults that affect the user most can be solved
before the release deadline, the efficiency with which
faults can be diagnosed and repaired directly influences
software reliability. Automated diagnosis can help to
improve this efficiency.

Diagnosis techniques are complementary to testing
in two ways. First, for tests designed to verify correct
behavior, they generate information on the root cause
of test failures, focusing the subsequent tests that are
required to expose this root cause. Second, for tests de-
signed to expose specific potential root causes, the ex-
tra information generated by diagnosis techniques can
help to further reduce the set of remaining possible ex-
planations. Given its incremental nature (i.e., taking
into account the results of an entire sequence of tests),
automated diagnosis alleviates much of the work of se-
lecting tests in the latter category, and can hence have
a profound impact on the test-diagnose-repair cycle.

An important part of diagnosis and repair consist in
localizing faults, and several tools for automated de-
bugging and systems diagnosis implement an approach
to fault localization based on an analysis of the dif-
ferences in program spectra [20] for passed and failed
runs. Passed runs are executions of a program that
completed correctly, whereas failed runs are executions
in which an error was detected. A program spectrum is
an execution profile that indicates which parts of a pro-
gram are active during a run. Fault localization entails
identifying the part of the program whose activity cor-
relates most with the detection of errors. Examples of
tools that implement this approach are Pinpoint [6],
which focuses on large, dynamic on-line transaction
processing systems, Tarantula [17], which focuses on
the analysis of C programs, and AMPLE [8], which fo-
cuses on object-oriented software (see Section 7 for a
discussion).

Spectrum-based fault localization does not rely on

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634235?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a model of the system under investigation. It can eas-
ily be integrated with existing testing procedures, and
because of the relatively small overhead with respect
to CPU time and memory requirements, it lends itself
well for application within resource-constrained envi-
ronments [24]. However, the efficiency of spectrum-
based fault localization comes at the cost of a limited
diagnostic accuracy . As an indication, in one of the ex-
periments described in the present paper, on average
20% of a program still needs to be inspected after the
diagnosis.

In spectrum-based fault localization, a similarity co-
efficient is used to rank potential fault locations. In
earlier work [1], we obtained preliminary evidence that
the Ochiai similarity coefficient, known from the bi-
ology domain, can improve diagnostic accuracy over
eight other coefficients, including those used by the
Pinpoint and Tarantula tools mentioned above. Ex-
tending as well as generalizing this previous result, in
this paper we investigate the main factors that influ-
ence the accuracy of spectrum-based fault localization
in a much wider setting. Apart from the influence of
the similarity coefficient on diagnostic accuracy, we also
study the influence of the quality and quantity of the
(pass/fail) observations used in the analysis.

Quality of the observations relates to the classifica-
tion of runs as passed or failed. Since most faults lead
to errors only under specific input conditions, and as
not all errors propagate to system failures, this param-
eter is relevant because error detection mechanisms are
usually not ideal. Quantity of the observations relates
to the number of passed and failed runs available for
the diagnosis. If fault localization has to be performed
at run-time, e.g., as a part of a recovery mechanism,
one cannot wait to accumulate many observations to
diagnose a potentially disastrous error until sufficient
confidence is obtained. In addition, quality and quan-
tity of the observations both relate to test coverage.
Varying the observation context with respect to these
two observational parameters allows a much more thor-
ough investigation of the influence of similarity coeffi-
cients. Our study is based on the Siemens set [14] of
benchmark faults (single fault locations).

The main contributions of our work are the follow-
ing. We show that the Ochiai similarity coefficient con-
sistently outperforms the other coefficients mentioned
above. We establish this result across the entire qual-
ity space, and for varying numbers of runs involved.
Furthermore, we show that near-optimum diagnostic
accuracy (exonerating around 80% of all code on av-
erage) is already obtained for low-quality (ambiguous)
error observations, while, in addition, only a few runs
are required. In particular, maximum diagnostic per-

formance is already reached at 6 failed runs on average.
However, including up to 20 passed runs may improve
but also degrade diagnostic performance, depending on
the program and/or input data.

The remainder of this paper is organized as follows.
In Section 2 we introduce some basic concepts and ter-
minology, and explain the diagnosis technique in more
detail. In Section 3 we describe our experimental setup.
In Sections 4, 5, and 6 we describe the experiments on
the similarity coefficient, and the quality and quantity
of the observations, respectively. Related work is dis-
cussed in Section 7. We conclude, and discuss possible
directions for future work in Section 8.

2 Preliminaries

In this section we introduce program spectra, and de-
scribe how they are used in software fault localization.

2.1 Failures, Errors, and Faults

As defined in [5], we use the following terminology. A
failure is an event that occurs when delivered service
deviates from correct service. An error is a system
state that may cause a failure. A fault is the cause of
an error in the system.

In this paper we apply this terminology to simple
computer programs that transform an input file to an
output file in a single run. Specifically in this setting,
faults are bugs in the program code, and failures occur
when the output for a given input deviates from the
specified output for that input.

To illustrate these concepts, consider the C func-
tion in Figure 1. It is meant to sort, using the bub-
ble sort algorithm, a sequence of n rational numbers
whose numerators and denominators are stored in the
parameters num and den, respectively. There is a fault
(bug) in the swapping code within the body of the if

statement: only the numerators of the rational num-
bers are swapped while the denominators are left in
their original order. In this case, a failure occurs
when RationalSort changes the contents of its ar-
gument arrays in such a way that the result is not a
sorted version of the original. An error occurs after
the code inside the conditional statement is executed,
while den[j] 6= den[j+1]. Such errors can be tem-
porary, and do not automatically lead to failures. For
example, if we apply RationalSort to the sequence
〈 4
1 , 2

2 , 0
1 〉, an error occurs after the first two numera-

tors are swapped. However, this error is “canceled” by
later swapping actions, and the sequence ends up being
sorted correctly.

Error detection is a prerequisite for the fault local-
ization technique studied in this paper: we must know

void RationalSort(int n, int *num, int *den){

/* block 1 */
int i,j,temp;

for (i=n-1; i>=0; i--) {
/* block 2 */

for (j=0; j<i; j++) {
/* block 3 */

if (RationalGT(num[j], den[j],
num[j+1], den[j+1])) {

/* block 4 */

temp = num[j];
num[j] = num[j+1];

num[j+1] = temp;
}

}
}

}

Figure 1. A faulty C function for sorting rational
numbers

that something is wrong before we can try to locate
the responsible fault. Failures constitute a rudimen-
tary form of error detection, but many errors remain
latent and never lead to a failure. An example of a
technique that increases the number of errors that can
be detected is array bounds checking. Failure detec-
tion and array bounds checking are both examples of
generic error detection mechanisms, that can be ap-
plied without detailed knowledge of a program. Other
examples are the detection of null pointer handling,
malloc problems, and deadlock detection in concurrent
systems. Examples of program specific mechanisms are
precondition and postcondition checking, and the use
of assertions.

2.2 Program Spectra

A program spectrum [20] is a collection of data that
provides a specific view on the dynamic behavior of
software. This data is collected at run-time, and typ-
ically consist of a number of counters or flags for the
different parts of a program. Many different forms of
program spectra exist, see [13] for an overview. In this
paper we work with so-called block hit spectra.

A block hit spectrum contains a flag for every block
of code in a program, that indicates whether or not that
block was executed in a particular run. With a block of
code we mean a C language statement, where we do not
distinguish between the individual statements of a com-
pound statement, but where we do distinguish between
the cases of a switch statement1. As an illustration, we
have identified the blocks of code in Figure 1.

1This is a slightly different notion than a basic block , which
is a block of code that has no branch.

N parts errors

M spectra

2

6

6

6

4

x11 x12 . . . x1N

x21 x22 . . . x2N

...
...

. . .
...

xM1 xM2 . . . xMN

3

7

7

7

5

2

6

6

6

4

e1

e2

...
eM

3

7

7

7

5

s1 s2 . . . sN

Figure 2. The ingredients of fault diagnosis

2.3 Fault Localization

The hit spectra of M runs constitute a binary matrix,
whose columns correspond to N different parts (blocks
in our case) of the program (see Figure 2). The in-
formation in which runs an error was detected consti-
tutes another column vector, the error vector. This
vector can be thought to represent a hypothetical part
of the program that is responsible for all observed er-
rors. Fault localization essentially consists in identify-
ing the part whose column vector resembles the error
vector most.

In the field of data clustering, resemblances between
vectors of binary, nominally scaled data, such as the
columns in our matrix of program spectra, are quanti-
fied by means of similarity coefficients (see, e.g., [15]).
Many similarity coefficients exist. As an example, be-
low are three different similarity coefficients, namely
the Jaccard coefficient sT , which is used by the Pin-
point tool [6], the coefficient used in the Tarantula
fault localization tool [16], and the Ochiai coefficient
sO, used in the molecular biology domain:

sJ (j) =
a11(j)

a11(j) + a01(j) + a10(j)
(1)

sT (j) =

a11(j)
a11(j)+a01(j)

a11(j)
a11(j)+a01(j) + a10(j)

a10(j)+a00(j)

(2)

sO(j) =
a11(j)

√

(a11(j) + a01(j)) ∗ (a11(j) + a10(j))
(3)

where apq(j) = |{i | xij = p ∧ ei = q}|, and
p, q ∈ {0, 1}. Besides, xij = p indicates whether block
j was touched (p = 1) in the execution of run i or not
(p = 0). Similarly, ei = q indicates whether a run i
was faulty (q = 1) or not (q = 0).

Under the assumption that a high similarity to the
error vector indicates a high probability that the cor-
responding parts of the software cause the detected
errors, the calculated similarity coefficients rank the
parts of the program with respect to their likelihood of
containing the faults.

To illustrate the approach, suppose that we ap-
ply the RationalSort function to the input sequences

I1, . . . , I6 (see below). The block hit spectra for these
runs are as follows (’1’ denotes a hit), where block 5
corresponds to the body of the RationalGT function,
which has not been shown in Figure 1.

block
input 1 2 3 4 5 error
I1 = 〈 〉 1 0 0 0 0 0
I2 = 〈 1

4
〉 1 1 0 0 0 0

I3 = 〈 2

1
, 1

1
〉 1 1 1 1 1 0

I4 = 〈 4

1
, 2

2
, 0

1
〉 1 1 1 1 1 0

I5 = 〈 3

1
, 2

2
, 4

3
, 1

4
〉 1 1 1 1 1 1

I6 = 〈 1

4
, 1

3
, 1

2
, 1

1
〉 1 1 1 0 1 0

sJ .17 .20 .25 .33 .25
sT .50 .56 .62 .71 .50
sO .40 .44 .50 .58 .50

I1, I2, and I6 are already sorted, and lead to passed
runs. I3 is not sorted, but the denominators in this
sequence happen to be equal, hence no error occurs. I4

is the example from Section 2.1: an error occurs during
its execution, but goes undetected. For I5 the program
fails, since the calculated result is 〈 1

1 , 2
2 , 4

3 , 3
4 〉 instead

of 〈 1
4 , 2

2 , 4
3 , 3

1 〉, which is a clear indication that an error
has occurred. For this data, the calculated similarity
coefficients sx∈{J,T,P}(1), . . . , sx∈{J,T,P}(5) (correctly)
identify block 4 as the most likely location of the fault.

3 Experimental Setup

In this section we describe the benchmark set that we
use in our experiments. We also detail how we extract
the data of Figure 2, and define how we measure diag-
nostic accuracy.

3.1 Benchmark Set

In our study we worked with a widely-used set of test
programs known as the Siemens set [14], which is
composed of seven programs. Every single program
has a correct version and a set of faulty versions of
the same program. Each faulty version contains ex-
actly one fault. However, the fault may span through
multiple statements and/or functions. Each program
also has a set of inputs that ensures full code cover-
age. Table 1 provides more information about the pro-
grams in the package (for more detailed information
refer to [14]).

In our experiments we were not able to use all the
programs provided by the Siemens set. Because we
conduct our experiments using block hit spectra, we
can not use programs which contain faults located out-
side a block, such as global variables initialization. Ver-
sions 4 and 6 of print tokens contain such faults and
were therefore discarded. Version 9 of schedule2 and
version 32 of replace were not considered in our ex-
periments because no test case fails and therefore the

existence of a fault was never revealed. Furthermore,
as we are comparing ranking techniques, we decided to
limit our experiment to single site faults. Hence, ver-
sions 12, and 21 of replace, versions 10, 11, 15, and
40 of tcas, version 7 of schedule, and version 1 of
print tokens were also discarded because the fault is
extended to more than one site. In total, we discarded
12 versions out of 132 versions provided by the suite,
using 120 versions in our experiments.

3.2 Data Acquisition

Collecting Spectra For obtaining block hit spectra
we automatically instrumented the source code of ev-
ery single program in the Siemens set using the parser
generator Front [4], which is used in the development
process within our industrial partner in the TRADER
project [10]. A function call was inserted at the be-
ginning of every block of code to log its execution (see
[2] for details on the instrumentation process). Instru-
mentation overhead has been measured to be approxi-
mately 6% on average (with standard deviation of 5%).
Moreover, the programs were compiled on a Fedora

Core release 4 system with gcc-3.2.

Error Detection As for each program the Siemens
set includes a correct version, we use the output of
the correct version of each program as error detection
reference. We characterize a run as ‘failed’ if its output
differs from the corresponding output of the correct
version, and as ‘passed’ otherwise.

3.3 Evaluation Metric

As spectrum-based fault localization creates a ranking
of blocks in order of likelihood to be at fault, we can
retrieve how many blocks we still need to inspect until
we hit the faulty block. If there are two or more blocks
ranking with the same coefficient, we use the average
ranking position for all the blocks.

Let d ∈ {1, . . . , N} be the index of the block that we
know to contain the fault. For all j ∈ {1, . . . , N}, let
sj denote the similarity coefficient calculated for block
j. Then the ranking position is given by

τ =
|{j|sj > sd}| + |{j|sj ≥ sd}| − 1

2
(4)

We define accuracy, or quality of the diagnosis as the
effectiveness to pinpoint the faulty block. This metric
represents the percentage of blocks that need not be
considered when searching for the fault by traversing
the ranking. It is defined as

qd = (1 −
τ

N − 1
) · 100% (5)

Program Faulty Versions Blocks Test Cases Description
print tokens 7 110 4 130 lexical analyzer
print tokens2 10 105 4 115 lexical analyzer

replace 32 124 5 542 pattern recognition
schedule 9 53 2 650 priority scheduler
schedule2 10 60 2 710 priority scheduler

tcas 41 20 1 608 altitude separation
tot info 23 44 1 052 information measure

Table 1. Set of programs used in the experiments

 0

 20

 40

 60

 80

 100

pri
nt_

tok
en

s

pri
nt_

tok
en

s2

rep
lac

e

sc
he

du
le

sc
he

du
le2 tca

s

tot
_in

fo

Tarantula
Jaccard

Ochiai

Figure 3. Diagnostic accuracy qd

4 Similarity Coefficient Impact

At the end of Section 2.3 we reduced the problem
of spectrum-based fault localization to finding resem-
blances between binary vectors. The key element of
this technique is the calculation of a similarity coef-
ficient. Many different similarity coefficients are used
in practice, and in this section we investigate the im-
pact of the similarity coefficient on the diagnostic ac-
curacy qd.

For this purpose, we evaluate qd on all faults in our
benchmark set, using nine different similarity coeffi-
cients. We only report the results for the Jaccard co-
efficient of Eq. (1), the coefficient used in the Taran-
tula fault localization tool as defined in Eq. (2), and
the Ochiai coefficient of Eq. (3). We experimentally
identified the latter as giving the best results among
all eight coefficients used in a data clustering study in
molecular biology [7], which also included the Jaccard
coefficient.

In addition to Eq. (2), the Tarantula tool uses a sec-
ond coefficient, which amounts to the maximum of the
two fractions in the denominator of Eq. (2). This sec-
ond coefficient is interpreted as a brightness value for
visualization purposes, but the experiments in [16] in-
dicate that the above coefficient can be studied in isola-
tion. For this reason, we have not taken the brightness
coefficient into account.

Figure 3 shows the results of this experiment. It
plots qd, as defined by Eq. (5), for the three similarity
coefficients mentioned above, averaged per program of
the Siemens set. See [1] for more details on these ex-
periments.

An important conclusion that we can draw from
these results is that under the specific conditions of our
experiment, the Ochiai coefficient gives a better diag-
nosis: it always performs at least as good as the other
coefficients, with an average improvement of 5% over
the second-best case, and improvements of up to 30%
for individual faults. Factors that likely contribute to
this effect are the following. First, for a11(j) > 0 (the
only relevant case: a11(j) = 0 implies sj = 0) the

Tarantula coefficient can be written as 1/(1 + c a10(j)
a11(j)),

with c the constant a11(j)+a01(j)
a00(j)+a10(j) . This depends only on

presence of a block in passed and failed runs, while the
Ochiai coefficient also takes the absence in failed runs
into account. Second, compared to Jaccard (Eq. 1),
for the purpose of determining the ranking the denom-
inator of the Ochiai coefficient contains an extra term
a01(j)·a10(j)

a11(j) , which amplifies the differences in the col-

umn vectors of Figure 2. This can be seen by squaring
Eq. 3, and dividing the numerator and denominator by
a11(j), which does not change the ranking.

5 Observation Quality Impact

Before reaching a definitive decision to prefer one sim-
ilarity coefficient over another, as suggested by the re-
sults in Section 4, we want to verify that the effect of
this decision is independent of specific conditions of our
experiments. Because of its relation to test coverage,
and to the error detection mechanism used to charac-
terize runs as passed or failed, an important condition
in this respect is the quality of the error detection in-
formation used in the analysis.

In this section we define a measure of quality of the
error observations, and show how it can be controlled as
a parameter if the fault location is known, as is the case
in our experimental setup. Thus, we verify the results
of the previous section for varying observation quality
values. Investigating the influence of this parameter
will also help us to assess the potential gain of more
powerful error detection mechanisms and better test
coverage on diagnostic accuracy.

5.1 A Measure of Observation Quality

Correctly locating the fault is trivial if the column for
the faulty part in the matrix of Figure 2 resembles the
error vector exactly. This would mean that an error
is detected if, and only if the faulty part is active in a
run. In that case, any coefficient is bound to deliver
a highly accurate diagnosis. However, spectrum-based
fault localization suffers from the following phenomena.

• Most faults lead to an error only under specific in-
put conditions. For example, if a conditional state-
ment contains the faulty condition v < c, with
v a variable and c a constant, while the correct
condition would be v ≤ c, no error occurs if the
conditional statement is executed, unless v = c.

• Similarly, as we have already seen in Section 2.1,
errors need not propagate all the way to failures
[18, 21], and may thus go undetected. This ef-
fect can partially be remedied by applying more
powerful error detection mechanisms, but for any
realistic software system and practical error detec-
tion mechanism there will likely exist errors that
go undetected.

As a result of both phenomena, the set of runs in
which an error is detected will only be a subset of the
set of runs in which the fault is activated2. We propose
to use the ratio of the size of these two sets as a measure
of observation quality for a diagnosis problem. Using
the notation of Section 2.3, we define

qe =
a11(d)

a11(d) + a10(d)
· 100%. (6)

This value can be interpreted as the unambiguity of
the passed/failed data in relation to the fault being
exercised, which may be loosely referred to as “error
detection quality,” hence the symbol qe.

A problem with the qe measure is that no informa-
tion on undetected errors is available: a10(d) counts
both the undetected errors, and the number of times
the fault location was activated without introducing
an error. This can be summarized as follows, where
X, E, and D denote activation of the fault location,
the occurrence of an error, and detection of an error,
respectively:

X E D
0 0 0 a00(d)
1 0 0
1 1 0

ff

a10(d)

1 1 1 a11(d)

2In our experimental setup, we do not consider effects that
carry over from one run to another, so conversely, if an error is
detected, the fault is always active.

Even though the ratio of the two contributions to
a10(d) is unknown, it can still be influenced in our ex-
perimental setup. We will now describe our procedure
for doing so.

5.2 Varying qe

Subject to various factors such as the nature of the
fault, the similarity coefficient used in the diagnosis,
the design of the test data, but also the compiler and
the operating system, each faulty version of a program
in our benchmark set has an inherent value for qe,
which can be evaluated by collecting spectra and er-
ror detection information for all available test cases,
and performing the diagnosis of Section 2.3. In our en-
vironment, this inherent value for qe ranges from 1.4%
for schedule2 to 20.3% for tot info.

We can construct a different value for qe by exclud-
ing runs that contribute either to a11(d) or to a10(d)
as follows.

• Excluding a run that activates the fault location,
but for which no error has been detected lowers
a10(d), and will increase qe.

• Excluding a run that activates the fault location
and for which an error has been detected lowers
a11(d), and will decrease qe.

Excluding runs to achieve a certain value of qe raises
the question of which particular selection of runs to use.
For this purpose we randomly sample passed or failed
runs from the set of available runs to control qe within a
99% confidence interval. We verified that the variance
in the values measured for qd is negligible.

Note that for decreasing qe, i.e., obscuring the fault
location, we have another option: setting failed runs
to ‘passed.’ In our experiments we have tried both op-
tions, but the results were essentially the same. The re-
sults reported below are generated by excluding failed
runs. Conversely, setting passed runs that exercise the
fault location to ‘failed’ is not a good alternative for
increasing qe: this may obstruct the diagnosis as we
cannot be certain that an error occurs for a particular
data input. Moreover, it may allocate blame to parts
of the program that are not related to the fault. Thus,
excluding runs is always to be preferred as this does
not compromise observation consistency. This way, we
were able to vary qe from 1% to 100% for all programs.

5.3 Similarity Coefficients Revisited

Using the technique for varying qe introduced above we
revisit the comparative study of similarity coefficients

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

q d [%
]

qe [%]

Tarantula
Jaccard

Ochiai

Figure 4. Observation quality impact

in Section 4. Figure 4 shows qd for the three similar-
ity coefficients, and values of qe ranging from 1% to
100%. In this case, instead of averaging per program
in the Siemens set, as we did in Figure 3, we arithmeti-
cally averaged qd over all 120 faulty program versions
to summarize the results (this is valid because qd is al-
ready normalized with respect to program size). As in
Figure 3, the graphs for the individual programs are
similar, only having different offsets.

These results confirm what was suggested by the
experiment in Section 4. The Ochiai similarity coeffi-
cient leads to a better diagnosis than the other eight,
including the Jaccard coefficient and the coefficient of
the Tarantula tool. Compared to the Jaccard coeffi-
cient the improvement is greatest for lower observation
quality. As qe increases, the performance of the Jac-
card coefficient approaches that of the Ochiai coeffi-
cient. The improvement of the Ochiai coefficient over
the Tarantula coefficient appears to be structural.

Another observation that can be made from Figure 4
is that all three coefficients provide a useful diagnosis
(qd around 80%) already for low qe values (a qe of 1%
implies that only around 1% of the runs that exercised
the faulty block actually resulted in a failed run). The
accuracy of the diagnosis increases as the quality of the
error detection information improves, but the effect is
not as strong as we expected. This suggests that more
powerful error detection mechanisms, or test sets that
cover more input conditions will have limited gain. In
the next section we investigate a possible explanation,
namely that not only the quality of observations, but
also their quantity determines the accuracy of the di-
agnosis.

6 Observation Quantity Impact

To investigate the influence of the number of runs on
the accuracy of spectrum-based fault localization, we
evaluated qd while varying the numbers of passed (NP)
and failed runs (NF) that are involved in the diagnosis,
across the benchmark set. Since all interesting effects

(a)

 0 20 40 60 80 100

 0
 20

 40
 60

 80
 100 0

 20

 40

 60

 80

 100

qd[%]
print_tokens2_v1

NP

NF

qd[%]

(b)

 0 20 40 60 80 100

 0
 20

 40
 60

 80
 100 0

 20

 40

 60

 80

 100

qd[%]
schedule_v2

NP

NF

qd[%]

Figure 5. Observation quantity impact

appear to occur for small numbers of runs, we have
focused on the range of 1..100 passed and failed runs.
Although the number of available runs in the Siemens
set ranges from 1052 (tot info) to 5542 (replace),
the number of runs that fail is comparatively small,
ranging from a single run for tcas version 8, to 518
for print tokens version 2. For this reason, even in
the range 1..100, some selections of failed runs are not
possible for some of the faulty versions.

Figure 5 shows two representative examples of such
evaluations, where we plot qd according to the Ochiai
coefficient for NP and NF varying from 1 to 100. For
each entry in these graphs, we averaged qd over 50 ran-
domly selected combinations of NP passed runs and
NF failed runs, where we verified that the variance in
the measured values of qd is negligible. Apart from
the apparent monotonic increase of qd with NF , we ob-
serve that for version 1 of print tokens2, qd decreases
when more passed runs are added (Figure 5 (a)), while
qd increases for version 2 of schedule (Figure 5 (b)).

Given a set of faulty program versions that all allow
failed runs to be selected up to a given value for NF , we
can average the measured values for qd again over these
versions. This summarizes several graphs of the kind
shown in Figure 5. This way, in Figure 6 we plot the
average qd using the Ochiai coefficient for 1 ≤ NF ≤ 30
and 1 ≤ NP ≤ 100, projected on the NF × qd plane.
With this limited range for NF we can still use 80 of the

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

q d[%
]

NF

Figure 6. Impact of NF on qd, on average

118 versions in the benchmark set, whereas for NF ≤
100, we can only use 35. We verified that for NF ≤
15, for which we can use 95 versions, the results are
essentially the same.

A first conclusion that we draw from Figure 6 is that
overall, adding failed runs improves the accuracy of the
diagnosis. However, the benefit of having more than 6
runs is marginal on average. In addition, because the
measurements for varying NP show little scattering in
the projection, we can conclude that on average, NP

has little structural influence.

Inspecting the results for the individual program
versions confirms our observation that adding failed
runs consistently improves the diagnosis. However, al-
though the effect does not show on average, NP can
have a significant effect on qd for individual runs. As
shown in Figure 5, this effect can be negative or pos-
itive. This shows more clearly in Figures 7 and 8,
which contain cross sections of the graphs in Figure 5
at NF = 6. To factor out any influence of NF , we have
created similar cross sections at the maximum num-
ber of failed runs. Across the entire benchmark set,
we found that the effect of adding more passed runs
stabilizes around NP = 20.

Returning to the influence of the similarity coeffi-
cient once more, Figures 7 and 8 further indicate that
the superior performance of the Ochiai coefficient is
consistent also for varying numbers of runs. We have
not plotted qd for the other coefficients in Figure 5, but
we verified this observation for all program versions,
with NP and NF varying from 1 to 100.

From our experiments on the impact of the number
of runs we can draw the following conclusions. First,
including more failed runs is safe because the accu-
racy of the diagnosis either improves or remains the
same. This is observed due to the fact that failed runs
add evidence about the block that is causing the pro-
gram to fail, and hence causing it to move up in the
ranking. Our results show that the optimum value for
NF is roughly 6. To what extent this result depends
on characteristics of the fault or program is subject to

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

q d [%
]

NP

Tarantula
Jaccard

Ochiai

Figure 7. Impact of NP on qd for print tokens2 v1,
and NF = 6

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

q d [%
]

NP

Tarantula
Jaccard

Ochiai

Figure 8. Impact of NP on qd for schedule v2, and
NF = 6

further investigation. Second, while stabilizing around
NP = 20, the effect of including more passed runs is
unpredictable, and may actually decrease qd. Actually,
qd decreases only if the faulty block is touched often in
passed runs, as spectrum-based fault localization works
under de assumption that if a block is touched often in
passed runs, it should be exonerated. Besides, a large
number of runs can apparently compensate weak error
detection quality: even for small qe, a large amount of
runs provides sufficient information for good diagnostic
accuracy, as shown in Figure 4. Lastly, the number of
runs has no influence on the superiority of the Ochiai
coefficient.

7 Related Work

Program spectra themselves were introduced in [20],
where hit spectra of intra-procedural paths are ana-
lyzed to diagnose year 2000 problems. The distinction
between count spectra and hit spectra is introduced in
[13], where several kinds of program spectra are evalu-
ated in the context of regression testing.

In the introduction we already mentioned three
practical diagnosis/debugging tools [6, 8, 17] that are
essentially based on spectrum-based fault localization.
Pinpoint [6] is a framework for root cause analysis on

the J2EE platform and is targeted at large, dynamic
Internet services, such as web-mail services and search
engines. The error detection is based on information
coming from the J2EE framework, such as caught ex-
ceptions. The Tarantula tool [17] has been developed
for the C language, and works with statement hit spec-
tra. AMPLE [8] is an Eclipse plug-in for identifying
faulty classes in Java software. However, although we
have recognized that it uses hit spectra of method call
sequences, we didn’t include its weight coefficient in
our experiments because the calculated values are only
used to collect evidence about classes, not to identify
suspicious method call sequences.

Diagnosis techniques can be classified as white box
or black box, depending on the amount of knowledge
that is required about the system’s internal compo-
nent structure and behavior. An example of a white
box technique is model-based diagnosis (see, e.g., [9]),
where a diagnosis is obtained by logical inference from
a formal model of the system, combined with a set of
run-time observations. White box approaches to soft-
ware diagnosis exist (see, e.g., [22]), but software mod-
eling is extremely complex, so most software diagnosis
techniques are black box. Since the technique studied
in this paper requires practically no information about
the system being diagnosed, it can be classified as a
black box technique.

Examples of other black box techniques are Nearest
Neighbor [19], dynamic program slicing [3], and Delta
Debugging [23]. The Nearest Neighbor technique first
selects a single failed run, and computes the passed run
that has the most similar code coverage. Then it cre-
ates the set of all statements that are executed in the
failed run but not in the passed run. Dynamic pro-
gram slicing narrows down the search space to the set
of statements that influence a value at a program loca-
tion where the failure occurs (e.g., an output variable).
Delta Debugging compares the program states of a fail-
ing and a passing run, and actively searches for failure-
inducing circumstances in the differences between these
states. In [11] Delta Debugging is combined with dy-
namic slicing in 4 steps: (1) Delta Debugging is used
to identify the minimal failure-inducing input; step (2)
computes the forward dynamic slice of the input vari-
ables obtained in step 1; (3) the backward dynamic
slice for the failed run is computed; (4) finally it returns
the intersection of the slices given by the previous two
steps. This set of statements is likely to contain the
faulty code.

To our knowledge, none of the above approaches
have evaluated diagnostic accuracy or studied the per-
formance of similarity coefficients in the context of
varying observation quality and quantity.

8 Conclusions and Future Work

Reducing fault localization effort greatly improves the
test-diagnose-repair cycle. In this paper, we have in-
vestigated the influence of different parameters on the
accuracy of the diagnosis delivered by spectrum-based
fault localization. Our starting point was a previ-
ous study on the influence of the similarity coefficient,
which indicated that the Ochiai coefficient, known from
the biology domain, can give a better diagnosis than
eight other coefficients, including those used by the
Pinpoint [6] and Tarantula [16] tools.

By varying the quality and quantity of the obser-
vations on which the fault localization is based, we
have established this result in a much wider context.
We conclude that the superior performance of the
Ochiai coefficient in diagnosing single-site faults in the
Siemens set is consistent, and does not depend on the
quality or quantity of observations. We expect that this
result is relevant for the Tarantula tool, whose analysis
is essentially the same as ours.

In addition, we found that even for the lowest quality
of observation that we applied (qe = 1%, corresponding
to a highly ambiguous error detection), the accuracy
of the diagnosis is already quite useful: around 80%
for all the programs in the Siemens set, which means
that on average, only 20% of the code remains to be
investigated to locate the fault. Furthermore, we con-
clude that while accumulating more failed runs only
improves the accuracy of the diagnosis, the effect of
including more passed runs is unpredictable. With re-
spect to failed runs we observe that only a few (around
6) are sufficient to reach near-optimal diagnostic per-
formance. Adding passed runs, however, can both im-
prove or degrade diagnostic accuracy. In either case,
including more than around 20 passed runs has little
effect on the accuracy. The fact that a few observa-
tions can already provide a near-optimal diagnosis en-
ables the application of spectrum-based fault localiza-
tion methods within continuous (embedded) process-
ing, where only limited observation horizons can be
maintained.

In addition to our benchmark studies on the Siemens
set, we have also evaluated spectrum-based fault lo-
calization on a large-scale industrial code (embedded
software in consumer electronics, [24]). Based on the
success of these exploratory experiments, new exper-
iments are being defined that are much closer to the
actual development process of our industrial partner
in the TRADER project [10].

In future work, we plan to study the influence of
the granularity (statement, function level) of program
spectra on the diagnostic accuracy of spectrum-based

fault localization. Furthermore, we intend to inves-
tigate the accuracy improvement of integrating static
and dynamic program slicing (see, e.g., [13]) within our
technique. Finally, our study was conducted using sin-
gle fault programs, and further investigation is required
to be able to generalize our findings to multiple fault
programs.

9 Acknowledgments

We gratefully acknowledge the fruitful discussions with
our TRADER project partners from Philips, NXP
Semiconductors, Design Technology Institute, Embed-
ded Systems Institute, IMEC, Leiden University, and
Twente University.

References

[1] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. An
evaluation of similarity coefficients for software fault
localization. In Proc. PRDC’06, pp. 39 – 46, Riverside,
CA, USA, December 2006. IEEE Computer Society.

[2] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund.
Program spectra analysis in embedded systems: A case
study. In 12th Ann. Conf. of the Advanced School for
Computing and Imaging. ASCI, June 2006.

[3] H. Agrawal, R. A. DeMillo, and E. H. Spafford. Debug-
ging with dynamic slicing and backtracking. Software
- Practice and Experience, 23(6):589–616, 1993.

[4] L. Augusteijn. Front: a front-end generator for Lex,
Yacc and C, release 1.0. http://front.sourceforge.
net/, 2002.

[5] A. Avižienis, J.-C. Laprie, B. Randell, and C. E.
Landwehr. Basic concepts and taxonomy of depend-
able and secure computing. IEEE Trans. Dependable
Sec. Comput., 1(1):11–33, 2004.

[6] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and
E. Brewer. Pinpoint: Problem determination in large,
dynamic internet services. In Proc. DSN’02, pp. 595–
604, Washington, DC, USA, 2002. IEEE Computer So-
ciety.

[7] A. da Silva Meyer, A. A. Franco Farcia, and
A. Pereira de Souza. Comparison of similarity coef-
ficients used for cluster analysis with dominant mark-
ers in maize (Zea mays L). Genetics and Molecular
Biology, 27(1):83–91, 2004.

[8] V. Dallmeier, C. Lindig, and A. Zeller. Lightweight
defect localization for Java. In Proc. ECOOP’05, vol-
ume 3568 of LNCS, pp. 528–550, Glasgow, UK, 2005.
Springer-Verlag.

[9] J. de Kleer and B. C. Williams. Diagnosing multiple
faults. Artif. Intell., 32(1):97–130, 1987.

[10] Embedded Systems Institute. Trader project website.
http://www.esi.nl/trader/.

[11] N. Gupta, H. He, X. Zhang, and R. Gupta. Locating
faulty code using failure-inducing chops. In Proc. of the
20th IEEE/ACM international Conference on Auto-
mated software engineering, pp. 263–272, Long Beach,
CA, USA, 2005. ACM Press.

[12] B. Hailpern and P. Santhanam. Software debug-
ging, testing, and verification. IBM Systems Journal,
41(1):4–12, 2002.

[13] M. J. Harrold, G. Rothermel, R. Wu, and L. Yi. An
empirical investigation of program spectra. In Proc. of
the SIGPLAN/SIGSOFT Workshop on Program Anal-
ysis For Software Tools and Engineering, Montreal,
Canada, June 16, 1998, pp. 83–90, 1998.

[14] M. Hutchins, H. Foster, T. Goradia, and T. Os-
trand. Experiments of the effectiveness of dataflow-
and controlflow-based test adequacy criteria. In Proc.
ICSE’94, pp. 191–200, Sorrento, Italy, 1994. IEEE
Computer Society.

[15] A. K. Jain and R. C. Dubes. Algorithms for cluster-
ing data. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1988.

[16] J. A. Jones and M. J. Harrold. Empirical evaluation
of the tarantula automatic fault-localization technique.
In Proc. ASE’05, pp. 273–282, New York, NY, USA,
2005. ACM Press.

[17] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization
of test information to assist fault localization. In Proc.
ICSE’02, Orlando, Florida, USA, May 2002, pp. 467–
477. ACM Press.

[18] L. J. Morell. A theory of fault-based testing. IEEE
TSE, 16(8):844–857, 1990.

[19] M. Renieris and S. P. Reiss. Fault localization with
nearest neighbor queries. In Proc. ASE’03, Montreal,
Canada, October 2003. IEEE Computer Society.

[20] T. Reps, T. Ball, M. Das, and J. Larus. The use of
program profiling for software maintenance with appli-
cations to the year 2000 problem. In Proc. ESEC’97,
volume 1301 of LNCS, pp. 432–449. Springer–Verlag,
1997.

[21] J. Voas. PIE: A dynamic failure based technique. IEEE
TSE, 18(8):717–727, August 1992.

[22] F. Wotawa, M. Strumptner, and W. Mayer. Model-
based debugging or how to diagnose programs auto-
matically. In Proc. IAE/AIE 2002, volume 2358 of
LNCS, pp. 746–757. Springer-Verlag, 2002.

[23] A. Zeller. Isolating cause-effect chains from computer
programs. In Proc. FSE’02, Charleston, South Car-
olina, November 2002. ACM Press.

[24] P. Zoeteweij, R. Abreu, R. Golsteijn, and A. J. C. van
Gemund. Diagnosis of embedded software using pro-
gram spectra. In Proc. ECBS’07, pp. 213–218, Tucson,
AZ, USA, March 2007. IEEE Computer Society.

