
Automata for Context-Dependent Connectors

Marcello Bonsangue1,3, Dave Clarke2, and Alexandra Silva3

1 LIACS, Leiden University, The Netherlands
2 Dept. Computer Science, Katholieke Universiteit Leuven, Belgium

3 CWI, The Netherlands

Abstract. Recent approaches to component-based software engineer-
ing employ coordinating connectors to compose components into soft-
ware systems. For maximum flexibility and reuse, such connectors can
themselves be composed, resulting in an expressive calculus of connec-
tors whose semantics encompasses complex combinations of synchroni-
sation, mutual exclusion, non-deterministic choice and state-dependent
behaviour. A more expressive notion of connector includes also context-
dependent behaviour, namely, whenever the choices the connector can
take change non-monotonically as the context, given by the pending ac-
tivity on its ports, changes. Context dependency can express notions of
priority and inhibition. Capturing context-dependent behaviour in for-
mal models is non-trivial, as it is unclear how to propagate context in-
formation through composition. In this paper we present an intuitive
automata-based formal model of context-dependent connectors, and ar-
gue that it is superior to previous attempts at such a model for the
coordination language Reo.

1 Introduction

The holy grail of component-based software engineering is to develop truly
reusable software components which can be sold off-the-shelf and reused to
build software systems [31]. Research on software composition plays a key role
in this quest, as it offers flexible ways of plugging together components. Some
approaches to software composition use textual glue code [15,26,28], usually in a
scripting language, whereas others offer a more visual approach, where ‘channels’
or ‘connectors’ are used to compose components into a system [1,9,14,17].

Connectors play the role of coordinating software systems, yet their function-
ality is traditionally more limited than scripting languages. This trend has been
reversed with investigation into the notion of compositional connectors [1,26].
In such a setting, connectors are formed by composing simpler connectors such
as channels together. These ‘languages’ express various coordination patterns
exhibiting combinations of synchronisation, mutual exclusion, non-deterministic
choice, and state-dependent behaviour. A number of component connector
models exist, including Reo [1], Ptolemy [23], Ptolemy II [24], MoCha [17], Man-
ifold [5], pipe and filter architectures [30]. Although these overlap in philoso-
phy and functionality, Reo is the only one that enables synchrony and mutual
exclusion to propagate through connectors.

J. Field and V.T. Vasconcelos (Eds.): COORDINATION 2009, LNCS 5521, pp. 184–203, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Automata for Context-Dependent Connectors 185

The trend is to increase (or improve) the expressiveness of such coordina-
tion models by investigating features such as dynamic reconfiguration [21], data
sensitive operations such as data filtering and transformation [10], and context-
dependent behaviour [11]. The latter feature is characterised by behaviours which
depend upon both the positive and negative occurrences of I/O requests on the
boundary ports of the connector. This paper follows this trend, by investigat-
ing the notion of context dependency in the setting of the coordination lan-
guage Reo [1]. Context dependency enables connectors to be more responsive to
changes in their environment, and thus increases the expressiveness of connectors
enabling them to express, for example, priority and inhibition. Our primary goal
is twofold, namely to produce a model of context-dependent connectors which
avoids a number of the problems of previous such models for Reo, in a manner
which can be implemented efficiently.

Context-dependent behaviour has already been studied in the context of non-
monotonic concurrent constraint programming [13] and generative communica-
tion [16], where operators are defined with the ability of observing the absence of
data. The extra difficulty present in connector-based models is how to propagate
context-dependent behaviour properly.

Contributions. This paper presents a compositional automata model for ex-
pressing context-dependent connectors. Following intensional automata [12], the
model expresses context dependency by modelling both the I/O requests from
the environment and the firings of the connector. It is a simple and intuitive
model, in the sense that automata corresponding to basic connectors have a small
number of states and transitions, compared to intensional automata. Moreover,
because our automata are partial, the model overcomes a problem with totality
preservation present in connector colouring [11].

Connector plugging is achieved by a novel two-step composition operation con-
sisting of a product, modelling the independent execution of distinct connectors,
plus a synchronisation operation. Composition propagates context information,
which contains both positive and negative information. Using this we define a
previously elusive notion of enabledness and show that it is also appropriately
propagated through composition. We also formally define the notion of context
dependency, which had never been formalized for any of the other existing mod-
els of Reo. The presented automata model also enables an efficient implemen-
tation of context dependent Reo connectors, combining the benefit of previous
automata-based implementations [25] with the context dependency originally
developed in the connector colouring model [11].

Organisation. Section 2 describes the Reo coordination language and highlights
problems with its models with regard to context dependency. Section 3 describes
guarded strings, the formal basis for traces of context dependent connectors.
Section 4 describes guarded automata, the basis of our formalism, along with its
product and synchronisation operations, and the additional conditions required
for modelling Reo connectors. Section 5 describes and justifies various technical
conditions present in our model, including giving properties. Section 6 concludes.



186 M. Bonsangue, D. Clarke, and A. Silva

2 The Coordination Language Reo and Its Models

Reo [1] is a model of component coordination wherein component connectors
are constructed by composing more primitive connectors, such as channels, data
replicators, stream mergers and routers. Primitives express state-dependent syn-
chronisation and mutual exclusion constraints on their ports, along with the
data flow between the ports that synchronise. Primitives can exhibit different
behaviours in terms of synchronisation and mutual exclusion of their ports, the
direction of data flow, the presence of buffering, state, and whether or not data
can be lost. Composition of connectors is achieved by plugging ports together
(one-to-one, in the direction of data flow, is sufficient). Composition imposes the
constraint that the two ports plugged together synchronise, and hereby synchro-
nisation and mutual exclusion constraints propagate through a connector.

A number of Reo’s primitive connectors are depicted in Fig. 1. These form
quite an expressive set of connectors (most connectors appearing in the literature
use these or their close relatives). Their semantics are presented later in Fig. 3.

a b a b ||a b a b a b

Sync(a, b) LossySync(a, b) AsyncDrain(a, b) SyncDrain(a, b) Fifo1 (a, b)

a

b

c

a

b

c
!

a

b

c

Merger (ab, c) PriorityMerger (ab, c) Rep(a, bc)

Fig. 1. Basic Reo channels

The interaction model presupposed by Reo is that components try to write
or take data from the ports it is connected to. The connector then determines
when the write or take ‘fires’, together with passing data along through the
channels of the connector. The notion of synchrony is equated with the ports
that fire together, and mutual exclusion is when ports cannot fire together. Most
existing formal models of Reo express only the sets of write/take actions which
can fire together, dubbed as firing. Context-dependent behaviour goes beyond
this: such behaviour differs depending upon both the positive and negative oc-
currences of I/O requests on the boundary ports of the connector. Using this
request information as well, connectors can express a notion of priority, when
two or more choices are possible, and a notion of inhibition wherein attempts by
the components to perform operations blocks (certain) firings from occurring.

Informal accounts of Reo give a localised description of the context-dependent
nature of certain connectors. For instance, the LossySync channel (with ports a
and b) has the behaviour that if a write request and a take request are present on
a and b, respectively, then data flows from a to b (synchronously). If, however,



Automata for Context-Dependent Connectors 187

no take on b is present, then data may flow at a, but it is lost in the channel. In
contrast, the Sync channel (with ports a and b) is not context dependent: data
must only flow synchronously. In fact, we will show in the sequel that this channel
behaves as identity when composed with other channels. Notions of priority can
also be described in this fashion, by using the context (boundary I/O requests)
to break any non-determinism.

The problem with this kind of description, first identified by Clarke et al. [11],
is that it relies on the presence of requests on the ports of primitives, but after
composition these ports are generally no longer on the boundary of a connector,
but made internal, and informal accounts do not provide a precise enough de-
scription of how context-dependent behaviour propagates through composition.
This is a consequence of the impedance mismatch resulting from the plugging
together two ports: both ports are expecting some environment to initiate inter-
action, but the environment (some component) is not present at the point where
two ports are joined. Arbab [1] describes how offers of data (writes) and will-
ingness to accept data (takes) propagate through channels, but unfortunately,
this description is incomplete and imprecise, in particular with regard to how
context propagation interacts with non-deterministic choice. Clarke et al. [10]
goes as far as arguing that there are no natural intuitive models for Reo, hence
no natural or obvious way of implementing it, as our intuition about data flow
networks is insufficient to determine how connectors behave. Two consequences
of this are, firstly, that the semantics of any Reo connector can only be under-
stood in terms of a specific semantic model and appropriate translation into the
model, and, secondly, that the only effective implementations of Reo have been
direct implementations of some semantic model; no reference model exists.

2.1 Formal Models of Reo

Numerous models have been proposed in the literature to capture the state-
dependent, synchronisation and mutual exclusion constraints imposed by a Reo
connector over its ports. Providing a semantic model which captures the desired
context-dependent nature of Reo connectors in a compositional manner has,
however, been a challenge. Models either express no context dependency or are
inadequate at doing so.

Constraint automata [7] have transitions whose labels capture the synchroni-
sation (and data flow) between ports, implicitly expressing mutual exclusion, by
describing the sets of ports that fire together (the ‘firing set’) at the exclusion
of the ports not mentioned in the set. In their basic form, however, constraint
automata cannot express context dependency.

A coalgebraic model of Reo [6] was provided in terms of relations on timed
data streams (so-called Abstract Behaviour Types [2]). These were shown to
be more or less equivalent to constraint automata, and thus unable to express
context dependency. Moreover, the underlying time streams are infinite, so the
model excludes not only finite behaviour, but also connectors which exhibit finite
behaviour on any of their ports.



188 M. Bonsangue, D. Clarke, and A. Silva

Connector colouring [11] describes the behaviour of a connector in a composi-
tional fashion by colouring the parts where data flows and where it does not flow
with different colours, requiring simply that colours match at connected ports.
The model also captures context-dependent behaviour by propagating negative
information about the absence of data flow through the connector. This model
was extended to cover both state changes and the passing of data using tile
logic [3]. Nonetheless, this model and its extension suffer from a number of prob-
lems. The first is that some colourings are non-causal, but this can easily be fixed
by tracking the causality relation [12].1 The second problem is that degenerate
behaviour can arise in certain circumstances (see Section 5). Colouring tables
normally are defined to give a colouring for all possible boundary conditions.
However, this totality property is not preserved by composition. Furthermore,
composition with a non-total colouring table can result in no behavioural de-
scription for connectors, whereas often the semantics should be that no flow is
possible. (By analogy, this is the difference between ∅ and {∅}.) When com-
posed with any other connector (even when the two parts are not connected),
the resulting composite has no behaviour.

Intentional automata [12] express context dependency by labelling transitions
with a request set and a firing set, where the request set models the context
and the firing set models the subsequent behaviour. In addition, states record
pending requests—namely, requests that have arrived but have not fired. This
means that there are quite a large number of states in the automata managing
the buffering and firing of such requests, and automata rapidly become diffi-
cult to manipulate and not suitable for model checking purposes. For example,
one Sync channel requires 3 states, and 2 disconnected Sync channels require 9
states. In constraint automata and our model, only 1 state is required in both
cases.

The Büchi automata model of Reo [18,19] assigns to connectors infinite fair
behaviours. In this model, τ -transitions capture the arrival of requests, which
are recorded in states. In this model, there are two different non-equivalent ways
of modelling something as simple as a Sync channel. Thus the model differs
significantly from other approaches.

Mousavi et al. [27] describe Reo’s semantics using structural operational se-
mantics. To capture context-dependent behaviour (of lossy synchronous chan-
nels) a global maximal progress rule is employed to remove undesired behaviours.
This was subsequently encoded into Alloy [20]. The kind of context-dependent
behaviour which can be captured by this rule is limited, as it cannot express the
preference between two unrelated behaviours.

Barbosa et al. [8] present models of Reo-like connectors. The semantics is
given by process algebra expressions, where both the presence and absence of
signals can be specified. Complex connectors are then built from simpler ones
using one of five combinators: parallel composition, interleaving, hook, right and
left join. However, these composition operations increases the complexity of the
model without gaining any expressiveness.

1 Our model also does not deal with causality issues; Costa’s fix is applicable here [12].



Automata for Context-Dependent Connectors 189

Unlike constraint automata, our model can express context dependency us-
ing a request and firing set, as in intentional automata. We abstract away from
data flow constraints, but indicate how to add them back into the model in Sec-
tion 6. Our model is significantly more compact than intentional automata, in
terms of both the number of states and transitions, as information about pend-
ing requests is not stored in states—it can easily be calculated. In contrast to the
Büchi model, our model expresses only finite behaviours and records request sets
in transition labels along with the firing sets, instead of in the states, resulting
in more intuitive models. Furthermore, our model expresses only the positive
behaviour, and does not rely crucially on the Büchi acceptance criteria to rule
out unwanted ‘paths’ in automata. The semantics of our model is based on finite
strings, which are much simpler than relations on timed data streams under-
lying the coalgebraic model. Our model also overcomes the totality problem of
connector colouring by, ironically, not insisting that the transition relation is
total, and by interpreting the absence of a transition simply as no behaviour for
the given context. In contrast to Mousavi et al.’s model, our approach achieves
an expressive notion of context dependency in a compositional manner without
recourse to a global rule. Our composition operation is a compact two-step oper-
ation, much simpler than the five operations proposed by Barbosa et al.. As far
as we can tell, merely just adding information recording the absence of signals
is insufficient to adequately deal with context dependent behaviour.

Overall, we claim that our automata are simpler and more intuitive than
existing models of context dependent connectors. In addition, we prove numerous
relevant properties about our model, not even considered by others.

3 Preliminaries: Guarded Strings

Let Σ = {σ1, . . . , σk} and BΣ be the free Boolean algebra generated by the
following grammar:

g :: = σ ∈ Σ | � | ⊥ | g ∨ g | g ∧ g | g

We refer to the elements of the above grammar as guards and in its represen-
tation we frequently omit ∧ and write g1g2 instead of g1 ∧ g2. Given two guards
g1, g2 ∈ BΣ, we define a (natural) order ≤ by putting g1 ≤ g2 ⇐⇒ g1 ∧ g2 = g1.
The intended interpretation of ≤ is logical implication—g1 implies g2.

Given a guard g there exists an equivalent guard norm(g) =
∨∧

a, where
a ∈ Σ ∪ Σ, with Σ = {σ | σ ∈ Σ}, and

∨
and

∧
the extensions of ∨ and ∧,

respectively, to sets of guards. The guard norm(g) is usually called the disjunc-
tive normal form of g. Since norm(g) can be written as a disjunction, we use the
notation g′ ∈ norm(g) to refer to an arbitrary disjunct of norm(g).

An atom of BΣ is a guard a1 . . . ak such that ai ∈ {σi, σi}, 1 ≤ i ≤ k. We
can think of an atom as a truth assignment. We denote atoms by Greek letters
α, β, . . . and the set of all atoms of BΣ by AtΣ . Every element of a finite Boolean
algebra can be written as a disjunction of atoms. Given S ⊆ Σ, we define Ŝ ∈ BΣ

as the conjunction of all elements of S. For instance, for S = {a, b, c} one has



190 M. Bonsangue, D. Clarke, and A. Silva

Ŝ = abc. We define the atom associated with a set S in the expected way —

αS = Ŝ ∧ ̂Σ \ S. For example, if Σ = {a, b, c}, then α{a,b} = abc. Conversely, the
set associated with an atom α is defined as α+ = {σ ∈ Σ | α ≤ σ}.

A guarded string over Σ is a sequence x = 〈α1, f1〉〈α2, f2〉 . . . 〈αn, fn〉, where
n ≥ 0 and each αi ∈ AtΣ and fi ⊆ Σ. Thus, a guarded string is an el-
ement of (AtΣ × 2Σ)∗. For simplicity, we drop the brackets and write x =
α1f1α2f2 · · · αnfn.

To understand the intuition behind guarded strings, imagine that Σ contains
the names of all doctors in a hospital. Every hour there is a meeting to distribute
the incoming patients. Each atom αi describes the definite presence or absence
of every doctor in the meeting at hour i and f contains the doctors that got
a patient. Thus, the guarded string 〈α1, f1〉〈α2, f2〉 . . . 〈αn, fn〉 will contain the
activity of the doctors from hours 1 to n.

4 Guarded Automata

In this section, we define a new automata model for context-dependent connec-
tors. We start by introducing a generic automata, acceptor of guarded strings
and we define a product operation. Then, suitable restrictions are introduced
to single out the class of Reo automata, i.e., automata that are valid models of
context-dependent connectors, for which a synchronization operation is defined.

Definition 1 (Guarded automaton). A guarded automaton over an alphabet
of ports Σ is a non-deterministic (and possibly partial) automaton with transition
labels BΣ × 2Σ. Formally, a guarded automaton is a triple (Σ, Q, δ) where Q is
a (finite) set of states and δ ⊆ Q × BΣ × 2Σ × Q is the transition relation.

We use the following notation in the representation of guarded automata:

q
g|f �� q′ ⇐⇒ 〈q, g, f, q′〉 ∈ δ

If there is more than one transition from state q to q′ we often just draw one

arrow and separate the labels by commas. Intuitively, a transition q
g|f �� q′

denotes that the actions in f will occur if the guard g is true.
Example guarded automata over the alphabet {a, b} are depicted in Fig. 2.
A guarded automaton can be seen as an acceptor of guarded strings as follows.

Given a guarded string α1f1α2f2 · · · αnfn and a state q in the automaton the

q q q q′ab|a a|ab, ab|ab

a|a

b|b

Fig. 2. Examples of guarded automata over the alphabet {a, b}



Automata for Context-Dependent Connectors 191

string is accepted in state q if there exists q
g|f1 �� q′ ∈ δ such that α1 ≤ g and

α2f2 · · · αnfn is accepted in q′. The empty string ε is accepted in any state. We
denote by Lq the set of guarded strings accepted in a state q. Note that our
definition of acceptance implies that Lq is always non-empty and prefix-closed.

Another way to compute the language Lq would be to first write every guard
g as a disjunction of atoms

∨
I αi (for instance a = ab∨ab), replace the transition

q
g|f1 �� q′ ∈ δ by the transitions q

αi|f1 �� q′ and then compute the accepted
language of the automata in the standard way. An interesting remark is that
if one writes the automaton only using atoms, as described above, and then
determinizes it using a subset construction, the resulting automata will have a
transition function of type Q → (1 + Q)AtΣ×2Σ

[22]. It is then well-known [29]
that such automata have as final semantics precisely the non empty and prefix
closed languages L ⊆ 2(AtΣ×2Σ)∗

.
Two automata are equivalent if they accept the same language. We also in-

troduce a novel notion of bisimulation, which implies language equivalence.

Definition 2 (Bisimulation). Given guarded automata A1 = (Σ, Q1, δ1) and
A2 = (Σ, Q2, δ2). We call R ⊆ Q1 × Q2 a bisimulation iff for all 〈q1, q2〉 ∈ R:

1. For all q1
g|f �� q′1 ∈ δ1 and α ∈ AtΣ such that α ≤ g, there exists a

q2
g′|f �� q′2 ∈ δ2 such that α ≤ g′ and 〈q′1, q′2〉 ∈ R;

2. For all q2
g|f �� q′2 ∈ δ2 and α ∈ AtΣ such that α ≤ g, there exists a

q1
g′|f �� q′1 ∈ δ1 such that α ≤ g′ and 〈q′1, q′2〉 ∈ R.

We say that two states q1 ∈ Q1 and q2 ∈ Q2 are bisimilar if there exists a
bisimulation relation containing the pair 〈q1, q2〉 and we write q1 ∼ q2. Two
automata A1 and A2 are bisimilar if there exists a bisimulation relation such that
every state of one automata is related to some state of the other automata and
we write A1 ∼ A2. The automata depicted in the following figure are bisimilar.

q q1 q2a|a a|a
ab|a, ab|a

Theorem 1. Let A1 = (Σ, Q1, δ1) and A2 = (Σ, Q2, δ2) be guarded automata
and q1 ∈ Q1, q2 ∈ Q1. Then, q1 ∼ q2 ⇒ Lq1 = Lq2 .

4.1 Product

In this section we define a product operation for guarded automata. This defini-
tion differs from the classical definition of product for automata: the automata
have disjoint alphabets and they can either take steps together or independently.
In the latter case the transition explicitly encodes that the other automaton can-
not perform a step in the current state, using the following notion:



192 M. Bonsangue, D. Clarke, and A. Silva

Definition 3. Given a guarded automaton A = (Σ, Q, δ) and q ∈ Q we define

q� = ¬
∨

{g | q
g|f �� q′ ∈ δ}.

This captures precisely the conditions in which A cannot fire in state q. Note
that if q has no outgoing transitions then q� = � and if q has a transition defined
for every g ∈ BΣ then q� = ⊥. Intuitively, if q� = � (resp. q� = ⊥) then the
state can never (resp. always) inhibit the step of a state in another automaton,
in the context of the product, defined below. For instance, in the automata

q1 q2ab|a ab|ab, ab|ab

one has q�
1 = a ∨ b and q�

2 = a.

Definition 4 (Product). Given two guarded automata A1 = (Σ1, Q1, δ1) and
A2 = (Σ2, Q2, δ2) such that Σ1 ∩ Σ2 = ∅, we define the product of A1 and A2
as A1 × A2 = (Σ1 ∪ Σ2, Q1 × Q2, δ) where

δ = { (q, p)
gg′|ff ′

�� (q′, p′) | q
g|f �� q′ ∈ δ1 and p

g′|f ′
�� p′ ∈ δ2} (1)

∪ { (q, p)
gp�|f �� (q′, p) | q

g|f �� q′ ∈ δ1 and p ∈ Q2} (2)

∪ { (q, p)
gq�|f �� (q, p′) | p

g|f �� p′ ∈ δ2 and q ∈ Q1} (3)

Here and throughout, we use ff ′ as a shorthand for f ∪ f ′. Case (1) accounts
for when both automata fire in parallel. Cases (2) and (3) account for when one
automata fires and the other is unable to (given by p� and q�, respectively).

The following is an example of the product of two automata.

q1 × q2 = (q1, q2)ab|ab cd|cd, cd|c

abcd|abcd

abcd|abc
abc|ab

cd(a ∨ b)|cd
cd(a ∨ b)|c

Observe that the automaton 1 = (∅, {·}, ∅) is a neutral element for product.
The product operator satisfies expected properties such as commutativity and
associativity. The first property follows directly from the definition. The second
one follows from the definition and the fact that (q1, q2)� = q�

1 ∧ q�
2.

4.2 Reo Automata

In this section we focus on a subclass of guarded automata that constitutes an op-

erational model for context dependency. Intuitively, every transition q
g|f �� q′



Automata for Context-Dependent Connectors 193

in an automaton corresponding to some Reo connector represents that, if the con-
nector is in state q and the boundary requests present at the moment, encoded
as an atom α, are such that α ≤ g, then the ports f will fire and the connector
will evolve to state q′. Not all guarded automata correspond to valid Reo con-
nectors. We are interested only in automata where each guard g|f satisfies two
criteria: reactivity—data flows only on ports where a request is made, capturing
Reo’s interaction model; and uniformity—which captures two properties, firstly,
that the request set corresponding precisely to the firing set is sufficient to cause
firing, and secondly, that removing additional unfired requests from a transition
will not affect the (firing) behaviour of the connector. These two properties are
captured in the following definition.

Definition 5 (Reo automaton). A Reo automaton over an alphabet Σ is a

guarded automaton (Σ, Q, δ) such that for each q
g|f �� q′ ∈ δ:

– g ≤ f̂ (reactivity)

– ∀g ≤ g′ ≤ f̂ · ∀α ≤ g′ · ∃ q
g′′|f �� q′ ∈ δ · α ≤ g′′ (uniformity)

Among the guarded automata depicted in Fig. 2 only the third one is a Reo
automaton (in fact, it models a FIFO1 channel). The first automaton is not
uniform, because ab ≤ a ≤ a and there is no transition whose guard g is such
that ab ≤ g. The second automaton in not reactive: ab �≤ ab.

q1

ab|ab

q1

ab|ab

ab|a

q1

ab|b
ab|a

q1

ab|ab

e f

a|a

b|b

Sync(a, b) LossySync(a, b) AsyncDrain(a, b) SyncDrain(a, b) Fifo1(a, b)

q1

ac|ac
bc|bc

q1

ac|ac
abc|bc

q1

abc|abc

Merger(ab, c) PriorityMerger (ab, c) Rep(a, bc)

Fig. 3. Guarded automata for basic Reo channels

In Fig. 3 we depict the guarded automata for the basic channel types listed in
Fig. 1. Here it is worth remarking that the automata for LossySync, AsyncDrain
and PriorityMerger contain negative information in some of their guards. As
we will show later this is the key to represent and propagate context-dependent
behaviour, which all these channels exhibit.



194 M. Bonsangue, D. Clarke, and A. Silva

Lemma 1. Reo automata are closed under product, i.e., product preserves reac-
tivity and uniformity.

4.3 Synchronization

We now define a synchronization operation which corresponds to connecting two
ports in a Reo connector. In order for this operation to be well-defined we need
that the transition labels in the automata are normalized (the formal justification
for this is presented in Section 5.1). More precisely, we need each guard in a label
to be a conjunction of literals. Note that in the automata presented in Figure 3
for basic Reo channels this is already the case.

Definition 6. Given a guarded automaton A = (Σ, Q, δ) we define the normal-
ization of A as norm(A) = (Σ, Q, norm(δ)) where

norm(δ) = { q
g′|f �� q′ | q

g|f �� q′ ∈ δ and g′ ∈ norm(g)}

Lemma 2. Reo automata are closed under normalization, i.e., normalization
preserves reactivity and uniformity. Moreover, A ∼ norm(A).

Now we are ready to define the synchronization operation of two ports a and
b (that are then made internal). In the new automaton only transitions where
either both a and b or neither a nor b fire are kept—that is, a and b synchronize.
In order to propagate context information (requests), we require that the guard
contains either a or b, expressed by the condition g �≤ ab, which more or less
corresponds an internal node acting like a self-contained pumping station [1],
meaning that an internal node cannot actively block behaviour. This also corre-
sponds to the condition in connector colouring [11] that the reason for no flow
on a node must come from an external place (see Section 5.5).

Definition 7 (Synchronization). Given a guarded automaton A = (Σ, Q, δ).
We define the synchronization of a and b (a, b ∈ Σ) as ∂a,bA = (Σ, Q, δ′) where

δ′ = { q
g\ab|f\{a,b} �� q′ | q

g|f �� q′ ∈ norm(δ) s.t. a ∈ f ⇔ b ∈ f and g �≤ ab}

Here, g\ab is the guard obtained from g by deleting all ocurrences of a and b.

Lemma 3. Reo automata are closed under synchronization, i.e., synchroniza-
tion preserves reactivity and uniformity.

The product and synchronization operations can be used to obtain, in a com-
positional way, the guarded automaton of a Reo connector built from primitive
connectors for which the automata are known. Given two Reo automata A1 and
A2 over disjoint alphabets Σ1 and Σ2, {a1, . . . , ak} ⊆ Σ1 and {b1, . . . , bk} ⊆ Σ2
we construct ∂a1,b1∂a2,b2 · · · ∂ak,bk

(A1 × A2) as the automaton corresponding to
a connector where port ai of the first connector is connected to port bi of the



Automata for Context-Dependent Connectors 195

second connector, for all i ∈ {1, . . . , k}. Note that the ‘plugging’ order does
not matter because of ∂ is commutative and it interacts well with product. In
addition, the sync channel Sync(a, b) acts as identity (modulo renaming). These
properties are captured in the following lemma.

Lemma 4. Given Reo automata A1 = (Σ1, Q1, δ1) and A2 = (Σ2, Q2, δ2).
Then:

1. ∂a,b∂c,dA1 = ∂c,d∂a,bA1, if a, b, c, d ∈ Σ1.
2. (∂a,bA1) × A2 ∼ ∂a,b(A1 × A2), if a, b ∈ Σ1 and Σ1 ∩ Σ2 = ∅.
3. ∂a,c(A1 × Sync(a, b)) ∼ A1[b/c], if a, b /∈ Σ1 and c ∈ Σ1.

where A[b/c] is A with all occurrences of c replaced by b.

Moreover, we remark that ∼ is a congruence with respect to the product and
synchronisation operations.

5 Discussion

The model presented above contains many technical details. In order to justify
them, we present a theorem and/or counter-example to illustrate their purpose.
In the examples we mark in bold transitions in the product automaton which
are deleted in the synchronization step because the condition b ∈ f ⇔ c ∈ f
fails, and we mark in gray the transitions that are removed because g ≤ bc.

The following definition will come in handy.

Definition 8 (Firings). Let A = (Σ, Q, δ) be a guarded automaton. Given
q ∈ Q and α ∈ AtΣ define the set of possible firings in q induced by α as

firingsA(q, α) = {(f, q′) | q
g|f−−→ q′ ∈ δ ∧ α ≤ g}.

We will drop the subscript A whenever the automaton is clear from the context.

5.1 Uniformity, Normalization and the Sync Channel

A desirable property of a model of (context-dependent) connectors is that the
Sync channel acts like an identity (modulo port renaming) whenever plugged
into another connector (Lemma 4). The following example demonstrates that this
property fails to hold without the uniformity property of Definition 5. Consider a
channel Loser(a, b) which fires port a only if a request of port b is also present. Its
guarded automaton is non-uniform, as it should have transition a|a. Composing
with a synchronous channel gives an automaton which should be Loser(a, d) if
Sync behaved like the identity:

Loser(a, b) = q1 ∂b,c(Loser(a, b) × Sync(c, d)) = (q1, q1)ab|a a|a



196 M. Bonsangue, D. Clarke, and A. Silva

A similar reason justifies the fact that we have to normalize the automaton
before applying the synchronization operator. Suppose we want to compose a
lossy synchronous channel with a synchronous channel. The automaton for the
product LossySync(a, b) × Sync(c, d) is:

q1 × q2 = (q1, q2)
ab|ab

ab|a cd|cd

abcd|abcd

abcd|acd
acd|cd

ab(c ∨ d)|ab

ab(c ∨ d)|a

Now applying ∂b,c with and without normalizing results in different automata:

(q1, q2)

(q1, q2)

(q1, q2)

(q1, q2)

abcd|abcd

abcd|acd
acd|cd

ab(c ∨ d)|ab
ab(c ∨ d)|a

normalization

abcd|abcd

abcd|acd
acd|cd
abc|ab
abd|ab
abc|a
abd|a∂b,c

ad|ad

a ∨ ad|a

∂b,c

ad|ad

ad|a

The Sync channel behaves like an identity only in the second case.

5.2 Totality and Inhibition

Two notions of totality can be defined for connectors. We phrase them in terms
of guarded automata, although they apply to other models too.

Definition 9 (Totality). A guarded automaton A = (Σ, Q, δ) is said to be
total if and only if for all states q ∈ Q and for all α ∈ AtΣ, firings(q, α) �= ∅.

The presentation of connector colouring [11] requires that the colouring tables
are total. Unfortunately, composition does not preserve totality. Consider the
Rep-AsyncDrain in Fig. 4. In the connector colouring model its colouring table
is not total, which might lead to unexpected behaviours during composition. For
example, when a FullFifo1 is plugged into the Rep-AsyncDrain, the composite
has an empty colouring table, corresponding to “no behaviour possible.” If this
is further composed with other connectors, the colouring table remains empty,
even if no connection is made with the FullFifo1-Rep-AsyncDrain composite.

We do not require totality, and due to the use of negative information in the
product, composition with Rep-AsyncDrain causes no problems, as its automata
is one with no transitions (Fig. 4), which behaves neutrally in the composition
(since (q1, q2)� = �).

We also find it unnecessary to specify any behaviour that does not result in
a firing (though we do permit τ -transitions, represented by �|∅). The following



Automata for Context-Dependent Connectors 197

||

a

b

c

d

e

q1 × q2 =

(q1, q2) (q1, q2)
∂b,d∂c,e

abc|abc
de|d
ed|e

abcde|abcd

abced|abce

abc(de ∨ de)|abc

de(a ∨ b ∨ c)|d
ed(a ∨ b ∨ c)|e

Fig. 4. Guarded automaton for ∂b,d∂c,e(Rep(a, bc) × ASyncDrain(d , e))

definition captures a sensible notion, which is weaker than totality. It states that
if some request set α causes a firing, then all larger request sets also cause a
firing (though not necessarily the same one).

Definition 10 (Firing upclosed). A guarded automaton A = (Σ, Q, δ) is said
to be firing upclosed if and only if for all states q ∈ Q and for all α ∈ AtΣ, if
firings(q, α) �= ∅, then for all α1 such that α+ ⊆ α+

1 we have firings(q, α1) �= ∅.
This is a nice property, but it turns out that, in general, composing Reo automata
does not preserve firing upclosure. Consider the following example connector
∂b,b′∂c,c′PriorityMerger (ab, c) × Rep(c′, b′d) and its accompanying automaton,
where a is the higher priority port: 2

b

c

a d

c'

!

b'

qad|d

This automaton is not firing upclosed, as although d|d produces a firing, ad
does not. In fact, a request on a acts to inhibit the firing of d, without itself being
fired. This kind of behaviour was not considered in previous models of Reo. We
tried to find an alternative definition of synchronisation, ∂̂, which preserved
Firing upclosed. Unfortunately, all our attempts failed to satisfy the required
equivalence ∂̂a,b∂̂c,dA ∼ ∂̂c,d∂̂a,bA. Embracing partiality—that is, the absence
of firing upclosure—open the door to connectors which act as request-based
inhibitors, as in the previous example.

5.3 Context Dependency and Negative Guards

We now formally define the notion context-dependency. This has never been
formalized for any of the other existing models of Reo.
2 Note that this connector contains a causal loop, which should produce no data. A

more complex variant without the causality problem can be easily produced, by
inserting a SyncSpout(a, b) plugged to a SyncDrain(b′, c) between b and b′.



198 M. Bonsangue, D. Clarke, and A. Silva

Definition 11 (Firing Monotonic). Let A = (Σ, Q, δ) be a guarded au-
tomaton. A is firing monotonic if and only if for all states q ∈ Q and for
all α1, α2 ∈ AtΣ if α+

1 ⊆ α+
2 , then firings(q, α1) ⊆ firings(q, α2). That is,

firings(q, ) is monotonic for all q ∈ Q.

Definition 12 (Context Dependent). A guarded automaton A is context
dependent if and only if it is not firing monotonic.

Thus an automaton exhibits context dependent behaviour in state q whenever
there exist α1, α2 ∈ AtΣ such that α+

1 ⊆ α+
2 and firings(q, α1) �⊆ firings(q, α2).

Intuitively, this means that the state q has a transition that will be blocked in
the presence of certain additional requests. In the following automata, the state
q exhibits context dependent behaviour, because firings(q, ab) = {(q, a)} �⊆
{(q, ab)} = firings(q, ab), whereas the state p does not.

The following lemmas show that negative information in guards is required
to express context dependency.

Lemma 5. Let A be a guarded automaton for which no negative atoms appear
in the guards. Then A is firing monotonic.

Lemma 6. Firing monotonicity is preserved by product and synchronisation.

Constraint automata [7] can be embedded in a natural way into our model by
transforming every transition labelled by F into a transition labelled by F̂ |F . As
a consequence of the previous lemmas, this makes explicit the fact that constraint
automata do not exhibit context dependent behaviour.

In addition we have, for Reo automata:

Lemma 7. A firing monotonic Reo automaton is firing upclosed.

The LossySync channel is not firing monotonic, yet it is firing upclosed.

5.4 Enabledness and Product

We now formally define the notion of enabledness, which captures that a port
can fire whenever a request is made on that port (in a given state). This property
has not been previously formalised for existing models of Reo. We also show that
this property is propagated through product, though this would not be the case
if negative information were not included in the definition of product.

Definition 13 (Enabledness). Let A = (Σ, Q, δ) be a guarded automaton.
A port a ∈ Σ is enabled in a state q if for all α ∈ AtΣ such that α ≤ a,
(1) firings(q, α) �= ∅ and (2) for all (f, ) ∈ firings(q, α) we have a ∈ f .

Intuitively, a port a is enabled whenever all request sets containing a match
some guard g and a subsequently fires. Including negative information in the
definition of product (using q�) preserves enabledness through product.

Lemma 8. Let A1 = (Σ1, Q1, δ1) and A2 = (Σ2, Q2, δ2) be guarded automata
with Σ1 ∩Σ2 = ∅. Assume that in A1 the port a ∈ Σ1 is enabled in state q ∈ Q1.
Then in A1 × A2, the port a is enabled in all states (q, q′), where q′ ∈ Q2.



Automata for Context-Dependent Connectors 199

Without negative information in the product, enabledness is not preserved, as the
following counter-example demonstrates. Port a of LossySync(a, b) is enabled. If
we remove the q� from the definition of product, thus taking the naive definition
of product (×̂) following the definition in constraint automata directly, then a is
no longer enabled in LossySync(a, b)×̂Sync(c, d), because a transition with guard
cd|cd is present in the resulting automaton. This transition matches request set
acd, but a does not fire.

5.5 Justification of the g �≤ ab Condition in ∂a,b

The LossySync-Fifo1 example (Fig. 5) alone motivated the research into context-
dependent models. When the Fifo buffer is empty, data must flow through the
LossySync into the buffer, as the buffer’s port c is enabled. Our product and
synchronisation operations ensure this. What existing research lacks is a general
and formal characterisation of the requirements underlying this example. We
believe that until now, the required technical machinery was missing.

a b c d q × e f =

(e, q) (f, q) (e, q) (f, q)
∂b,c

ab|ab

ab|a

c|c

d|d

abc|ab
abc|a

abd|ab
abd|a

abc|abc

abc|ac
ca|c

abd|abd
abd|ad
da|d

a|a

ad|ad
da|d ad|a

Fig. 5. LossySync-Fifo1

Definition 14. Let A = (Σ, Q, δ) be a guarded automaton. We say that a port
a ∈ Σ is (q, R)-sensitive for state q ∈ Q and request set R ⊆ Σ whenever a ∈ f
for all (f, ) ∈ firings(q, αR∪{a}).

This property holds for port b in LossySync(a, b) in the request set {a}, and for
port c in Fifo1 (c, d) in state empty for all request sets. In contrast, port a of
Merge(ab, c) is not sensitive for request set {b, c}.

The following lemma captures the property underlying the LossySync-Fifo1
example:

Lemma 9. Let A = (Σ, Q, δ) be a Reo automaton, a, b ∈ Σ, q ∈ Q, and
R ⊆ Σ a request such that a, b �∈ R. If a is (q, R ∪ {b})-sensitive and b is
(q, R ∪ {a})-sensitive, then firings∂a,bA(q, αR) = {(f \ {a, b}, q′) | (f, q′) ∈
firingsA(q, αR∪{a,b})}.



200 M. Bonsangue, D. Clarke, and A. Silva

a b c d e f × e f =

(e, e) (e, f)

(f, e) (f, f)

(e, e) (e, f)

(f, e) (f, f)

∂b,c

c|c

d|d

a|a

b|b

ac|c

ac|a

ac|ac

ad|d

ad|a

ad
|adbc|b

bc|c

bc|bc

bd|d

bd|b
bd|bd

a|a

ad|d

ad|a
ad|ad

�|∅

d|d

(e, e) (e, f) (f, f)

a|a

ad|d

ad|a
ad|ad

d|d

Fig. 6. Two Fifo1 buffers plugged together, their automaton, and the result of per-
forming ‘hiding’—a Fifo2 buffer

This says that if both a and b are mutually enabled in the presence of request
set R, then they will both fire when synchronised, excluding the alternative
possibility that both do not fire. Constraint automata [7] would include both.

We believe that this kind of analysis is only the beginning in the key issue of
more deeply understanding the interaction between synchronisation and context
dependency [11,19,12].

5.6 Choice of Operations

The original model of constraint automata [7] included one operation for compos-
ing automata, namely a join, which played a similar role to both of our operations
combined. Having a separate product and synchronisation operation enables a
more fine grained analysis, which we believe was required to obtain the results
presented here. Barbosa et al. [8] go even further, presenting 5 operations (par-
allel, interleaving, hook, left join and right join). Our product merely places two
connectors next to each other, without restricting their behaviour, whereas Bar-
bosa et al.’s model forces a choice between parallel or interleaving composition.
Left join and right join (approximately the counterpart of replicator and merger)



Automata for Context-Dependent Connectors 201

are modelled by primitive automata in our model, not as operations. Their hook
operation is the same as our synchronisation.

5.7 ‘Hiding’

Constraint automata [7] models of Reo include a ‘hiding’ operation, which com-
presses τ transitions in the automata, which are transitions labelled by �|∅ in
our model. See Figure 6. This can be used to obtain an automaton for a FIFO2
channel from the composite of two FIFO1 channels. The alternative variant de-
fined by Costa [12] is equally applicable, and perhaps more robust.

6 Conclusion and Future Work

We have presented a new semantic model for context-dependent Reo connec-
tors. The automata corresponding to primitive channels are very compact and
intuitive. As a novelty, when compared to previous approaches, our model takes
negative information into account in the composition operations. This has al-
lowed us to provide a ‘correct’ behavioural description of connectors (such as the
Repl-AsyncDrain example) which were not possible in other models. Moreover,
we provided a detailed justification for the various properties of our model. We
hope that our research will contribute to a more axiomatic description of Reo
connectors.

In this paper, we have not taken into account the actual data flowing through
the connectors. This was in order to not distract the reader from the actual
novelty of the paper. In fact, data constraints form a boolean algebra and can
be added exactly in the same way as we have dealt with guards. Moreover,
our model can be used to give a significantly simpler account of quantitative
Reo [4]. At present, we are incorporating our automata model into CWI’s Eclipse
Coordination Tools3 This will enable the generation of Java implementations of
our automata for composing components and services.

Kleene algebra with tests [22] (KAT) are to guarded automata what regular
expressions are to ordinary finite automata. Therefore, we want to explore how
KAT expressions can be used to specify and synthesize Reo connectors. This will
give us an algebraic description of Reo connectors, for which reasoning can be
automated. More generally, since our automata can be seen as ordinary labelled
transition systems with structured labels, we are interested in the connection
with temporal logic and model checking.

References

1. Arbab, F.: Reo: a channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14(3), 329–366 (2004)

2. Arbab, F.: Abstract behavior types: a foundation model for components and their
composition. Sci. Comput. Program. 55(1-3), 3–52 (2005)

3 http://reo.project.cwi.nl/

http://reo.project.cwi.nl/


202 M. Bonsangue, D. Clarke, and A. Silva

3. Arbab, F., Bruni, R., Clarke, D., Lanese, I., Montanari, U.: Tiles for Reo. In:
WADT (2009) (to appear)

4. Arbab, F., Chothia, T., van der Mei, R., Meng, S., Moon, Y., Verhoef, C.: From
Coordination to Stochastic Models of QoS. In: Field, J., Vasconcelos, V.T. (eds.)
COORDINATION 2009. LNCS, vol. 5521, pp. 268–287. Springer, Heidelberg
(2009)

5. Arbab, F., Herman, I., Spilling, P.: An overview of Manifold and its implementa-
tion. Concurrency - Practice and Experience 5(1), 23–70 (1993)

6. Arbab, F., Rutten, J.: A coinductive calculus of component connectors. In: Wirsing,
M., Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755, pp. 34–55.
Springer, Heidelberg (2003)

7. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)

8. Barbosa, L., Barbosa, M.: A perspective on service orchestration. In: Science of
Computer Programming (2008) (accepted for publication)

9. Barbosa, M., Barbosa, L., Campos, J.: Towards a coordination model for interactive
systems. Electr. Notes Theor. Comput. Sci. 183, 89–103 (2007)

10. Clarke, D., Proença, J., Lazovik, A., Arbab, F.: Deconstructing Reo. In: FOCLASA
2008 (2008) (to appear)

11. Clarke, D., Costa, D., Arbab, F.: Connector colouring I: Synchronisation and
context dependency. Sci. Comput. Program. 66(3), 205–225 (2007)

12. Costa, D.: Formal Models for Context Dependent Connectors for Distributed Soft-
ware Components and Services. Ph.D thesis (2009) (to appear)

13. de Boer, F., Kok, J., Palamidessi, C., Rutten, J.: Non-monotonic concurrent con-
straint programming. In: ILPS, pp. 315–334 (1993)

14. Fiadeiro, J., Lopes, A.: Community on the move: Architectures for distribution
and mobility. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P.
(eds.) FMCO 2003. LNCS, vol. 3188, pp. 177–196. Springer, Heidelberg (2004)

15. Fournet, C., Gonthier, G.: The join calculus: A language for distributed mobile
programming. In: Barthe, G., Dybjer, P., Pinto, L., Saraiva, J. (eds.) APPSEM
2000. LNCS, vol. 2395, pp. 268–332. Springer, Heidelberg (2002)

16. Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang.
Syst. 7(1), 80–112 (1985)

17. Scholten, J.: Mobile channels for exogenous coordination of distributed systems:
semantics, implementation and composition. Ph.D thesis, LIACS, Faculty of Math-
ematics and Natural Sciences, Leiden University (January 2007)

18. Izadi, M., Bonsangue, M.: Recasting constraint automata into Büchi automata.
In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS,
vol. 5160, pp. 156–170. Springer, Heidelberg (2008)

19. Izadi, M., Bonsangue, M., Clarke, D.: Modelling component connectors: Synchro-
nisation and context-dependency. In: Proceedings of SEFM 2008. IEEE Computer
Society Press, Los Alamitos (2008) (to appear)

20. Khosravi, R., Sirjani, M., Asoudeh, N., Sahebi, S., Iravanchi, H.: Modeling
and analysis of Reo connectors using Alloy. In: Lea, D., Zavattaro, G. (eds.)
COORDINATION 2008. LNCS, vol. 5052, pp. 169–183. Springer, Heidelberg
(2008)

21. Koehler, C., Arbab, F., de Vink, E.: Reconfiguring distributed Reo connectors.
In: WADT (2009) (to appear)

22. Kozen, D.: On the coalgebraic theory of Kleene algebra with tests. TR 10173,
Computing and Information Science, Cornell University (March 2008)



Automata for Context-Dependent Connectors 203

23. Lee, B., Lee, E.: Hierarchical concurrent finite state machines in Ptolemy.
In: ACSD, pp. 34–40. IEEE Computer Society, Los Alamitos (1998)

24. Liu, X., Xiong, Y., Lee, E.: The Ptolemy ii framework for visual languages.
In: HCC, p. 50. IEEE Computer Society, Los Alamitos (2001)

25. Maraikar, Z., Lazovik, A., Arbab, F.: Building mashups for the enterprise with
SABRE. In: Bouguettaya, A., Krüger, I., Margaria, T. (eds.) ICSOC 2008. LNCS,
vol. 5364, pp. 70–83. Springer, Heidelberg (2008)

26. Misra, J., Cook, W.: Computation orchestration: A basis for wide-area computing.
Journal of Software and Systems Modeling (May 2006)

27. Mousavi, M., Sirjani, M., Arbab, F.: Formal semantics and analysis of component
connectors in Reo. Electr. Notes Theor. Comput. Sci. 154(1), 83–99 (2006)

28. Nierstrasz, O.: Piccola - a small compositional language (invited talk). In: Ciancar-
ini, P., Fantechi, A., Gorrieri, R. (eds.) FMOODS. IFIP Conference Proceedings,
vol. 139. Kluwer, Dordrecht (1999)

29. Rutten, J.: Coalgebra, concurrency, and control. In: Boel, R., Stremersch, G.
(eds.) Discrete Event Systems (analysis and control), Proceedings of WODES 2000,
pp. 31–38. Kluwer, Dordrecht (2000)

30. Shaw, M., Garlan, D.: Software Architecture. Prentice Hall, Englewood Cliffs
(1996)

31. Szyperski, C.: Component Software: Beyond Object-Oriented Programming, 2nd
edn. Addison-Wesley Professional, Reading (2002)


	Automata for Context-Dependent Connectors
	Introduction
	The Coordination Language Reo and Its Models
	Formal Models of Reo

	Preliminaries: Guarded Strings
	Guarded Automata
	Product
	Reo Automata
	Synchronization

	Discussion
	Uniformity, Normalization and the Sync Channel
	Totality and Inhibition
	Context Dependency and Negative Guards
	Enabledness and Product
	Justification of the $g\not\le\overline{a}\overline{b}$ Condition in $\partial_{a,b}$
	Choice of Operations
	`Hiding'

	Conclusion and Future Work



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




