
On the Support of Versioning in Distributed Key-Value Stores

Pascal Felber, Marcelo Pasin, Étienne Rivière,
Valerio Schiavoni, Pierre Sutra

University of Neuchâtel, Switzerland
first.last@unine.ch

Fábio Coelho, Rui Oliveira,
Miguel Matos, Ricardo Vilaça

HASLab, INESC TEC & U. Minho, Portugal
fabio.a.coelho@inesctec.pt

{rco,miguelmatos,rmvilaca}@di.uminho.pt

Abstract—The ability to access and query data stored in
multiple versions is an important asset for many applications,
such as Web graph analysis, collaborative editing platforms,
data forensics, or correlation mining. The storage and retrieval
of versioned data requires a specific API and support from
the storage layer. The choice of the data structures used to
maintain versioned data has a fundamental impact on the
performance of insertions and queries. The appropriate data
structure also depends on the nature of the versioned data
and the nature of the access patterns. In this paper we study
the design and implementation space for providing versioning
support on top of a distributed key-value store (KVS). We
define an API for versioned data access supporting multiple
writers and show that a plain KVS does not offer the necessary
synchronization power for implementing this API. We leverage
the support for listeners at the KVS level and propose a
general construction for implementing arbitrary types of data
structures for storing and querying versioned data. We explore
the design space of versioned data storage ranging from a flat
data structure to a distributed sharded index. The resulting
system, ALEPH, is implemented on top of an industrial-grade
open-source KVS, Infinispan. Our evaluation, based on real-
world Wikipedia access logs, studies the performance of each
versioning mechanisms in terms of load balancing, latency and
storage overhead in the context of different access scenarios.

Keywords-versioning, key-value store, listeners.

I. INTRODUCTION

Applications processing massive amounts of data favor
storage on key-value stores (KVSs) over traditional relational
databases for their much better scalability. Some of these
applications are based on a computational model that consid-
ers the evolution of data over time, in the form of versioned
data. We consider the following motivating examples.

Business intelligence extraction can be performed on
periodic crawls of the Web graph. Such analysis may consider
the evolution of mentions of products and other assets on Web
pages, analyze trends, track the origin of data and rumors, or
try to determine Web influencers. These are made possible
by storing for each page, the different versions obtained with
successive crawls.

Collective and collaborative editing platforms such as
Wikipedia naturally deal with, and give access to, versioned
data. Most reads are for the latest version of a given page. The
ability to access previous versions is nonetheless required by
the access model, in order to be able to compare versions and

restore content that has been deleted by mistake. The ability
to access previous versions also allows mining complex
information from past states of a wiki, e.g., to detect trends
in vocabulary usage.

Other examples of applications that directly rely on
versioned data include log mining, forensics and generally
data mining for large sets of unstructured data where versions
of the data for time windows in the past are considered. Web
content based on a timeline-dependent set of information,
such as blogs and Twitter streams archives, also form
naturally versioned data.

For each of our motivating applications, the data store
must not only store and expose the latest version of the
data associated with a given key but a very large number of
versions may exist for each key, which must be persistently
stored by the versioned KVS. An order relation - given by
the semantics of the application - between these identifiers
allow operations based on versions ranges.

In this paper we are interested in the case where versioning
support is explicitly part of the data model and exposed by
the API of the KVS. We name such a KVS a versioned KVS.
We consider more specifically the construction of multiple-
writer versioned KVS, where several clients may write new
versions to any given key concurrently. This choice is driven
by our motivated examples, where updates may come from
multiple concurrent and un-synchronized clients.

We note that, for concurrency control, distributed KVSs
already associate version numbers to updated values of
the same key. These versions are used internally. At any
given time, a small number of them may exist for each key.
KVSs offering weak consistency models such as eventual
consistency may expose these versions to the applications
upon reads, to let the application reconcile multiple unordered
updates. These small set of co-existent values for a given
key are temporary in nature and do not correspond to
our requirement of storing large sets of versions in a
persistent and long-lived manner. The notion of versions
exposed in the data model is actually independent of the
notion of versions used for concurrency control. The two
mechanisms can actually co-exist. In an eventually-consistent
versioned KVS, a particular version might temporarily be
associated with several values, and exposed to the application
for reconciliation upon a read. This paper only considers

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634219?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

versioned KVSs offering strong consistency support.
There are several design options available for implementing

a versioned KVS. These options differ in the level at which
versioning is implemented. The KVS can be oblivious to
versioning, and the logic of maintaining multiple versions
for a key can be handled by the clients. The implementation
can also be integrated in the KVS itself, either by means of
objects exposing the versioning semantics on a single node,
or by means of explicit indexes stored in the KVS which
is then aware of the access semantics. Cost and interest of
these various solutions differ depending on the number of
versions per key, the size of the objects, the number of keys,
the access pattern (mostly read, mostly writes, read/write),
and the nature of these accesses (for example, whether most
accesses are to the latest version or not, whether appends
happen at the tail or not, or even if accesses to ranges of
versions dominate).

A. Contributions

In this paper, we explore the design options available for
building a versioned KVS on top of an existing KVS. To
support versioning, the implementation needs to maintain
specific data structures. In some of our designs, the KVS
needs to be aware of the semantics of these structures. Our
first contribution is to prove that a KVS API providing
solely put() and get() operations does not have the necessary
synchronization power to implement multi-writer versioning.
Our second contribution is to describe the construction of
atomic objects of any type on top of a KVS enriched with
support for listeners. Our third contribution is ALEPH, a
generic versioning system atop such a listenable KVS. Our
final contribution is to perform a thorough evaluation of
ALEPH under a real workload from Wikipedia access traces.
The evaluation highlights the inherent tradeoffs of each
implementation, from atomic maps to tree-based and sharded
tree-based indexes, and the specific adequacy to different
workload patterns.

B. Outline

The remainder of this paper is organized as follows.
Section II reviews related work and the support of versioning
in existing KVSs. In Section III, we define an API for a
versioned KVS and prove, in Section IV, that a plain KVS
is not sufficient to implement a multi-writer versioned KVS.
We then define the notion of a listenable KVS, upon which
we build a universal construction. We describe our different
alternative implementations of versioning in Section V. In
Section VI, we evaluation ALEPH and discuss the results.
Section VII concludes the paper.

II. RELATED WORK

This paper addresses the ability to access and query data
with a potentially very large number of versions that may
exist for a long time. In particular, we are interested in explicit

support for versions and mechanisms to retrieve ranges of
versions, including the latest one.

Temporal databases [9–11] provide specific support for
storing, querying, and updating historical data. Commercial
database management systems (DBMSs), such as IBM DB
10, Oracle Database 11g and Teradata, recently introduced
temporal-database features in the form of SQL extensions,
based on SQL:2011 [12]. According to the SQL:2011
standard, a table can be an application-time period table,
a system-versioned table, or both [11]. Application-time
period tables are useful to capture periods where data is valid.
System-versioned tables are useful to maintain an accurate
history of data changes and thus is similar to the multi-
version support we target in this paper. Queries on system-
versioned tables retrieve the table content at a given times-
tamp, (e.g: FOR SYSTEM_TIME AS OF TIMESTAMP t), or
between a range of timestamps, (e.g: FOR SYSTEM_TIME

BETWEEN TIMESTAMP t1 AND TIMESTAMP t2). System-
versioned tables are highly coupled to relational databases,
where timing information is added as metadata to tables, and
requires deep modifications to an existing DBMSs.

Most distributed KVSs lack any support for long-lived
versioned values, while others only offer limited multiple-
versions support. Table I presents a brief comparison of
versioning support in several popular KVSs.

KVSs using multi-version concurrency control
(MVCC) [13] usually associate version numbers to
data, typically using timestamps or version vectors [14].
However, versions are used internally, and applications have
no access to the full history of an object. Loosely consistent
KVSs may even expose at any given time a small number
of versions to the applications, so they are able to reconcile
with multiple updates.

Cassandra [1] columns have timestamps used for conflict
resolution and relies on the Last-Writer-Wins (LWW) ap-
proach [15]. Dynamo and Riak are loosely consistent KVSs
and may expose concurrent versions to the application. The
put() operation of Dynamo [7] receives a version; the get()
operation optionally returns a list of objects with conflicting
versions. A read operation in Riak [2] by default returns
the most recent version, using vector clocks: clients need to
resolve conflicts when needed.

MongoDB [4] is a document database without any built-
in support for multi-version. Mongo MVCC [5] offers
MVCC atop MongoDB but in contrast to most MVCC
implementations it keeps a complete history of old data,
enabling access to older versions of all documents at any time.
Mongo MVCC uses the principles from distributed version
control systems, such as Git, allowing the creation of branches
containing different versions of documents. Mongo MVCC
by default hides old versions of documents: users can recover
them using their unique identifier (the commit’s ID).

Apache HBase [6] is a distributed KVS with a versioned
data model and architecture inspired by BigTable [16]. In

Name Historic versions Multi-Versioning Support Technique
Cassandra [1] No Columns have timestamps that are used for conflict resolution.
Riak [2] No Use vector-clocks by default. Can be disabled and fall back to timestamps based on LWW.
CouchBase and CouchDB [3] No MVCC. Conflicts must be solved by the application. Old versions are discarded upon file-

compactation operations.
MongoDB [4] Yes, with MVCC [5] Support for versioned branches.
HBase [6] Yes TTL associated with each revisions. Upon expiration, row is trashed.
Dynamo [7] No Timestamps and eventual consistency based on LWW.
HyberTable [8] Yes Configurable number of managed versions, stored in reverse-chhronological order. Query predicates

can filter versions.

Table I
CLASSIFICATION OF KVSS AND THEIR SUPPORT TO LONG-TERM DATA VERSIONING. LWW=LAST-WRITER-WINS, MVCC=MULTI-VERSION

CONCURRENCY CONTROL

HBase, the maximum number of versions can be defined
per table and versions are stored in descending order. Read
operations, get() and scan(), can specify the quantity or the
range of versions to be retrieved. HyperTable [8], another
Bigtable’s clone, never discards old versions.

Most KVSs lack proper long-term versioning support,
including an API to access sorted ranges of versions. In
the remainder of this paper we study the design space for
versioning support on top of unmodified distributed KVS, and
we propose a framework based on universal atomic objects
to maintain the data structures needed for versioning.

III. VERSIONED KEY-VALUE STORE

This section defines the notion of versioned data and
the interface of a versioned KVS. Accesses to such a data
store are made through the put() and get() operations of
a plain KVS extended with capabilities for a client to
retrieve past versions. Below, we also list a set of desirable
properties for a versioned KVS that serve as guidelines in
our implementation.

A. Notion of Versioned Data

We are interested in any type of versioned data that might
be stored in a KVS. To model this, we consider three abstract
sets: a set of keys K, each key identifying a datum, a set
of values U , and a set of versions V . A tuple (k, u, v) ∈
K × U × V is called a versioned datum.

Clients of the data store create versioned data, e.g.,
(k1, u1, v1) and (k2, u2, v2) along time. To capture this, we
assume the existence of a version order < such that (V, <)
is a bounded join-semilattice, i.e., a partially ordered set
ensuring that (i) given any two elements v, v′ ∈ V , the least
upper bound, or join, of v and v′ is in V , and (ii) V contains
some smallest element v0, named the initial version.

Numerous instances of the above abstraction (V, <) have
been proposed in the past. These include timestamps [14],
vector clocks [17], version vectors [18, 19], or more re-
cently, version vectors with exception [20] and interval tree
clocks [21]. Depending on how concurrency is tracked and
for which purposes, the dimension of V may vary from a

Algorithm 1 Versioned KVS Interface
1: put(k : K, u : U)
2: post: let v = t{(k, l, v′) ∈ S}
3: S ← S ∪ (k, u, v)
4:
5: put(k : K, u : U , v : V)
6: pre: ∀(k, l, v′) ∈ S : v′ < v
7: post: S ← S ∪ (k, u, v)
8:
9: get(k : K)→ u : U

10: pre: (k, u, v) ∈ S ∧ ∀(k, l, v′) ∈ S : ¬ (v′ > v)
11:
12: get(k : K, v : V)→ u : U
13: post: (l, u, v) ∈ S
14:
15: getRange(k : K, v1 : V, v2 : V)→ R : 2U×V

16: pre: v1 < v2
17: post: R = {(u, v) | (k, u, v) ∈ S ∧ v1 ≤ v ≤ v2}
18:
19: getSuccessor(k : K, v1 : V)→ (u, v) : U × V
20: pre: (u, v) ∈ S ∧ v < v1 ∧ ∀(k, l, v′) ∈ S : ¬ (v′ < v)
21:
22: getPredecessor(k : K, v1 : V)→ (u, v) : U × V
23: pre: (u, v) ∈ S ∧ v > v1 ∧ ∀(k, l, v′) ∈ S : ¬ (v′ > v)
24:

single dimension to the size of the data set (K in our case),
the number of storage nodes, or even the number of clients.

B. Versioned KVS: API Definition

A versioned KVS consists in a set of storage nodes that
offer an API to its clients to access versioned data. Clients can
add a new datum, add a new version of it, retrieve a specific
version, or retrieve a range of values spanning a range of
versions. We consider that a versioned KVS is an automata
whose initial state S consists in an empty set of versioned
data. Algorithm 1 details the semantics of the interface that
clients employ to access the store. This interface defines the
following set of operations:

- put(k, u) adds (k, u, v) to the store, where v is the least
upper bound (denoted t) of all existing versions of k;

- put(k, u, v) adds the versioned datum (k, u, v);
- get(k) returns (any of) the latest value stored at key k;

- get(k, v) returns the value of key k stored at version v;
- getRange(k, v1, v2) returns all data versions at key k

whose versions falls into the range [v1, v2];
- getPredecessor(k, v1) returns (any of) the latest ver-

sioned datum whose version is lower than v1; and
- getSuccessor(k, v1) returns (any of) the earliest ver-

sioned datum whose version is greater than v1.
As pointed out in Table I, existing KVSs offer some

features to support versioning. They implement all or part
of the interface described in Algorithm 1. Consistency of
this interface varies from one store to another. Cassandra [1]
exposes put(k, u, v) and get(k, v) operations using times-
tamps provided by clients; this interface is either sequential
or eventual consistency. The clients of Riak [2] can use
version vectors and dotted version vectors to track changes.
In both cases, versions are only exposed to reconcile storage
nodes that replicate the same datum at the application level.
INFINISPAN [22] does not offer built-in support for data
versioning. However, like in many others KVSs, its data
model supports secondary indexes and clients may execute
range queries on them.

C. Design objectives

Clients of different KVSs have different capabilities and
guarantees when querying and retrieving versioned data. Nev-
ertheless, a careful examination of existing versioned KVSs
reveals a set of common properties that any implementation
should offer. Below, we list these essential properties.
(Progress) Clients of different applications may concurrently

access the same KVS. As a consequence, we require
that calls to the interface are wait-free, i.e., they return
after some bounded amount of time regardless of what
the other clients do.

(Multi-writer) The versioned KVS should allow multiple
writers to insert different versions of a datum concur-
rently.

(Scalability) A versioned KVS should support a large num-
ber of versions.

(Performance) The time complexity of any operation of the
interface should be sublinear in the number of stored
versions.

(Load-balancing) The amount of versions of some datum
on the storage nodes should be as balanced as possible
even when the distribution of versions per key is highly
skewed.

These properties serve as design objectives for the different
versioned KVS implementations detailed in Section V. We
shall also use them in our empirical comparison in Section VI.

Consider a naive versioning mechanism where all the
versions of a datum indexed by k are stored as a blob under
key k, retrieved as such, updated locally and re-submitted
to the KVS. This mechanism is not appropriate as (i) it
does not offer any load balancing. (ii) the more versions it
stores, the more it is expensive, and (iii) it does not support

concurrent writters - if two versions are written concurrently,
one of them might be lost. These osbervations examplify
the importance of the properties we defined above. In the
next section, we further refines them by characterizing the
synchronization power of a versioned KVS.

IV. UNIVERSAL CONSTRUCTION ON A LISTENABLE KVS

After defining the versioned store API in the previous
section, we now explore whether a plain KVS can implement
this interface or if additional mechanisms are required. This
question is of practical importance as it allows determining
the nature and complexity of the mechanisms required to
support data versioning. We contribute an impossibility result:
the construction of a versioned store on top of a plain KVS
is impossible as it requires a synchronization power strictly
greater than what a plain KVS allows. Then, we present an
augmentation of a plain KVS that overcomes this limitation,
in the form of a listenable data store with the ability for
clients to follow the modifications occurring on the store
through remotely registered listeners. Finally, we describe
how the properties of a listenable store can be used to propose
a universal construction that allows building any strongly-
consistent shared object on top of it. We use this universal
construction to build and maintain versioning information
with various data structures in Section V.

A. The Separation Result

We start by showing that it is impossible to build a
versioned store on top of a plain KVS. To that end, we first
prove that a strongly-consistent wait-free versioned KVS can
solve consensus for any number of participants, i.e., that the
consensus power of the interface described in Algorithm 1 is
infinite. Then, we show that the consensus power of a plain
KVS is one, leading to a separation result.

Let us first recall that in consensus, processes propose
values and must reach agreement on one of them. More
precisely, consensus is defined by the propose() operation
which takes as input a proposed value and returns some
decision. Every run of consensus satisfies the following
properties. (Termination) Every correct process eventually
decides some value. (Integrity) Every process decides at most
once. (Validity) If a process decides v, then v was proposed
by some process. (Agreement) Two processes can’t decide
differently. The consensus power of a shared object o is the
maximum amount of processes that may solve consensus
with atomic and wait-free shared objects of the same type
than o and registers. Herlihy [23] shows that this hierarchy
is strict for shared objects, in the sense that if object o has
a consensus power of n, it cannot implement consensus for
n+ 1 processes.

Theorem 1: If (V, <) is a totally ordered set then the
consensus power of the versioned store interface is infinite.

Proof: We consider an asynchronous system of n
processes {pi, . . . , pn}, and for each process pi∈J1,nK, we

note ui the value proposed by pi. Let k be some key. Every
process pi executes the following code to solve consensus:
Upon a call to propose(ui), process pi executes put(k, ui).
Then, it fetches the content of getSuccessor(k, v0) in the
pair (u, v) and decides the value stored in u.

Consider some history h of the above algorithm, and
note l the linearization of the calls to put(k, ui) and
getSuccessor(k, v0) that appear in h. First, we observe that
the value returned by getSuccessor(k, v0) is necessarily
proposed by one of the participating processes, and that
every process decides at most once. This proves that our
algorithm ensures the Validity and Integrity clauses of
consensus. Then„ for any process pi, a call to put(k, ui)
appears before getSuccessor(k, v0). As a consequence, the
precondition of getSuccessor(k, v0) holds and every call
getSuccessor(k, v0) by some correct process returns in h.
This shows Termination. Finally, observe that any complete
call to getSuccessor(k, v0) returns the value uj for which
the corresponding operation put(k, uj) appears first in the
linearization l. As a consequence, Agreement holds.

A shared memory can implement the operations put(k, v)
and get(k) of a plain KVS. As a consequence, the FLP
impossibility result [24] tells us that the consensus power
of such an interface is one. From the strictness of Herlihy’s
hierarchy [23], we deduce the separation result that a plain
KVS cannot implement a versioned KVS.

B. Listenable Key-Value Store

At the light of Theorem 1, we have to augment the
synchronization power of the plain KVS interface to support
versioned data. One solution would be to add some strong
synchronization primitive at the interface, such as a compare-
and-swap operation. However, this choice is not appealing
since (i) it requires a complex helping mechanism to
ensure progress of operations under contention, and (ii) a
synchronization primitive would not leverage the client-
server nature of the interface. In this paper, we consider
another possibility, which is clients being able to listen to
modifications made to the store.

We define a listenable KVS as a plain KVS augmented
with the following operations:
• regListener(f, k): it registers the function f as a listener

of the modifications occurring on key k. Every time
the KVS executes a put operation on k, the callback
f(k, u) is executed, where u is the new value of k.

• unregListener(f, k): to unregister the callback f .
In the remainder of this section we assume that operations of
such a listenable KVS are linearizable. This means that the
put() and get() operations behave like in an atomic register,
and that once a callback is registered, it gets notified of
all the modifications according to the linearization order in
which they occur.

A universal construction [23] is an algorithm to share
atomically any sequential code. The next section explains

Algorithm 2 Universal Construction – code at process p
1: Shared Variables:
2: K // Listenable KVS
3:
4: Local Variables:
5: s ∈ States // initially ⊥
6: r ∈ V alues // initially ⊥
7: Q // a FIFO queue; initialy ⊥
8:
9: open(k)

10: K.regListener(callBack)

11: (x, l, f)← get(k)

12: if (x, l, f) = ⊥ then
13: s← s0
14: else if f = PER then
15: s← x
16: else
17: K.put(k, (⊥, p,RET))
18: wait until s 6= ⊥
19:
20: close(k)
21: K.put(k, (s, p,PER))
22: K.unregListener(callBack)
23: s← ⊥, r ← ⊥, Q← ⊥
24:
25: invoke(k, op)
26: r ← ⊥
27: K.put(k, (op, p,INV))
28: wait until r 6= ⊥
29: return r
30:
31: When callBack(k , (x , p′, f))
32: if f = INV then
33: if s 6= ⊥ then
34: (s, v)← τ(s, x)
35: if p = p′ then
36: r ← v
37: else if Q 6= ⊥ then
38: Q← Q ◦ 〈x〉
39: else if f = RET then
40: if s 6= ⊥ then
41: K.put(k, (s, p,PER))
42: else if p = p′ then
43: Q← 〈〉
44: else if f = PER ∧ s = ⊥ then
45: s← x
46: for x ∈ Q do // In the order defined by Q.
47: (s, v)← τ(s, x)

48:

how to implement this construction on top of a listenable
KVS. In Section V, we use this universal construction to
build a versioned data store.

C. Universal Construction

Our construction is a variation of the seminal state machine
replication approach [25]. It allows sharing any sequential
data type between multiple processes with linearizability
semantics [26]. In what follows, we first recall the formal
definition of a (sequential) data type and then we detail our

construction on top of a listenable KVS.
A sequential data type is an automaton defined by: a

set of states States, an initial state s0 in States, a set of
operations Ops , a set of response values V alues, and a
transition function τ : States × Ops → States × V alues.
Hereafter, and without lack of generality, we shall assume
that every operation op is total, meaning that States×{op}
is in the domain of τ .

We present our universal construction in Algorithm 2. At
any process p, our algorithm maintains the following four
variables: K represents the listenable KVS, s is the logical
state of the shared object at process p, r is a reference to
the response value of the last local call issued by p, and Q
is a FIFO queue. Initially, process p assigns a null value (⊥)
to all local variables.

As mentioned previously, the core of our construction
inherits from the state machine approach. When a process
p invokes an operation op on a shared object o, op is
transmitted via a put(k, (op, p)) to the KVS, where k is the
unique key identifying o. Upon an execution of the callback
function callBack(k , (op, p′)), operation op is applied to
the local copy of object o. Then, in case op is registered as
a local call to o, i.e., p = p′, the response value is returned
to the calling process.

This approach offers consistency, durability and it allows
processes to create and destroy shared objects. To this end,
the variable K stores tuples of the form (x, p, f), where
(i) x is either an operation, or an object state, (ii) p identifies
the process that executed this insertion on the KVS, and
(iii) f is a flag that indicates the type of the insertion. An
insertion flagged with INV indicates that process p called
object o, and in such a case, x is an operation. If f equals
RET, process p aims at retrieving the persistent state of the
shared object. Such a state s is forwarded by another process
that opened previously object o via an insertion of the form
(s, p, PER) in the store.

Process p opens an object when it executes the operation
open(). This call registers the callback function callBack(),
then retrieves the tuples stored in the KVS at key k. Three
different cases may occur:

1) The KVS does not contain any value at key k (line 12).
In such a case, p assigns to s the initial state s0 of the
object.

2) If now the tuple retrieved in the KVS is of the form
(x, l, PER) then x is an object state and p assigns x to
variable s (line 15). Notice here that s is precisely the
object state after applying all the operations linearized
before process p opens object o. The registration of
callBack() in the KVS before the operation get()
ensures that p keeps track of the state for all the
operations that occur after open() in the linearization
order.

3) Finally, when the tuple stored at key k does not contain
an object state, the process waits until another process

transmits such an information (lines 17 and 18). This is
achieved by (i) storing a request flagged with RET in
the KVS, (ii) initializing Q to the value of an empty list
(line 43), (iii) storing all the calls to o that occur after
the opening request of p (line 38), and (iv) once the
state is retrieved, applying these operations in the order
defined by Q to variable s (lines 44 to 47). In case no
process is available, the opening fails and process p is
notified by an exception (not described in the code of
Algorithm 2.)

When the process p stops accessing object o, it executes the
operation close(). This operation inserts a tuple (s, p, PER)
inside the KVS. Then, it unregisters the callback function.
Finally, local variables are erased (lines 21 to 23).

The listenable KVS ensures durability of objects in case
processes properly close them. Nevertheless, if the last
process that opens the object crashes, this property is lost. To
avoid this situation, we require that at least F + 1 processes
have the object opened at any point in time, where F is
the maximal amount of crashes that may occur during an
execution.

Notice that we may improve performance of our construc-
tion by considering sequentially consistent objects. To achieve
this, we proceed as follows. We annotate every operation
with a flag indicating if it modifies, or not, the object. When
an operation op is called, in case op is read-only, we apply
it locally and return the result to the calling process. A
less intrusive approach consists in cloning the state of the
object, execute tentatively the call on the copy, and return
immediately the result in case the state does not change.

V. IMPLEMENTATION OF VERSIONING SUPPORT

In this section we decribe ALEPH, a generic versioning
support for any listenable KVS, as well as three representative
versioning implemented within. Each mechanism offers
different guarantees in terms of load balancing, latency and
storage overhead. We present an extensive evaluation of these
mechanisms and their inherent tradeoffs in Section VI.

A. Overview

The architecture of ALEPH consists in two tiers (see
Figure 1). The storage nodes of the KVS form the bottom tier.
They expose a listenable KVS interface, and ALEPH uses
them to store both versioned data and version indexes. The
upper tier executes operations on indexes using the universal
construction described in Section IV. This indexation tier is
generic and we present several variations in the following.
Clients communicate with the indexation tier using remote
procedure calls to store and query versioned data (Figure 1-
Ê). Upon receiving the remote procedure call, the contacted
indexing node issues an operation on the appropriate index, by
means of the universal construction presented in Section IV.
This event triggers a chain of operations at the storage nodes
level (Figure 1, steps Ë and Ì). Finally, the indexing node

Client
Storage node

Indexing node

➊ ➋
➌

➍

Figure 1. General architecture of the versioned KVS.

returns the response to the calling client (Figure 1-Í). ALEPH
collocates each indexing node with a storage node. This
design choice improves performance since data can transit
in a shared memory space. Notice that, nevertheless, this is
not mandatory in our architecture.

B. Storage

ALEPH can potentially use any listenable KVS as the
storage layer. The evaluation presented in Section VI uses
INFINISPAN [22]. INFINISPAN is a simple yet efficient one-
hop DHT that relies on consistent hashing to store and locate
data. In more details, it supports the following features:
(Routing) INFINISPAN uses a one-hop routing design, i.e.,

every node knows all storage nodes in the ring.
(Elasticity) Upon joining, a node chooses a random identifier

along the ring and fetches the ring structure from some
other DHT node. It then informs its neighbors that it is
joining.

(Storage) The storage layer uses consistent hashing [27] to
assign blocks to nodes with a replication factor r: a
data block with a key k is stored at the r nodes whose
identifiers follow k on the ring.

(Reliability) INFINISPAN builds on the JGroups communica-
tion library [28]. This library relies on failure detectors
to maintain a consistent view of the system. The repair
mechanisms of consistent hashing are triggered upon a
lack of response of a storage node within a timeout.

(Consistency) INFINISPAN implements the listenable KVS
interface with sequential consistency gurantees. INFIN-
ISPAN achieves this by using primary-backup replication
and the ability for clients to execute a get() operation
at any of the replicas. Events are forwarded by the
primary replica to the registered listeners. Upon a
primary change, an idempotency mechanism guards
the application against duplicated events.

ALEPH is implemented in 3,146 SLOC of Java, i.e. an
increase of 1% over the INFINISPAN base-code.

C. Indexation

Aside from the storage nodes, ALEPH employs a set of
indexing nodes. Each indexing node exports the versioned
KVS interface presented in Algorithm 1. Clients initially
retrieve the list of indexing nodes, and randomly choose one

Algorithm 3 Tree-based Versioning – code at process p
1: Shared Variables:
2: K // Listenable data store
3:
4: put(k, u, v)
5: choose some unique key l
6: K.put(l, u) // store value u at key l
7: T ← K.open(k) // open the tree stored at key k
8: T.add(v, l) // update the tree
9: K.close(k) // close the tree

10:
11: get(k)
12: T ← K.open(k) // retrieve the tree
13: (l, l)← T.last() // compute the latest entry
14: K.close(k) // close the tree
15: return K.get(l) // return the corresponding value
16:

of them to connect. Clients then access the interface through
remote method invocations to their indexing node. At each
indexing node, a versioning mechanism maps operations on
Algorithm 1 to appropriate accesses on versioned data indexes.
The choice of the versioning mechanism implemented by the
indexing nodes of ALEPH is configurable at start time. In
the remainder of this section, we detail three representative
mechanisms.

Baseline: The first versioning mechanism we consider is
the naive algorithm presented at the bottom of Section III-C.
All the versions are stored in a sorted map, under the key
identifying the corresponding datum. Everytime a versioned
operation is executed, the map is entirely fetched from
the KVS then updated accordingly. Since every versioned
operation requires at most two accesses to the listenable KVS
API, this versioning mechanism is optimal when the amount
of versions per datum is small. On the other hand, when
the number of versions is large, this versioning mechanism
is expensive as it requires to retrieve all existing versions.
Furthemore, it does not support concurrent writers, nor does
it offer load balancing.

Tree-based Consistent Indexes: ALEPH supports a
second versioning mechanisms that builds sorted trees to
index the versions with the universal construction depicted
in Section IV. Algorithm 3 details this approach for the most
relevant operations of the versioning interface. This algorithm
indexes the versions of a datum inside a dedicated tree (when
versions are non-comparable a canonical order is chosen).
To execute a versioned operation on behalf of a client,
an indexing node opens the tree of versions, invokes the
corresponding operation on the tree, then closes it. With more
details, to implement a call to put(k, u, v), the indexing node
first picks some unique key l at which it stores the value u.
Then, the node opens the tree T stored at key k and adds the
pair (v, l) to T before closing it (lines 5 to 9). When retrieving
the latest version of some datum k, the indexing node first
computes the greatest entry (l, l) in the tree T (line 13), and

returns the value stored at key l in the KVS (line 15). For the
performance reasons we detailed in Section IV-C, ALEPH
implements this versioning mechanism with sequentially
consistent trees. Moreover, to save the cost of registering a
listener for read-only operations, indexing nodes postpone
the installation of listeners (Algorithm 2, line 10) until a
modification occurs.

Sharding the Trees: As we shall see in practice in
Section VI, the tree-based versioning mechanism works fine
in most cases, but fails for data having a large number of
versions. We describe a versioning mechanism that overcomes
this limitation by scattering the different versions into
multiple trees. In detail, for each datum k ALEPH makes use
of one sharded tree stored at key k. A sharded tree consists in
a sorted map M = {(vi, T1), (v2, T2) . . .} of trees distributed
and replicated in the storage layer. The tree Ti stores the
version of k that are greater are equal to vi, but smaller
than the version vi+ indexing tree Ti+1. The sorted map
M , as well as the trees referenced by M are implemented
using the universal construction introduced in Section IV-C.
Upon the insertion of a pair (u, v) in the sharded tree, the
indexing node retrieves the map of trees and finds the last
tree T whose version v′ is smaller than v and adds (u, v)
to T . Then, if v is smaller than the version v′ referencing
T in M , v′ is updated with v in M . In case T contains
more than κ elements, the greatest tuple (um, vm) in T is
removed, and added to the successor of T in M . If such a
successor S does not exists, the indexing node creates it in
M . Upon the retrieval of one or more versioned data in T ,
e.g., when executing getRange(k, v1, v2), the indexing node
exploits the fact that, at any point in time, the trees in M
are both disjoint and sorted.

VI. EVALUATION

Our evaluation consists in re-executing real access traces on
a Wikipedia dump stored by ALEPH. We ran our experiments
on a cluster of 24 virtualized 4-core Xeon 2.5 Ghz machines
with 4GB of memory, running Gentoo Linux 32bits, and
connected by a virtualized 1 Gbps switched network. Network
performance, as measured by ping and netperf, is of 0.3ms
for a round-trip with a bandwidth of 117MB/s. Clients runs
a modified version of YCSB [29] that replays Wikipedia
access traces on the interface defined in Algorithm 1. In the
remainder of this section we study the workload properties,
discuss the modifications implemented in YCSB, and finally
present our evaluation results along several dimensions.

A. Workload Characteristics

We use the dump of Wikipedia as of January 3rd, 2008,
published by the Wikibench benchmark [30]. Among other
information, it contains the page identifier and the list of
versions. We use this log to recreate all the versions of the
Wikipedia pages in ALEPH.

 40

 60

 80

 100

 1 10 100 1000 10000 100000 1e+06

C
D

F
 (

%
 o

f
p

a
g

e
s
)

SCN (52 293 articles)
JA (123 512 articles)

EN (11 404 989 articles)

(a) Amount of versions per page.

 0

 20

 40

 60

 80

 100

100B 1KB 10KB 100KB 1MB

C
D

F
 (

%
 a

ll
v
e

rs
io

n
s
)

SCN (670 148 versions)
JA (8 248 216 versions)

EN (100 246 585 versions)

(b) Size of each version.

 0

 2

 4

 6

 8

 10

 12

 14

Aug 25 Sep 1 Sep 8 Sep 15 Sep 22R
e

q
u

e
s
ts

/h
o

u
r

(m
ill

io
n

s
)

Weeks between August 22 and September 24, 2007

(c) Access log to en.wikipedia.org (2007-08-22 to 2007-09-24).

Figure 2. Workload characterization.

Clients use an access log from the English Wikipedia
web servers [30] spanning August to September 2007. This
log contains (i) read accesses to the last versions, (ii) read
accesses to older versions, and (iii) range queries to retrieve
all versions (but not the content) of a page. As expected, most
requests (98.9%) in this workload consists in read access to
the last version. The remaining 0.64% and 0.46% consist in
reads of older versions and range queries, respectively.

We start by analyzing the distribution of versions per
page for three different Wikipedia languages: English (EN),
Japanese (JA) and Sicilian (SCN). These languages were
chosen because their size span different ranges: 11,404,989
(EN), 123,512 (JA) and 52,039 (SCN) articles. Results are
presented in Figure 2(a). Even though the vast majority of
pages have less than 10 versions, a small fraction of the pages
have hundreds to thousands of versions. These are precisely
the ones that might pose scalability issues, for instance, when
storing all the versions on a single node.

Figure 2(b) shows the page size distribution for each
language on a logarithmic scale. The three languages follow
the same distribution with an average page size of 3.86KB,
and a small fraction (0.0002%) is bigger than 1MB.

 0

 200

 400

 600

 800

 1000

 1200

SCN
(100%)

EN
(>0.1% of articles)

JA
(100%)

C
o

s
t

p
e

r
s
to

ra
g

e
 n

o
d

e
 (

M
B

)

B
a
s
e
lin

e

T
re

e

S
h
a
rd

in
g

Figure 3. Storage cost for each Wikipedia.

Figure 2(c) shows the distribution of requests over time
for the EN workload. The workload exhibits sudden spikes
that need to be accommodated properly. In the most busy
period, the system should sustain around 4,000 ops/second.

B. Client

The YCSB benchmark [29] executes create, read, update
and delete (CRUD) operations, following a chosen ratio of
operations and a key distribution. To replicate the access
pattern shown in Figure 2(c), YCSB had to be heavily
modified. First, the benchmark respects the order in which
keys are requested in the trace log, Second, it issues the
three types of (versioned) read operations occurring in the
log. To further stress ALEPH, multiple clients can execute
the log. In such a case, the benchmark orchestrates clients
to replay the trace log as fast as possible.

C. Experimental Results

This section reports several experimental results on the
use of ALEPH. We configure ALEPH to employ the three
versioning mechanisms covered in Section V-C; namely
(Baseline) a baseline implementation storing all the versions
of a page under a blob in the KVS, (Tree) a tree-based
indexation of the versions, and (Sharding) a mechanism
sharding the index with the κ threshold fixed to 1000.

We perform our tests in-memory to reduce noise due to
persistence storage. When populating ALEPH, we scaled
down the size of each Wikipedia page by a factor 10 and
use only 0.138% of the English Wikipedia (EN). This is
necessary to satisfy the hardware constraints of our cluster.1

Storage cost: Figure 3 depicts the amount of memory
used per storage node to load each Wikipedia in ALEPH. As
expected, the baseline mechanism is the less expensive. It
costs around half the price of the two other mechanisms. This
difference is because such mechanisms separate data from
metadata (indexes of versions). We also observe in Figure 3
that sharding the version index brings a small overhead in
comparison to an approach where the index is stored at
a single storage node. This comes from the fact that the

1 A 32bits Java virtual machine addresses at most 2.5GB of memory.
Thus, the cluster offers at most 24× 2.5 = 60GB of effective storage.

Technique SCN EN JA
Baseline 14s 189s 392s
Tree 105s 419s 1450s
Slow-down 7.5 2.2 3.6
Sharding 158s 559s 1662s
Slow-down 11.3 2.9 4.2

Table II
TOTAL INSERTION TIME PER LANGUAGE (SECONDS).

threshold κ to create a new shard of the version index is
fixed to 1000, hence occurring in rare cases.

Insertion performance: Table II shows the total time
taken for a versioning mechanism to install each of the
Wikipedia dumps into ALEPH. Depending on the Wikipedia,
the baseline technique is 2.2 to 11.3 times faster. Such a
gap comes from the fact that INFINISPAN does not offer a
fast call to store multiple key-value pairs at once. Hence, in
the case of Tree and Sharding, the implementation simply
iterates over all the versions of a page to install them. Still, as
one can see by the Slow-down factor, this cost is amortized
for larger workloads.

Latencies Tradeoffs: Figure 4 compares the three
versioning mechanisms executing an hour of the trace log
on the EN dataset. This figure shows the last decile of
the latency distribution (as a CDF) for read (bottom) and
read range (top) queries. We grow the number of clients
executing the log (from left to right). The x-axis indicates the
latency in milliseconds on a logarithmic scale. Figure 4 only
reports the results of Baseline for 20 clients. As expected,
the Baseline mechanism is expensive and does not scale:
read and read range queries require on average 106ms and
152ms, respectively. On the other hand, Tree and Sharding
versioning mechanisms perform similarly. We observe that
95% of the read queries take less than 25ms even under high
load (100 clients). For range queries, Tree is more efficient
than Sharding, even in the tail of the distribution. We believe
that the benefits of sharding the index of versions might
require a more version-intensive dataset.

VII. CONCLUSION

This paper studies the requirements and tradeoffs to add
versioning support to a key-value store (KVS). First, we prove
that a simple put() and get() KVS interface doesn’t provide
sufficient synchronization power to support versioned data.
To sidestep this result, we then consider a KVS enriched with
support for listeners, and we explain how to build atomic
objects of arbitrary type on top of its interface. Using this
construction, we implement and evaluate various versioning
mechanisms on top of industrial-grade KVS, INFINISPAN.
Our empirical results, based on access traces and datasets
from Wikipedia, suggest that the integration of versioning
support into an existing KVS is practical, although trade-offs,
in terms of operation latencies and storage costs, must be
taken into account.

 90

 92

 94

 96

 98

 100

 1 10 100 1000

R
e

a
d

 L
a

te
n

c
ie

s
C

D
F

 (
%

 o
f

q
u

e
ri
e

s
)

20 clients

 90

 92

 94

 96

 98

 100

 1 10 100 1000

40 clients

 90

 92

 94

 96

 98

 100

 1 10 100 1000

60 clients

 90

 92

 94

 96

 98

 100

 1 10 100 1000

80 clients

 90

 92

 94

 96

 98

 100

 1 10 100 1000

100 clients

 90

 92

 94

 96

 98

 100

 1 10 100 1000

R
e

a
d

-R
a

n
g

e
 L

a
te

n
c
ie

s
C

D
F

 (
%

 o
f

q
u

e
ri
e

s
)

20 clients

Tree
Sharding
Baseline

 90

 92

 94

 96

 98

 100

 1 10 100 1000

40 clients

 90

 92

 94

 96

 98

 100

 1 10 100 1000

60 clients

 90

 92

 94

 96

 98

 100

 1 10 100 1000

80 clients

 90

 92

 94

 96

 98

 100

 1 10 100 1000

100 clients

Figure 4. Read (bottom) and Read-Range (top) latencies for increasing number of clients.

VIII. ACKNOWLEDGEMENTS

We are thankful to the authors of Wikibench [30] to have
publicly released their datasets, as well as the INFINISPAN
developer community. The research leading to this publication
was partly funded by the European Commission’s FP7
under grant agreement number 318809, LEADS project
and 611068, CoherentPaaS project, as well as the ERDF-
European Regional Development Fund through the COM-
PETE Programme and by national funds through the FCT -
Portuguese Foundation for Science and Technology - within
project FCOMP-01-0124-FEDER-037281.

REFERENCES

[1] A. Lakshman and P. Malik, “Cassandra - A Decentralized
Structured Storage System,” in Large Scale Distributed Sys-
tems and Middleware (LADIS), October 2009.

[2] “Riak,” http://basho.com/riak.
[3] J. C. Anderson, J. Lehnardt, and N. Slater, CouchDB: the

definitive guide. O’Reilly Media, Inc., 2010.
[4] “Mongodb,” https://www.mongodb.org.
[5] “Mongo MVCC,” https://github.com/igd-geo/mongomvcc.
[6] L. George, HBase: The Definitive Guide. O’Reilly Media,

2011.
[7] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,

A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and
W. Vogels, “Dynamo: Amazon’s highly available key-value
store,” in ACM SOSP 2007, pp. 205–220.

[8] “HyperTable,” http://hypertable.org.
[9] R. T. Snodgrass, Developing Time-oriented Database Applica-

tions in SQL. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2000.

[10] C. Date and H. Darwen, Temporal Data and the Relational
Model. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2002.

[11] K. Kulkarni and J.-E. Michels, “Temporal features in
SQL:2011,” ACM SIGMOD Record, vol. 41, no. 3, pp. 34–43,
Oct. 2012.

[12] F. Zemke, “What’s new in SQL:2011,” ACM SIGMOD Record,
vol. 41, no. 1, pp. 67–73, 2012.

[13] P. A. Bernstein and N. Goodman, “Concurrency control in
distributed database systems,” ACM Comput. Surv., vol. 13,
no. 2, pp. 185–221, Jun. 1981.

[14] L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,” Commun. ACM, vol. 21, no. 7, pp. 558–
565, 1978.

[15] P. R. Johnson and R. H. Thomas, “The maintenance of
duplicate databases.” Internet RFC 677, 1976.

[16] F. Chang et al., “Bigtable: A distributed storage system for
structured data,” TOCS, vol. 26, no. 2, 2008.

[17] T. A. Marsland and Z. Yang, Global States and Time in
Distributed Systems. Los Alamitos, CA, USA: IEEE
Computer Society Press, 1994.

[18] D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton, B. J.
Walker, E. Walton, J. M. Chow, D. Edwards, S. Kiser, and
C. Kline, “Detection of mutual inconsistency in distributed
systems,” IEEE Trans. Softw. Eng., vol. 9, no. 3, pp. 240–247,
May 1983.

[19] J. Almeida, P. Almeida, and C. Baquero, “Bounded version
vectors,” Distributed Computing, vol. 3274, pp. 102–116, 2004.

[20] D. Malkhi and D. B. Terry, “Concise version vectors in WinFS,”
Distributed Computing, vol. 20, no. 3, pp. 209–219, 2007.

[21] P. Almeida, C. Baquero, and V. Fonte, “Interval tree clocks,”
Principles of Distributed Systems, vol. 5401, pp. 259–274,
2008.

[22] F. Marchioni and M. Surtani, Infinispan Data Grid Platform.
Packt Publishing Ltd, 2012.

[23] M. Herlihy, “Wait-free synchronization,” ACM Trans. Program.
Lang. Syst., vol. 13, no. 1, pp. 124–149, Jan. 1991.

[24] M. J. Fischer, N. A. Lynch, and M. S. Patterson, “Impossibility
of distributed consensus with one faulty process,” J. ACM,
vol. 32, no. 2, pp. 374–382, Apr. 1985.

[25] F. B. Schneider, “Implementing fault-tolerant services using
the state machine approach: a tutorial,” ACM Comput. Surv.,
vol. 22, no. 4, pp. 299–319, 1990.

[26] M. P. Herlihy and J. M. Wing, “Linearizability: a correctness
condition for concurrent objects,” ACM Transactions on
Programming Languages and Systems, vol. 12, pp. 463–492,
1990.

[27] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine,
and D. Lewin, “Consistent hashing and random trees: dis-
tributed caching protocols for relieving hot spots on the World
Wide Web,” in ACM STOC ’97, pp. 654–663.

[28] B. Ban, “JGroups: A Toolkit for Reliable Multicast Commu-
nication. http://www.jgroups.org,” 2007.

[29] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears, “Benchmarking cloud serving systems with YCSB,”
in ACM SoCC, 2010, pp. 143–154.

[30] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia
workload analysis for decentralized hosting,” Elsevier Com-
puter Networks, vol. 53, no. 11, pp. 1830–1845, July 2009,
http://www.globule.org/publi/WWADH_comnet2009.html.

http://basho.com/riak
https://www.mongodb.org
https://github.com/igd-geo/mongomvcc
http://hypertable.org
http://www.globule.org/publi/WWADH_comnet2009.html

