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Abstract. Molecular dynamics simulations is a valuable tool to study
protein unfolding in silico. Analyzing the relative spatial position of the
residues during the simulation may indicate which residues are essential
in determining the protein structure. We present a method, inspired by
a popular data mining technique called Frequent Itemset Mining, that
clusters sets of amino acid residues with a synchronized trajectory during
the unfolding process. The proposed approach has several advantages
over traditional hierarchical clustering.

1 Introduction

Protein folding is the process by which the protein acquires its three-dimensional
(3D) native structure. The 3D structure of a protein, ultimately determined by
its linear sequence of amino acids, is essential for protein function. Recently, sev-
eral human and animal pathologies, such as cystic fibrosis, Alzheimer’s and mad
cow disease, among others, have been identified as protein folding or unfolding
disorders. Over the years, many experimental and computational approaches
have been used to study these processes. The analysis of data obtained from
molecular dynamics (MD) simulations of induced-unfolding processes may be
an important tool to explore and understand the protein unfolding mechanisms.

Analyzing the behavior and the relationship among the residues during the
simulation may provide important insights on the unfolding process. In partic-
ular, identifying groups of residues that show a synchronized behavior during
the simulation can provide important clues on which residues play a critical
role on protein folding and protein structure. Such residues may be involved in
the formation of a core or nucleus that is preserved within the partially folded
structures. In this work, by synchronization or synchrony between two or more
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residues we mean that they conserve their relative distance during the simula-
tion. Traditional clustering techniques are not flexible enough to allow additional
restrictions nor that an element (residue) may appear in more than one cluster.
Therefore, they are not adequate to capture the behavior of residues that appear
synchronized with more than one set of other residues.

Here, we propose a method to cluster sets of amino acid residues (AARs),
that have a synchronized trajectory during the unfolding process of the protein
Transthyretin (TTR) [2, 3, 7]. Since the clustering is determined by the spatial
location of the alpha-carbon (Cα) atoms of each residue, we call it Trajectory
Spatial Clustering. The method is inspired in a popular data mining technique
called Frequent Itemset Mining (FIM) [1, 5]. The method is devised in three main
steps. First, all the pairs of AARs that during the simulation have a small dis-
tance variation are determined. These pairs will form the seed for larger clusters.
In the second step, these clusters are successively extended with other AARs.
If the elements of a cluster exceed a certain distance variation threshold (pro-
vided by the user), it means that the cluster is no longer synchronized and the
extension process is stopped. Clusters that are contained in other clusters are
considered redundant. In the last step, after all clusters have been determined,
redundant cluster can be rejected and similar clusters merged.

2 Method

We start this section by formalizing the problem and then presenting our ap-
proach by describing the proposed algorithm. The goal of this work is to design
a methodology that discovers sets of residues – clusters – that have a synchro-
nized trajectory during the simulation. The residues in a cluster follow their own
trajectory but conserve among each other their relative distance in 3D space.
In order to measure the distance variation between two residues, we introduce
a measure called coefficient of distance variation, denoted as cdv. Two AARs
are considered to form a synchronized cluster if its cdv does not exceed a user
defined threshold value, called cdvmax. An expected outcome is that this value
increases with the cluster extension. To deal with this, we introduce a second
parameter, cdvinc, representing an increment in the cdvmax threshold for each
new extension.

Residues that are contiguous in the linear sequence are expected to have a
highly conserved movement due to physical restrictions. Thus, to avoid report-
ing such trivial relations between residues, a third parameter called minimum
sequence distance (msd) is introduced. Imposing such restriction means that for
residues to be considered in the same cluster, their distance in the linear se-
quence should be greater or equal to msd. The problem can be stated as follows:

Given the 3D coordinates of the Cα atom of each residue at each instant of
the simulation, a maximum coefficient of distances variation (cdvmax), a cdvinc

increment for each new extension and a minimum sequence distance (msd) be-
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tween residues, find all the clusters of residues that show a synchronized behavior.

The overall proposed approach can be summarized in the following three-step
algorithm:

Step I - Rigid Link Determination Find all pairs of residues with distance
variation below a pre-defined threshold (cdvmax) and a sequence distance
greater than msd. These pairs will form the seeds for the clusters.

Step II - Cluster Extension In an agglomerative way, each cluster is succes-
sively extended with new residues. A residue is considered for extension if
it forms a rigid link with one of the residues in the cluster. Extension stops
when the cluster exceeds a given variation threshold (cdvmax + cdvinc).

Step III - Cluster Filtering This step is optional and consists in removing
redundant clusters and merging similar ones. Clusters are then ranked ac-
cording to their cdv value.

2.1 Rigid Link Determination

In the first step of the method, we find all the pairs of residues that in the 3D
space have a coefficient of distance variation less than the initial cdvmax and that
in the linear sequence are apart at least msd residues. These pairs of residues
are called rigid links and correspond to clusters of size 2. The distance between
the residues A and B, at a given instant i of the simulation, is given by the
Euclidean distance between their Cα atoms, expressed by Equation 1.

disti(A, B) =
√

(Ai.x−Bi.x)2 + (Ai.y −Bi.y)2 + (Ai.z −Bi.z)2 (1)

For a simulation of N time points, the cdv of two residues A and B correspond
to the root mean square deviation of the Euclidean distance between A and B
and is given by Equation 2.

cdv(A,B) =

√∑N
i=1 disti(A,B)

N
(2)

By performing a pairwise comparison of all the AARs the rigid links are
found.

2.2 Cluster Extension

In step two, the initial set of clusters are extended with new residues. Transitivity
is the basic idea behind the extension process and it can be described as follows:
if a and b form a rigid link denoted as rl(a, b), and b and c another rigid link
rl(b, c), then {a, b, c} will potentially form a cluster with synchronized behavior.

However, for clusters with size greater than two, a way to measure the overall
cluster synchrony is needed. Several approaches can be taken. One such approach
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would be to measure the variation of the cluster centroid. For each time frame
the cluster centroid (central point) is calculated. Then, it is verified if during
the simulation period the centroid positions vary significantly. This can be mea-
sured through the root mean square deviation of the Euclidean distance between
two consecutive time points. If this variation is below a pre-defined threshold,
the cluster is considered synchronized. We observed that this approach is incor-
rect since increasing the cluster size will always result in a decrease of centroid
variation. Therefore, this measure is not able to capture correctly the cluster
variation. A different approach to measure the overall cluster variation was con-
sidered. The global variation of a cluster C is given by the average value of
cdv between all pairs of residues in cluster C. Algorithm 1 provides the way to
calculate the global variation of the cluster. With this calculation each cluster
can now be extended given that its global variation remains below a certain
threshold.

input : cluster C (cluster to extend); msd
for i = 1 to |C| − 1 do1

for j = i + 1 to |C| do2

/* Compare pairwise all AARs in C */

p = C[i];3

q = C[j];4

dSum = 0;5

if abs(p− q) ≥ mindist then6

dist = CDV (p, q);7

dSum = dSum + dist;8

pairs = pairs + 1;9

end10

end11

end12

return gvar = dSum/pairs;13

Algorithm 1: GVar: Calculation of global variation of a cluster C.

The cluster extension step relies on a bottom-up procedure, where larger
clusters result from the extension of smaller ones. Given a synchronyzed cluster
C = {c1, · · · , cn}, C∪{x} is a candidate cluster if ∃ rl(cn, x). This strategy, which
is based in one of the most efficient strategies for FIM [4], allows to find all valid
candidate sets while maintaining a reduced number of redundant candidates.
This approach relies on the monotonic property, also called downward closure,
largely used by itemset mining algorithms [5] to discover sets of items that co-
occur frequently. Frequent itemsets appear in the database a number of times
greater than a given threshold value called minimum support. From this property
results that any subset of a frequent itemset must also be frequent. Analogously,
we have that all sub-clusters of a synchronized cluster are also synchronized.

Extending the cluster with new residues will increase its variation. At a
certain point the initial variation threshold will become too restrictive to allow
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for new extensions. Thus, the method has to account for a certain variation
tolerance to each new extended cluster. This is expressed through the parameter
cdvinc. For each new extension of the cluster the value of cdvmax is increased
by cdvinc. From this results that a cluster is always tested for synchrony with
the threshold relative to its size. Algorithm 2 describes the extension procedure
(DFSExtend): the cluster C is extended with all rigid links (line 1) where the
first AAR of the rigid link is equal to the last AAR in C (line 3). C is extended
with the second AAR in rl if the global variation of the new cluster is below
the allowed threshold (line 6). In this case newC is considered a synchronized
cluster. If newC cannot be further extended (verified by an outcome of 0 in
DFSExtend - line 7) then it is added to the list of synchronized clusters LSynC.
This test saves work in step III since it already eliminates some of the redundant
clusters. If the option to report all synchronized clusters is activated, then all
new clusters that pass the test in line 6 are added to list LSynC.

input : cluster C; Lrl(list rigid links); cdvmax; cdvinc

foreach rl in Lrl do1

/* AAR in rigid link rl */

a ↔ b = rl;2

if pop(C) = a then3

/* extend C with b */

newC = push(C, b);4

newCvar = GV ar(newC);5

if newCvar ≤ (cdvmax + cdvinc) then6

/* extend recursively new cluster */

ex = DFSExtend(newC, Lrl, cdvmax + cdvinc, cdvinc);7

if ex == 0 then8

push(LSynC, newC);9

end10

else11

return 0;12

end13

end14

end15

Algorithm 2: DFSExtend: Recursive function for cluster extension.

2.3 Cluster Filtering

Performing cluster search through the combination of an exhaustive enumeration
and residue at a time extension results that some of the reported clusters are
found to be sub-clusters of larger clusters, which leads to the notion of maximal
cluster. A cluster is said to be maximal if it is not contained in any other clus-
ter. Therefore non-maximal clusters can be rejected (not reported) since they
provide redundant information. Cluster extension is performed through a depth
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first search. Reporting only the larger clusters of a branch of the search space
tree eliminates many of the redundant clusters. For instance, in the following ex-
tension path {a, b} → {a, b, c} → {a, b, c, d} only {a, b, c, d} needs to be reported.
Since some of the non-maximal clusters can be found at the end of a path, an
additional test to verify cluster maximality is required. This consists in verify-
ing if a synchronized cluster is contained or contains other synchronized cluster.
Since highly synchronized redudant clusters can also be of interest, the user may
choose the option of reporting all synchronized clusters. Additionally, clusters
with similar composition can also be reported. For instance, {R10, R21, R50}
and {R10, R22, R50} can be found as synchronized clusters. To make easier the
interpretation of the results, a post-processing step can be applied to merge such
clusters. The previous clusters can be merged as {R10, R(21− 22), R50}.

3 Application

In this section, we make use of the proposed algorithm to assist in the study
of the unfolding mechanisms of the protein Transthyretin (TTR) (Figure 1), a
human plasma protein involved in amyloid diseases such as Familial Amyloid
Polyneuropathy, Senil Systemic Amyloidosis and Familial Amyloid Cardiomy-
opathy [2].

Molecular dynamics protein unfolding simulations may be analyzed through
the variation of chemical or geometric properties [2, 3, 7]. We focused on a par-
ticular dataset which consists of 127 time series, each representing the 3D coor-
dinates of the Cα atom of each AAR along one MD unfolding simulation. Each
time series is a collection of 8000 data frames, with the 3D coordinates of the Cα

atom of each AAR per picosecond (ps) of simulation, for a total of 8 nanoseconds
(ns) of simulation.

A prototype in C++ that implements the algorithm described in section 2
was developed. Different combinations of values of the parameters cdvmax, cdvinc

and msd were tested with computation times around 2 seconds. Here, we show
and analyze the results obtained with the following parameter values: cdvmax =
8; cdvinc = 0.6 and msd = 2. 148 rigid links are found and 30 synchronized
clusters are reported. With cdvinc = 0, only 15 clusters are found; with cdvmax =
20, cdvinc = 0.0 and msd = 2, we obtain 3775 rigid links and 41277 clusters.
Table 1 presents the 30 clusters ordered by the average cdv value. Note that these
clusters were reported before step III and can be further tested for maximality
and merged.

From the analysis of Table 1, three sets of AARs appear highly represented:
29 to 35, 67 to 73, 79 to 83 and 92, 94 and 96. In Figure 2, it is graphically rep-
resented the AARs preponderance on the reported synchronized clusters. Each
point depicts the position of the Cα of each AAR in the native structure of the
protein. Lines represent the rigid links in the cluster. From this figure we can
see that only a small fraction of the AARs in the protein are covered by the
clusters. When represented in the secondary structure of the protein (Figure 1),
the highly represented AARs are placed in the following structures: β-strand B
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Fig. 1. Secondary structure ribbon representation of the WT-TTR monomer (PDB
entry 1TTA). β-strands, α-helices, and turns and random structure are represented
by arrows, coils and tubes, respectively. The eight β-strands are named A (residues
2-18), B (residues 28-36), C (residues 40-49), D (residues 54-55), E (residues 67-73), F
(residues 91-82), G (residues 104-112) and H (residues 115-123). The residues identified
in Table 1 are represented as beads.

Cluster Avg cdv Cluster Avg cdv Cluster Avg cdv

34 69 94 6.79 33 70 92 7.85 31 71 92 8.15
77 80 83 7.05 35 68 94 7.88 73 76 79 8.18
33 69 94 7.08 75 78 81 7.92 19 112 115 8.24
76 79 82 7.24 34 67 96 7.98 32 45 58 8.29
76 80 83 7.54 32 72 92 8.01 29 73 76 8.40
32 69 94 7.57 10 13 105 8.07 75 79 82 8.44
32 71 92 7.59 32 70 92 8.08 33 72 92 8.45
35 69 94 7.60 30 72 92 8.11 30 71 92 8.52
34 68 94 7.74 35 67 96 8.13 79 85 88 8.57
31 72 92 7.83 33 71 92 8.14 30 73 76 79 9.21

Table 1. Output of the spatial clustering algorithm sorted by increasing value of
average value of cdv for the cluster. The settings used for this analysis were: cdvmax=8,
cdvinc = 0.6 and msd = 2.
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(AARs 28 to 36), β-strand E (AARs 67 to 73), α-helix (AARs 75 to 82) and β-
strand F (AARs 91 to 97). More interestingly, we observed that the clusters tend
to relate AARs in β-strands B, E and F mixed together, while the residues from
the α-helix seem to relate more with each other. Another fact worth noticing is
that among the residues from β-strands B, E and F two large “super-clusters”
can be identified: (i) AARs 32 to 35 with AARs 69 and 72, and (ii) AAR 30 to
33 with AAR 71 or AAR 72, and AAR 92. In the experimental work on TTR
by Liu and colleagues [6], it is suggested that the disruption of the structure of
β-strands B, C, E and F is a cooperative process. By analyzing the trajectory
of the different AARs during an unfolding simulation and their relation with
each other, our results seem to point in the same direction. Thus, the method
proposed here seems to prove useful in the analysis and comprehension of MD
unfolding simulation data.

We selected the merged cluster {(32, 33, 34, 35) 69 94} to visualize the syn-
chrony of the elements in a cluster during the simulation. The 3D coordinates
of the AARs are plotted separately in Figure 3. We can clearly see that the six
AARs in this cluster have an almost perfect synchronization during the entire
simulation.

In order to contrast the method proposed with a more traditional approach,
Figure 4 presents the dendrogram obtained from the hierarchical clustering of
the AARs based on the cdv. To obtain these results we first built a similarity
matrix based on the cdv values for all the pairs of AARs. Then, a hierarchical
clustering algorithm using the “average” agglomerative method was applied. As
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can be seen from Figure 4, the hierarchical clustering approach is mainly able
to detect trivial relations, i.e relations between AARs that are contiguous in the
linear sequence and therefore expected to have high synchrony. Nevertheless, a
few surprising relations appear (for instance between residues 39 and 83) that
may be worthwhile to look at in detail.

Fig. 4. Hierarchical Clustering of the AARs using the cdv as the similarity measure.

4 Discussion

In this paper, we propose a method for the analysis of data from MD simula-
tions of the unfolding process of the protein Transthyretin (TTR). This method
is intended to find groups of amino acid residues (AARs) that show a synchro-
nized behavior during the entire simulation. Such AARs may be essential for the
protein structure and will help to better understand the unfolding process. The
applied strategy for the discovery of the synchronized clusters closely resembles
the strategy applied by FIM algorithms, with the difference that the criterium to
report the sets of items is not their frequency but the variation of their spatial
location. Although it uses a simple approach, this method has revealed to be
quite efficient regarding the characteristics of the target data. When compared
to the hierarchical clustering approach, our method has the following advan-
tages: (i) by imposing a minimum distance in the linear sequence for the AARs
in the cluster, it avoids reporting trivial matches between contiguous (in linear
sequence) AARs; (ii) it allows that an AAR may be present in more than one
cluster and that they are located further apart in the linear sequence and in the
3D space; (iii) separating the AARs into clusters has the drawback of requiring
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a threshold value, but the advantage of providing a more intuitive interpretation
of the results and allowing the extension of the analysis to multiple simulations.

Regarding this last aspect, it is worth mentioning that, as in many other data
mining applications, the definition of the correct parameters value is an iterative
and interactive process. An apriori indication for the range of values where the
most relevant solutions are expected to be found can be provided, but the exact
values will always depend on the characteristics of the data.

If data from several simulations is available, this approach can be easily
extended to find clusters that are conserved across several simulations. This can
be done by adapting a frequent itemset mining algorithm [5] to discover itemsets
that are conserved in different simulations.
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