
Integration of Concurrency Control in a Language with Subtyping
and Subclassing

Carlos Baquero
�

Rui Oliveira
�

Francisco Moura
�

Departamento de Informática / INESC
Universidade do Minho

Braga - Portugal

Abstract

This paper describes the integration of concurrency
control in BALLOON, an object-oriented language
that separates the concepts of type and class as well
of subtyping and subclassing. Types are interface
specifications enriched with concurrency control an-
notations. Classes are used to implement the opera-
tional functionality of types as well as concurrency
control mechanisms. Types, classes and concur-
rency control annotations are independently reusa-
ble and derivable. The language takes advantage of
this separation to solve the typical problems of the
inheritance anomaly.

1 Introduction

BALLOON is a novel object-oriented language in-
tended as a test-bed for experimenting with con-
currency in a object-oriented, potentially distribu-
ted setting. It is a compiled, statically-typed lan-
guage that allows explicit creation and management
of concurrency while avoiding the traditional con-
flicts between inheritance and concurrency.

The management of large-scale software projects
calls for separate compilation and joint development
through code reuse and incremental development.
These features are strongly related to the notions
of encapsulation, inheritance and component inter-
face description which are the foundations of object-
oriented technology. Therefore, BALLOON not only

�
Email:

�
cbm,rco,fsm � @di.uminho.pt.

WWW: http://www.di.uminho.pt/˜
�
cbm,rco,fsm � . The first au-

thor was partially supportedby JNICT/Praxis XXI BD/3123/94.

advocates the separation of subtyping and subclas-
sing but also distinguishes concurrency control clas-
ses from operational classes. As a result, types, clas-
ses, and concurrency control are independently reu-
sable and derivable, thereby eliminating the inheri-
tance anomaly.

BALLOON is expected to contribute to the design
of extensible libraries of concurrent components. In
fact, BALLOON allows the derivation of concurrent
components without requiring the knowledge of any
internal details about its ancestors, as these may well
be hidden in a compiled library. It suffices to know
the type interface and develop a properly annotated
class.

In the next section we briefly overview existing
approaches to concurrency in object orientation fo-
cusing on the inheritance anomaly. Subsequent
sections describe the model of types and classes
in BALLOON with emphasis in the language cons-
tructs relevant for the following sections. Next, the
extensions for concurrency control are introduced
showing how they interact with the type and class
structures of the language and how they cope with
the inheritance anomaly. This is then compared with
related work and finally the paper’s contributionsare
summarized.

2 Concurrency in Object Orienta-
tion

The introduction of concurrency in the object-
oriented model has been intensively investigated in
recent years, where numerous alternatives and pers-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634215?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

pectives where evaluated; these approaches were
classified and organized in several taxonomies [27,
14, 21, 6, 23]. A common conclusion stemming
from this research is that integration of concurrency
and object orientation is not a trivial task.

In the presence of multiple threads, and thus mul-
tiple active methods, some mechanisms are needed
for regulating concurrent accesses to object data.
However, the introduction of concurrency control
mechanisms in the object model, can interfere with
the inheritance mechanism. The definition of de-
rived components often requires modifications to
existing concurrency control code in the supertype,
specially when this code is embedded within the
operational code. As a result, inheritance is severely
impaired unless appropriate abstractions are used
for the incremental definition of concurrency con-
trol code. This interference is known as the inheri-
tance anomaly [21], and it has been the subject of
intensive research on several frameworks [22, 19],
particularly on Actor based languages as ABCLO-
NAP1000 [21], ACT++ [15, 14], ROSETTE [31].

2.1 Brief Introduction to the Inheritance
Anomaly

In the study of the inheritance anomaly, some exam-
ples are widely used to depict specific problems in
inter-object [21, 14] and intra-object � [22, 30, 18, 6,
4, 28] concurrency control.

2.1.1 Inter-Object Concurrency Control

Explicit Reception (Acceptance) of Messages
Languages such as ADA [12] and CSP [13] adopt
bodies that regulate the acceptance of messages on
active server objects. On these bodies, possibly
guarded accept statements are interleaved within the
operational body code. The addition of new me-
thods on derived components incurs on possibly
very complex body redefinitions, thus preventing
the inheritance of bodies. Some affected languages
are POOL-I [2], � C++ [8], EIFFEL// [10].

Accepting Methods According to the Abstract
State

�
These schemes also apply to inter-object coordination.

Addition of new methods often changes existing
relations between the abstract object state and the
invocable methods. Languages based on accept
sets [15, 31] define named entities that describe
which methods are invocable in a given moment.

Consider a stack with push and pop operations
we can identify the following accept sets that des-
cribe different abstract states:

State Methods

Empty push
Partial push, pop
Full pop

However, introducing a method pop2 that remo-
ves two elements from the stack creates a new rele-
vant state, thus partitioning the previous representa-
tion as shown below.

State Methods

Empty push
Singular push, pop
Partial push, pop, pop2
Full pop, pop2

Languages that rely on the explicit switching of
the current abstract state such as ACT++ � [15] and
ROSETTE [31] , are unable to program this example
without awkward redefinitions.

The introduction of more flexible mechanisms for
the use and extension of accept sets as those intro-
duced in the new ACT++ version [14] and in AB-
CLONAP1000 [21] solves this problem. However,
there remains the subtle problem of exposing the
implementation details of the concurrency control
code. The programmer of a derived component must
know the structure of the inherited sets, so as to be
able to change them, and include the newly defined
methods where appropriate.

Accepting Methods According to History Depen-
dencies
A potential alternative to the accept sets is to rely on
the definition of method predicates [3, 19, 28], and
to control method invocation with boolean guards.
This allows rather elegant solutions to the previous
problems.

�
The version presented at ECOOP’89.

For example, if load expresses the current load
of the stack, and MAX is its maximum size, we can
associate the guards ���������
	������� , ���������
����� ,
��������������� to push , pop, pop2, respectively.
These guards are mutually independent and can be
added along with new methods on derived compo-
nents.

Unless guards are assisted by additional synchro-
nization actions, the definition of methods that de-
pend on the invocation history of the components is
made impossible as the appropriate history informa-
tion must be recorded. The definition of a method
stat that should only be accepted after 100 invo-
cations of the other stack methods would require the
use and update of a counter. Guards should also be
extensible on derived classes, although not necessa-
rily as in [19] where they can only be made more res-
trictive.

2.1.2 Intra-Object Concurrency Control

Intra-object concurrency can have a significant im-
pact on performance. For example, in a simple ex-
periment carried out on a 2-cpu system, disabling
the internal concurrency of a producer-consumer
through a bounded buffer reduced efficiency to
57% [5].

Approaches to the inheritance of intra-object con-
currency control were evaluated with accept sets in
[22] and synchronization counters � in DRAGOON

[28], SINA [6] and DOOJI [30]. The use on DEME-
TER [18] of exclusive regions to which methods are
associated is, to some extent, similar to the definition
of named accept sets.

2.2 Concurrency Annotations Control Mo-
del

The CA (Concurrency Annotations �) model [4] de-
fines a way of introducing separate concurrency con-
trol mechanisms for the coordination of multiple th-
reads of execution and protect concurrent accesses
to the internal object’s state.

�
Such as the number of threads that are executing a given

method.�
This term is also used in CEiffel[17] but with a different

meaning.

With CA, method invocation is protected by a
guard and a lock. Only when the guard evaluates
to true and the lock is opened can the corresponding
method be allowed to execute, otherwise the calling
thread is blocked in a wait queue. Concurrency con-
trol actions can be executed before and after method
execution. These actions are standard code of the
host language and may define and change private
state elements of the synchronization code. They
also have the special capability of acting on the me-
thod locks, and are able to use the interface of the
controlled object. Actions and method guards can
be independently expanded or redefined on derived
components.

Concurrency control in BALLOON uses a modi-
fied version of the CA model. These features will be
presented after an overall description of BALLOON.

3 The BALLOON Programming
Language

BALLOON is a concurrent object-oriented program-
ming language aimed at providing expressive abs-
tractions for the reuse and composition of software
components. In some aspects BALLOON resembles
POOL-I [2] and SATHER [29] providing the com-
plete separation of types and classes. Types specify
the interface of objects sufficient for their correct
composition and interaction in a message-based sys-
tem [23]. Types are implemented by classes, which
are the main structuring block of the language. This
binding is a many-to-many relationship in the sense
that a type can have multiple implementations and a
class can also implement several types. The set of a
type and its implementations is usually referred to as
a component.

Due to this clear separation of types and classes,
subtyping and subclassing relations are also distin-
guished concepts as advocated in [11, 24]. Subty-
ping serves data abstraction and conceptual struc-
turing [16] while subclassing is left unconstrained
allowing a flexible code reuse mechanism through
inheritance [32, 25].

Genericity in BALLOON is achieved through ge-
neric components. Generic components differ from
ordinary components by defining particular nuclear
types on which the component’s specification and

implementation depend. The genericity mechanism
provides the ability of deriving new components by
the explicit substitution of the nuclear types of a ge-
neric. Using explicit substitutions instead of para-
meterization, generic types and classes can be clas-
sified at the very same level as their ordinary coun-
terparts. This is an important result for the orthogo-
nality of the two code reuse mechanisms [26].

3.1 Type Hierarchy

Types form a well-defined hierarchy based on the
subtype relation. As usual, since types are interface
specifications, subtyping is defined in terms of inter-
face compatibility [32]. A type is said to be a sub-
type of another if for every method of the later the
former provides a method with the same name pre-
serving covariance in the result and contravariance
in its arguments [9]. Subtype polymorphism is sup-
ported by allowing an object to be substituted, in any
context, by objects whose type is a subtype of the
former’s type.

The type hierarchy of BALLOON is therefore
constituted by ordinary and generic types. The main
order � in the hierarchy is given by subtypes. At
the top of the hierarchy there is the type Any whose
every type is subtype of, and there is also a virtual
type, named Nil, which is a subtype of any other type
in the hierarchy.

3.2 Class Hierarchy

Classes related by inheritance form an hierarchy.
There is not any conformance relation between clas-
ses related by inheritance. The relation stands solely
as a class constructor mechanism. Inheritance is the
pure inclusion of code with subsequent re-binding of
self references.

Since the inheritance mechanism is unrestricted,
allowing multiple inheritance, renaming of inherited
methods, and absence of any conceptual ordering, it
is likely to yield a multi-topped hierarchy.

�
Aside from subtyping, other type relations are defined in

BALLOON but they are not relevant to this paper.

3.3 Relevant Constructions

Examples of the basic constructions of BALLOON

relevant to this paper are now presented. The exam-
ples remain simple serving as a base for the exten-
sions that will be presented in the next section. For
the interested reader [1] provides a more detailed
description of the language.

3.3.1 Types

A type in BALLOON is the declaration of the inter-
face the objects of that type must support. Its form
is depicted next

Type IntQueue�
Integer PutLeft(Integer);
Integer GetRight();
Integer Size();�

A possible subtype of IntQueue is an IntDEQueue (a
double ended queue of integers). Its definition may
be

Type IntDEQueue SubtypeOf IntQueue�
Integer PutRight(Integer);
Integer GetLeft();�

which means that IntDEQueue has all the methods
of IntQueue unchanged plus the PutRight and Ge-
tLeft methods. As the received methods of IntQueue
remain unchanged they are, by default, contrava-
riant in their arguments and covariant in their re-
sults. Otherwise care should be taken to preserve
these constraints.

3.3.2 Generic Types

Container types (like sets, bags, queues, etc) are
more likely to be defined as generic types from
where specific ones might be derived. The next
example defines a generic DEQueue.

Type DEQueue�
BasedOn T ��� Any;

T PutLeft(T);
T PutRight(T);
T GetLeft();
T GetRight();
Integer Size();�

DEQueue can hold any kind of objects since it is
based on Any. Because of this it can also be used to
derive to any kind of DEQueue. The above IntDE-
Queue could be obtained by

Type IntDEQueue
DEQueue[Integer/T]

Deriving a new type from a generic one can be
done by the substitutionof a nuclear type by any sub-
type of it.

It should be noted that a generic is itself a com-
plete type. It can be used in any context a regular
type is since their nuclear types are always bound to
existing types. In the DEQueue example, T is bound
to Any by the T 	�� Any expression. Defining a type
as ordinary or as generic only depends on the con-
ceptual entity it models.

The derivation of a new type from a generic does
not force any type relationship between these types.
As with any other types they may be related by sub-
typing or simply unrelated.

3.3.3 Classes

Classes provide the implementations of the interfa-
ces declared in the types. The binding is made in the
class definition. The class declares the type or ty-
pes it implements. The following is the implemen-
tation of the IntDEQueue type. Notice that, in the
example, we do not bother to validate any methods
in exceptional conditions such as the full and empty
queues. This will be done in the next section using
concurrency control extensions.

Class CIntDEQueue Implements IntDEQueue�
Data IntArray contents;
Data Integer(CInteger) left, right, size;

CIntDEQueue(Integer qsize)�
contents = CIntArray(qsize);
size := qsize;
left := 0;
right := size - 1;�

Integer PutLeft(Integer elem)�
contents.Put(left,elem);
left := (left + 1) % size;
return elem;�

Integer PutRight(Integer elem)�
contents.Put(right,elem);
right := (right - 1 + size) % size;
return elem;�

Integer GetLeft()�
left := (left - 1 + size) % size;
return contents.Get(left);�

Integer GetRight()�
right := (right + 1) % size;
return contents.Get(right);�

Integer Size()�
return size;�

�

As IntDEQueue is a subtype of IntQueue its im-
plementation CIntDEQueue is also an implementa-
tion of IntQueue. This holds for any type. Any im-
plementation of a type is also an implementation of
any of its supertypes.

To show the independence of the inheritance me-
chanism from type relationships consider the next
example. Suppose a type IntStack (a stack of inte-
gers) defined as

Type IntStack�
Integer Push(Integer);
Integer Pop();
Integer Top();
Integer Size();�

which has no relation with IntDEQueue (nor with
IntQueue). However a possible implementation of
IntStack can be achieved by inheritance of the CInt-
DEQueue class as depicted next

Class CIntStack Implements IntStack�
Inherits CIntDEQueue Renames

PutLeft as Push, GetLeft as Pop;

CIntStack(Integer qsize)�
CIntDEQueue(qsize);�

Integer Top()�
var Integer(CInteger) i;
i := (left - 1 + size) % size;
return contents.Get(i);�

�

CIntStack provides an implementation to IntS-
tack. It inherits from CIntDEQueue, renames Pu-

tLeft and GetLeft to match the IntStack type and im-
plements (apart from the constructor) the Top me-
thod.

Finally, an implementation of a generic type may
be sketched. Implementing the DEQueue type is
like writing the CIntDEQueue class but now based
on the type Any such as:

Class CDEQueue Implements DEQueue�
BasedOn T � � Any;
Data Array contents;
Data Integer(CInteger) left, right, size;

�����

that is replacing the relevant Integer type occurren-
ces by T which is the nuclear type of the class.

For each type derived from the generic DEQueue
an implementation can be derived from this generic
class. As an example consider the following imple-
mentation for the IntDEQueue.

Class CIntDEQueue
CDEQueue[Integer/T]

An interesting point about substitution instead of
parameterization is that it is orthogonal to inheri-
tance. This allows the two mechanisms to be com-
posed, that is, both CDEQueue and CIntDEQueue
could be now inherited and extended.

4 Concurrency Control In BAL-
LOON

This section shows how the BALLOON type system
is used to document and apply concurrency control
policies. The IntQueue type will be enriched with
a new section, CC, where some activation clauses
and additional methods are defined. These methods
are only accessible in activation clauses that are de-
fined in the CC section of the type or in its subty-
pes. These activation clauses follow the format: De-
lay method-name Until predicate. The activation of
the method is delayed until the predicate evaluates
to true.

Type ConcIntQueue SubtypeOf IntQueue�
CC:
Integer MayPut();
Integer MayGet();
Bool AllowLeft();
Bool AllowRight();
Delay PutLeft Until (AllowLeft() && MayPut()

�
0);

Delay GetRight Until (AllowRight() && MayGet()
�

0);�

The two clauses specify in which circumstan-
ces should the operational methods PutLeft and Ge-
tRight be allowed to execute. As the Size method
returns a constant value that is fixed after instance
creation, there is no need for an activation clause.
These clauses introduce a predicate that uses the
operational and concurrency control methods defi-
ned in this type or in its supertypes.

Appearing in the type’s definition, the CC cons-
traints are meant to characterize the type’s allowed
concurrency. These constraints act, to some extent,
as a specification for all implementations of the type.
Although the concrete behaviour of the introduced
methods is unspecified, the Delay Until clauses res-
trict the set of implementations of the type. An
example of this will be given in section 4.1 after the
introduction of the ConcIntDEQueue type.

The newly introduced concurrency control me-
thods have their implementation in appropriate clas-
ses. These classes do not directly implement a type
as before, but are said to control operational ones.
Mixed through inheritance, an operational class and
its controller class yield a class that fully implements
the concurrent type. The encoding of the activation
clauses takes place in any class that implements a
concurrent type. This separation of operational and
concurrency control classes provides the ability of
their independent manipulation and reuse.

The example that follows presents an implemen-
tation of the CC methods in type IntQueue. In addi-
tion to the class syntax used above, the class CCInt-
Queue is able to define a wrapper that adds pre- and
post-actions to the operational methods which are
represented by an inner statement. The syntax is:
Wrapper method-name

�
pre-actions � Inner

�
pos-

actions � . It is worth to note that inner represents
only the operational methods for objects of this type.
In a subclass the wrapper is inherited and the inner
represents the heir’s own wrapper. This notion of the

inner construct is similar to that found in BETA [20]
inheritance mechanism.

These actions are in the scope of the class CCInt-
Queue definition, and so may only refer to instance
variables defined in that class (or in inherited) and to
the operational interface of the controlled class.

All concurrency control actions are executed with
mutual exclusion in each object. So, only the opera-
tional methods are allowed to run in parallel. This
also ensures that, if a method invocation success-
fully passes the activation clause, then the corres-
ponding pre-actions are finished before allowing the
evaluation of another invocation.

Class CCIntQueue Controls CIntQueue�
Data Integer(CInteger) mayput, mayget;
Data Bool(CBool) allowleft, allowright;

CCIntQueue()�
allowleft := true;
allowright := true;
mayput := Size();
mayget := 0;�

Integer MayPut()
�

return mayput;
�

Integer MayGet()
�

return mayget;
�

Bool AllowLeft()
�

return allowleft;
�

Bool AllowRight()
�

return allowright;
�

Wrapper PutLeft�
allowleft := false; mayput := mayput - 1;

�
Inner�

allowleft := true; mayget := mayget + 1;
�

Wrapper GetRight�
allowright := false; mayget := mayget - 1;

�
Inner�

allowright := true; mayput := mayput + 1;
�

�

With this scheme CIntQueue is regulated for intra
and inter-object concurrency. Operations that would
mutually interfere are made exclusive, whilst those
that are independent are allowed to run in parallel.
This behaviour was expressed by the use of the flags
allowleft and allowright. A new class that imple-
ments the concurrent type ConcIntQueue is built by
mixing the operational class CIntQueue and its con-
troller CCIntQueue as shown below

Class CConcIntQueue Implements ConcIntQueue�
Mix CIntQueue, CCIntQueue;�

The semantics of Mix is that of inheritance plus
the wrapping of operational methods.

The coordination of inter-object concurrency was
expressed in the type’s activation clauses and relied
on the current “putable” and “getable” number of

elements of the queue.
The next section shows how these mechanisms

are integrated with subtyping and subclassing.

4.1 Subtyping and Subclassing with Con-
currency Control

The concurrency control information for the type
IntDEQueue, subtype of IntQueue, may be defined
as follows

Type ConcIntDEQueue SubtypeOf IntDEQueue, ConcIntQueue�
CC:
Delay PutRight Until (AllowRight() && MayPut()

�
0);

Delay GetLeft Until (AllowLeft() && MayGet()
�

0);�

The class CCIntDEQueue is a possible implemen-
tation for the concurrency control of CIntDEQueue.

Class CCIntDEQueue Controls CIntDEQueue�
Inherits CCIntQueue;

Wrapper GetLeft�
allowleft := false; mayget := mayget - 1;

�
Inner�

allowleft := true; mayput := mayput + 1;
�

Wrapper PutRight�
allowright := false; mayput := mayput - 1;

�
Inner�

allowright := true; mayget := mayget + 1;
�

�

The use of class inheritance, in this case reusing
CCIntQueue, allowed the definition of concurrency
control for just two methods, the ones introduced on
the subtype IntDEQueue. Possible intra-object con-
currency interferences are dealt by excluding opera-
tions on the same side of the queue. This is aided
by the inter-object coordination that avoids the join
of the sides, this would happen if, for example, two
opposite get operations where allowed when there is
only one element in the queue. The activation clau-
ses and the modification of the mayput and mayget
variables on the wrapper actions ensures that this si-
tuation does not occur.

The way the activation clauses were written in the
ConcIntDEQueue type allows the concurrent execu-
tion of left and right methods. Recalling what have
been said earlier about the specification role of the
activation clauses, the reader should notice that im-
plementations of ConcIntDEQueue are constrained
by them. Only operational classes that do permit the

concurrent execution of left and right methods may
be used to implement this type. As a counter exam-
ple, an algorithm based on a global counter of ele-
ments that would be incremented by both put me-
thods and decremented by both get methods would
not correctly implement this ConcIntDEQueue type.

It became apparent, and results quite naturally,
that in most cases the pattern of class inheritance
for concurrency control mimics the subtype rela-
tionships. However there are some exceptions, as in
the type ConcIntStack.

Type ConcIntStack SubtypeOf IntStack�
CC:
Bool Allow();
Delay Push Until (Allow() && MayPush()

�
0);

Delay Pop Until (Allow() && MayPop()
�

0);
Delay Top Until (Allow() && MayPop()

�
0);�

Concurrency control is trivially implemented by
reusing CCIntDEQueue code.

Class CCStack Controls CIntStack�
Inherits CCIntDEQueue Renames

AllowLeft as Allow, MayPut as MayPush,
MayGet as MayPop;�

Finally, to what concerns generic types concur-
rency control, it could be easily shown that since the
concurrency control does not interfere with the ope-
rational interface of types, the control of derived ty-
pes can be exactly that of the generic type it was de-
rived of. The same happens for concurrency control
of generic implementations. As an example, the rea-
der may notice that the concurrency control of the
above IntDEQueue example would be the same of
the DEQueue generic type.

4.2 Inheritance Anomaly Examples

Although the implementation of ConcIntDEQueue
and ConcIntStack already shows the avoidance of
the inheritance anomaly, some additional examples
are required to show how the BALLOON approach
deals with the anomaly. The previous examples also
show that the addition of methods (such as Size) that
do not interfere with existent ones is trivial since
the default activation clause is: Delay method-name
Until (true).

The introduction of a method GetLeft2 (equiva-

lent to Pop2 �) will show how to cope with changes
of the abstract state of the object. Consider the fol-
lowing subtype of ConcIntDEQueue

Type ConcIntDEQueue2 SubtypeOf ConcIntDEQueue�
IntegerPair GetLeft2();

CC:
Delay GetLeft2 Until (AllowLeft() && MayGet()

�
1);�

and the controller class of the CIntDEQueue2
(which for space saving reasons is omitted) is

Class CCIntDEQueue2 Controls CIntDEQueue2�
Inherits CCIntDEQueue;

Wrapper GetLeft2�
allowleft := false; mayget := mayget - 2;

�
Inner�

allowleft := true; mayput := mayput + 2;
�

�

which delivers a concise description of the synchro-
nization scheme for the new type and reuse all the
previous code.

Until now, there was no need to redefine activa-
tion clauses or extend actions. The definition of a
method GGetRight or GGetLeft that only performs
a get operation if used immediately after a put opera-
tion would require the recording of additional infor-
mation to express history dependencies. The same
happens with a Stat method that may only work af-
ter 100 invocations.

The following implementation of Stat in a subtype
of ConcIntDEQueue shows how this is achieved in
BALLOON. From this example its straightforward to
infer how to implement GGet operations.

Type ConcIntDEQueueS SubtypeOf ConcIntDEQueue�
Integer Stat();

CC:
Integer Calls();
Delay Stat Until (Calls()

�
100);�

�
If we had opted to extend the type Stack the description

would be cluttered by irrelevant renaming issues.

Class CCIntDEQueueS Controls CIntDEQueueS�
Inherits CCIntDEQueue;
Data Integer(CInteger) calls;

CCIntDEQueueS()�
calls := 0;�

Integer Calls()
�

return calls;
�

Wrapper PutLeft
� �

Inner
�

calls := calls + 1;
�

Wrapper GetRight
� �

Inner
�

calls := calls + 1;
�

Wrapper PutRight
� �

Inner
�

calls := calls + 1;
�

Wrapper GetLeft
� �

Inner
�

calls := calls + 1;
�

�

Consider, in this example, the wrapper construct
of method PutLeft. Here Inner refers to the PutLeft
method only. This whole wrapper constitutes now
the Inner of the corresponding wrapper in the inhe-
rited controller class. That is, it corresponds to the
Inner of the PutLeft wrapper defined in CCIntDE-
Queue.

The expansion in this case is as follows:

�
�������	�
���������������� �����������

�
allowleft := false; mayput := mayput + 1;

����������
�
������������������ �����
�

� �������� ���
����������!��������" �# � � �$��%&�'�)(+*'����,-�.(/��(/�����0��������!�����������
�

calls := calls + 1;
�

� �
�

allowleft := true; mayget := mayget +1;
�

These rules provide the ability for concatenation
of pre- and pos-actions through the hierarchy of con-
trol classes.

A difficult case of inheritance anomaly is brought
by the introduction of reusable generic locking me-
chanisms, generally provided in mixin classes [7].
Mixins are specially designed classes so that when
mixed with other classes (usually through multiple
inheritance) provide some added functionality.

The type ConcIntDEQueueL introduces three ad-
ditional methods named AllLock, WriteLock and
UnLock. These methods are intended to, respec-
tively, lock all the methods, lock the methods that
change the object state and unlock all of the pre-
viously locked methods. This type also shows how
to redefine (in this case extend) previously defined
activation clauses.

Type ConcIntDEQueueL SubtypeOf ConcIntDEQueue�
AllLock();
WriteLock();
UnLock();

CC:
Bool AllowAll();
Bool AllowRead();
Delay PutLeft Until (SuperClause && AllowAll());
Delay GetRight Until (SuperClause && AllowAll());
Delay PutRight Until (SuperClause && AllowAll());
Delay GetLeft Until (SuperClause && AllowAll());
Delay Size Until (SuperClause && AllowRead());�

Consider the next two classes. They are a opera-
tional class and a control class that act as simple con-
tainers of generic code.

Class CLock�
AllLock()

� �
WriteLock()

� �
UnLock()

� �
�

Class CCLock Controls CLock�
Data Bool(CBool) allowall, allowread;

CCLock()�
allowall := true;
allowread := true;�

Bool AllowAll()
�

return allowall;
�

Bool AllowRead()
�

return allowread;
�

Wrapper AllLock
�

allowread := allowall := false;
�

Inner
� �

Wrapper WriteLock
�

allowall := false;
�

Inner
� �

Wrapper UnLock
�

allowread := allowall := true;
�

Inner
� �

�

These classes can now be inherited in order to im-
plement the ConcIntDEQueueL type.

Class CConcIntDEQueueL Implements ConcIntDEQueueL�
Mix CCLock, CLock, CIntDEQueue;�

With this scheme the introduction of locks in a
given type only requires the extension of the exis-
tent activation clauses. The newly created type Con-
cIntDEQueueL clearly expresses in its signature the
new invocation constraints, without being cluttered
with implementation details. If necessary, some ac-
tivation clauses can be defined for methods AllLock,
WriteLock and UnLock so that, for example, Un-

Lock is only allowed after a AllLock or WriteLock
invocation.

5 Related Work

The separation of types from classes has already
been proposed in object-oriented languages [2, 29].
This is mainly due to the observation that the sub-
type relation does not always follow inheritance
[11]. America introduced these notions in a lan-
guage with concurrency concerns [2] from where
this paper in many aspects has its beginnings. La-
tely, several researchers [23, 21] point this separa-
tion as a promising issue in treating the inheritance
anomaly in concurrent object-oriented languages.

In what concerns concurrency control the use of
accept sets has been a common factor in most of
the recent proposals for solving the inheritance ano-
maly. The amount of auxiliary mechanisms for the
definition, extension and sometimes dynamic com-
putation of accept sets varied considerably along
these proposals. In particular, ABCLONAP1000
[21] introduced multiple mechanisms for the com-
putation of accept sets showing how they were ap-
plicable to the inheritance anomaly. Recently the
DOOJI model [30] studied the extension of some
ABCL mechanisms for the support of intra-object
concurrency. Coordination of intra-object concur-
rency relied on synchronization counters also used
on DRAGOON [28] and SINA [6].

We believe that the default computation of syn-
chronization counters can be avoided since, when
needed, they are easily programmable in pre- and
pos-actions and then used on BALLOON activation
clauses. This reduces to ”only when necessary” an
otherwise fixed overhead.

BALLOON also avoids the use of accept sets since
they require in some cases, such as when adding a
Get2 operation, complex manipulations of the inhe-
rited sets (see [21, 30]). These manipulations and re-
namings are often difficult to track along the inheri-
tance chain. The use of extensible activation clau-
ses together with extensible wrapper actions provi-
des, in most cases, a simpler and more self contained
solution.

The separation of concurrency and operational
code, mandatory in BALLOON, has been (in diffe-

rent degrees) previously defended on several fra-
meworks [18, 28, 22, 4].

6 Conclusions

The main contribution of this paper is the introduc-
tion of a concurrency control model that takes ad-
vantage of the language distinction between types
and classes to solve elegantly the typical problems of
the inheritance anomaly. In particular, components
that were designed without any concurrency con-
cerns can be easily extended to fit in concurrent en-
vironments. This is achieved by annotating the com-
ponent’s type and designing appropriate controller
classes for its coordination. This coordination res-
pects intra- and inter-concurrency control.

The ability to define concurrency control for ge-
neric types introduces a new, orthogonal, reuse me-
chanism. Due to the modularity inherent to the mo-
del, concurrency control does not interfere with en-
capsulation and inheritance.

A similar concurrency control model (section 2.2)
has already been tested as an extension of the C++
language, producing code for a shared memory
multi-processor architecture with kernel-supported
threads [5, 4]. This experience, although in a lan-
guage with no separation of hierarquies, raised im-
portant implementation issues that have influenced
the design of the BALLOON model.

A BALLOON compiler comprising the full set of
language features described in this paper is under de-
velopment.

Some issues are still opened and under current re-
search. One is the use of the inner construct for the
composition of pre- and post-actions. Since the in-
ner actions are nested, there is no easy way to cancel
the inherited post-actions. However, such an exam-
ple is rather unlikely in that it would also probably
entail the redefinition of activations clauses. In this
case, one would advocate a new control class.

7 Acknowledgments

We thank Paulo Sérgio Almeida for continous feed-
back on early drafts of this paper. We also thank
Laurent Thomas, Cristina Lopes, Birger Andersen,
Rachid Guerraoui, Lodewijk Bergmans and Eric Jul

for their useful comments. And of course, to the
other members of the BALLOON development team,
António Coutinho and Victor Fonte for their efforts
in bringing BALLOON to life.

References

[1] Paulo Sérgio Almeida, Carlos Baquero, António Couti-
nho, Victor Fonte, Francisco Moura, and Rui Oliveira.
The Balloon programming language: Specification and
Rationale. Technical report, Univ. Minho, 1994. In Pre-
paration.

[2] Pierre America. A parallel object-oriented language
with inheritance and subtyping. In ECOOP/OOPSLA’90.
Springer-Verlag, 1990.

[3] R. Balter, J. Bernadat, D. Decouchant, A. Duda, A. Freys-
sinet, S. Krakowiak, M. Meysembourg, P. Le Dot,
H. Nguyen Van, E. Paire, M. Riveill, C. Roisin, X. Rous-
set de Pina, R. Scioville, and Vandôme. Architecture and
implementation of Guide, an object-oriented distributed
system. Computing Systems, 4(1):31–67, 1991.

[4] C. Baquero and F. Moura. Concurrency annotations in
C++. ACM SigPlan Notices, 29(7):61–67, July 1994.

[5] Carlos Baquero. Inheritance of synchronization code on
object-oriented concurrent programming. Master’s the-
sis, University of Minho, DI, 4700 Braga, 1994. In Por-
tuguese.

[6] Lodewijk Bergmans. Composing Concurrent objects.
(ph. d.) dissertation, University of Twente, June 1994.
ISBN 90-9007359-0.

[7] Gilad Bracha and William Cook. Mixin-based inheri-
tance. In ECOOP/OOPSLA ’90 Proceedings, pages 303–
311. ACM, October 1990.

[8] P. Buhr, G. Ditchfield, R. Stroobosscher, and B. Youn-
ger. � C++: Concurrency in the object-oriented language
C++. Software-Practice and Experience, 22(2):137–172,
February 1992.

[9] Luca Cardelli. Semantics of multiple inheritance. In
D. MacQueen G. Kahn and Gordon Plotkin, editors, Se-
mantics of Data Types, volume 173 of LNCS, pages 51–
68. Springer-Verlag (LNCS 173), 1984.

[10] Denis Caromel. Toward a method of object-oriented
concurrent programming. Comunications of the ACM,
36(9):90–102, September 1993.

[11] William Cook, Walter Hill, and Peter Canning. Inheri-
tance is not subtyping. In Proceedings POPL ’90, San
Francisco, jan 1990.

[12] G. Goos and J. Hartmanis. The Programming Language
Ada Reference Manual. LNCS 155. Springer-Verlag,
1983.

[13] C.A.R. Hoare. Communicating sequencial processes.
Communications of the ACM, 21(8):666–477, 1978.

[14] Dennis G. Kafura and R. Greg Lavender. Concurrent
object-oriented languagesand the inheritance anomaly. In
ISIPCALA’93, pages 183,213, 1993.

[15] Dennis G. Kafura and Keung Hae Lee. Inheritance in
actor based concurrent object-oriented languages. In
ECOOP’89 Proceedings, pages 131–145. Cambridge
University Press, 1989.

[16] Barbara Liskov. Data abstraction and hierarchy. SIG-
PLAN Notices, 23(5):17, may 1988.

[17] Klaus-Peter Lohr. Concurrency annotations for reusable
software. Comunications of the ACM, 36(9):81–89, Sep-
tember 1993.

[18] Cristina Lopes and Karl Lieberherr. Abstracting process-
to-function relations in concurrent object-oriented appli-
cations. In M. Tokoro and R. Pareschi, editors, Procee-
dings of ECOOP’94, pages 81–99. Springer-Verlag, July
1994.

[19] Svend Frølund. Inheritance of synchronization cons-
traints in concurrent object-oriented programming lan-
guages. In ECOOP ’92 Proceedings, pages 185–196,
1304 W. Springfield Avenue, Urbana, IL 61801, USA,
1992. Department of Computer Science, University of Il-
linois at Urbana-Champaign, Springer-Verlag.

[20] Ole Lehrmann Madsen, Birger Møller-Pedersen, and
Kristen Nygaard. Object-Oriented Programming in the
Beta Programming Language. Addison Wesley, 1993.

[21] Satoshi Matsuoka and Akinori Yonezawa. Analysis of
inheritance anomaly in object-oriented concurrent pro-
gramming languages. Research Directions in Concurrent
Object Oriented Programming, MIT Press, 1993.

[22] Christian Neusius. Synchronizing actions. In ECOOP ’91
Proceedings, pages 118–132. Springer Verlag, 1991.

[23] Oscar Nierstrasz. Composing active objects – the next
700 concurrent object-oriented languages. In G. Agha,
P. Wegner, and A. Yonezawa, editors, Research Direc-
tions in Concurrent Object Oriented Programming. MIT
Press, 1993.

[24] Rui Carlos Oliveira. Subtypes and subclasses in the
object-oriented paradigm. Master’s thesis, Dep. Informa-
tica - Universidade do Minho, 1994. In Portuguese.

[25] Jens Palsberg and Michael Schwartzbach. Three discus-
sions on object-oriented typing. ACM Sigplan OOPS
Messenger, 3(2):31–38, 1992. Summary of ECOOP’91
Workshop on “Types, Inheritance and Assignments.

[26] Jens Palsberg and Michael I. Schwartzbach. Type subs-
titution for object-oriented programming. In Procee-
dings OOPSLA/ECOOP ’90, ACM SIGPLAN Notices, pa-
ges 151–160, October 1990. Published as Proceedings
OOPSLA/ECOOP ’90, ACM SIGPLAN Notices, volume
25, number 10.

[27] Michael Papathomas. Language Design Rationale and
Semantic Framework for Concurrent Object-Oriented
Programming. PhD thesis, Dept. of Computer Science,
University og Geneva, 1992.

[28] S. Crespi Reghizzi, G. Galli de Paratesi, and S. Geno-
lini. Definition of reusable concurrent software com-
ponents. In ECOOP ’91 Proceedings, pages 148–166.
Springer Verlag, 1991.

[29] Clemens Szyperski, Stephen Omohundro, and Stephan
Murer. Engineering a programming language: The type
and class system of Sather. In Jurg Gutknecht, editor,
Programming Languages and System Architectures, pa-
ges 208–227. Springer Verlag, Lecture Notes in Computer
Science 782, November 1993. Available as technical re-
port ICSI TR-93-064.

[30] Laurent Thomas. Inheritance anomaly in true concurrent
object oriented languages: A proposal. In IEEE TEN-
CON’94, pages 541–545, August 1994.

[31] Chris Tomlinson and Vineet Singh. Inheritance and syn-
chronization with enabled-sets. In OOPSLA ’89 Procee-
dings, pages 103–112, 3500 West Balcones Center Drive,
Austin, Texa 78759, October 1989. MCC, ACM.

[32] Peter Wegner and Stanley Zdonik. Inheritance as an in-
cremental modification mechanism or what like is and
isn’t like. In Proceedings of ECOOP’88, pages 55–77.
Springer-Verlag, 1988.

