
ES-SQL: Visually Querying Spreadsheets

Jácome Cunha∗†, João Paulo Fernandes∗‡, Jorge Mendes∗, Rui Pereira∗, and João Saraiva∗
∗ HASLab/INESC TEC & Universidade do Minho, Portugal
† CIICESI, ESTGF, Instituto Politécnico do Porto, Portugal
‡ RELEASE, Universidade da Beira Interior, Portugal

{jacome,jpaulo,jorgemendes,ruipereira,jas}@di.uminho.pt

Abstract—This paper presents ES-SQL, an embedded tool for
visually constructing queries over spreadsheets. This tool provides
an expressive query environment which has knowledge on the
business logic of spreadsheets, and by this knowledge it assists
the user in defining the intended queries.

I. INTRODUCTION

Spreadsheets are one of the most successful and widely
used software systems targeted specially at end users. The uses
of spreadsheets range from simple single user applications to
large business oriented decision making calculations.

Although conceived to be simple, easy, visual, and human-
friendly, the concrete uses of spreadsheets in the real world
tend to evolve into large and complex data-centric software
systems. In this scenario spreadsheets often grow bigger than
thousands of lines per thousands of columns and it becomes
difficult to extract, query, and reason about their data.

To simplify the spreadsheet querying process, we have pro-
posed an Embedded Spreadsheet-Structured Query Language
(ES-SQL) approach for end users [1], which relies on our
previous work on model-driven spreadsheets where a concise
model abstracts the structure and logic of a potentially large
spreadsheet [2]. This abstraction allows queries to be expressed
by names, instead of column letters, referencing entities.

ES-SQL, which itself has been built on top of MDSheet [2],
provides the powerful and expressive information extraction
setting of [3], [4], [5], while maintaining a simple to read,
write, and understand querying system, all in the user’s spread-
sheet. Moreover, the visual query building environment is
synchronized with the spreadsheet model, maintaining full con-
sistency, after model/instance evolution, between these two.

II. USING ES-SQL

Before we present ES-SQL, let us introduce a running
example to use throughout the paper. Figure 1 shows a spread-
sheet model written in the ClassSheet language [6] containing
information about the Budget of a research team.

Fig. 1. A Budget ClassSheet model

The first, and fourth author were funded by FCT: SFRH/BPD/73358/2010,
BI3-2013 PTDC/EIA-CCO/116796/2010 UMINHO, respectively.

This Budget model contains a Category class (with a
Name attribute), and a Year class (with a Year attribute),
expanding vertically and horizontally, respectively (expressed
by the ellipsis). An instance of each class gives us information
on the Quantity, the Cost, and the Total, of a Category in a
given Year.

Using ES-SQL, users can write queries in their familiar
spreadsheet environment, without the need of learning textual
(SQL-like) notation. This is achieved by guiding users in query
construction, and is achieved using drop-down boxes to select
attributes, filter conditions, and other querying conditions. This
eliminates both syntactic and semantic errors.

Let us now address the following question under ES-SQL:

In a budget instance of the model in Figure 1, What was
the total per year, in decreasing order, from 2010 onwards?

In ES-SQL, we display all the information from our orig-
inal model-driven query language in a human-friendly way:
along with the ClassSheet model and instance, the ES-SQL
query is also shown in its own worksheet. In Figure 2 we show
how to construct a query to answer our previous question.

Fig. 2. ES-SQL representing the answer to the previous question

The steps to construct this embedded query are as follows:

1) Using the drop-down boxes under the Selected column
(B), click on cell B4 and B10 to select the Check Mark,
selecting both year and total to be used, respectively.

2) Under the Formula column, click on cell C10 and choose
Sum from the drop-down box list.

3) Click on the “+” button to add a new condition row.
4) Select the Year.year attribute, and >= operation using the

drop-down boxes in the new condition row. Afterwards,
fill in 2010 in the value cell.

5) Click “Run”.

III. MAPPING ES-SQL TO PLAIN SQL

This section presents the graphical to textual query trans-
lation in the ES-SQL system. Looking at Table I we can see

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634207?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


normalization & 

model inference

denormalization

=query(A1:E58; ”SELECT A, sum(E) WHERE A >= 2010”) GROUP BY A ORDER BY sum(E) DESC 

translation to 
Google QUERY function

conforms to synchronized

ES-SQL translation 
to QuerySheet

Google QUERY execution

SELECT Year, sum(Total)
WHERE Year >= 2010
GROUP BY Year
ORDER BY sum(Total)

instance

model

query

conforms to synchronized

instance

model

query

Fig. 3. Architecture of the embedded model-driven query system

the visual query on the left, with its translated textual SQL
equivalent on the right. Looking at the right column, we can
see bold text, which represents what part of the SQL clause
we are generating, and italic text, representing the pseudocode
for that translation. The remaining text is part of the query
the system is currently translating. Our system automatically
calculates where a group by is needed, a transformation which
is applied to the textual translation before running the query.

IV. ARCHITECTURE OF ES-SQL

ES-SQL builds upon QuerySheet [4], and we follow here
a similar approach to the one we followed in the past.
Indeed, we translate the embedded language to our model-
driven QuerySheet language, while the rest of the process
conceptually remains the same. When the user clicks “Run”,
the visual language is translated to our model-driven language.
Afterwards, the data (spreadsheet instance) is automatically
denormalized, and using this data alongside the model-driven
query, we translate it to Google’s QUERY function using
advanced compiler techniques (generalized top-down parsing).
Finally, both the denormalized data and Google QUERY
function are sent to be executed. The results are returned with
a corresponding model/instance and a new embedded query
sheet. This architecture can be seen in Figure 3.

REFERENCES

[1] J. Cunha, J. P. Fernandes, J. Mendes, R. Pereira, and J. Saraiva,
“Embedding model-driven spreadsheet queries in spreadsheet systems,”
in VL/HCC’14. IEEE, 2014, to appear.

[2] J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva, “MDSheet:
A framework for model-driven spreadsheet engineering,” in ICSE’12.
IEEE Press, 2012, pp. 1395–1398.

[3] J. Cunha, J. P. Fernandes, J. Mendes, R. Pereira, and J. Saraiva,
“Querying model-driven spreadsheets,” in VL/HCC’13. IEEE, 2013,
pp. 83–86.

[4] O. Belo, J. Cunha, J. P. Fernandes, J. Mendes, R. Pereira, and J. Saraiva,
“Querysheet: A bidirectional query environment for model-driven spread-
sheets,” in VL/HCC’13. IEEE, 2013, pp. 199–200.

[5] R. Pereira, “Querying for model-driven spreadsheets,” Master’s thesis,
University of Minho, 2013.

TABLE I. MAPPING THE EMBEDDED QUERY TO STANDARD SQL

Graphical Textual

SELECT Class.attr2, ...,
Class.attrN

SELECT
SWITCH C3
Sum: Sum(Class.attr1)
Count:Count(Class.attr1)
Avg: Avg(Class.attr1)
Min: Min(Class.attr1)
Max: Max(Class.attr1)

SELECT ...
if(D4 == Z↘ A)
ORDER BY Class.attr2 DESC

elsif (D4 == A↘Z)
ORDER BY Class.attr2 ASC

SELECT ...
WHERE
SWITCH C3
=: Class.attr2 = value
>: Class.attr2 > value
>=: Class.attr2 >= value
<: Class.attr2 < value
<=: Class.attr2 <= value
!=: Class.attr2 != value

if (G1 == X)
SELECT DISTINCT ...

else
SELECT ...

SELECT ...
if (G5 > 0)
LIMIT G5

[6] G. Engels and M. Erwig, “ClassSheets: automatic generation of spread-
sheet applications from object-oriented specifications,” in ASE’2005.
ACM, 2005, pp. 124–133.


