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ABSTRACT
The Query/View/Transformation Relations (QVT-R) stan-
dard for bidirectional model transformation is notorious for
its underspecified semantics. When restricted to transforma-
tions between pairs of models, most of the ambiguities and
omissions have been addressed in recent work. Neverthe-
less, the application of the QVT-R language is not restricted
to that scenario, and similar issues remain unexplored for
the multidirectional case (maintaining consistency between
more than two models), that has been overlooked so far.

In this paper we first discuss ambiguities and omissions in
the QVT-R standard concerning the mutidirectional trans-
formation scenario, and then propose a simple extension
and formalization of the checking and enforcement semantics
that clarifies some of them. We also discuss how such pro-
posal could be implemented in our Echo bidirectional model
transformation tool. Ours is just a small step towards mak-
ing QVT-R a viable language for bidirectional transforma-
tion in realistic applications, and a considerable amount of
basic research is still needed to fully accomplish that goal.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques

1. INTRODUCTION
In model-driven engineering (MDE), models are the main

development artifact. Typically, multiple models may co-
exist in the same environment, to represent different views
of the overall system or similar components at different lev-
els of abstraction, and all these models must ideally be kept
consistent with each other. In the past years, extensive work
on bidirectional model transformations [3] has been devoted
to the particular purpose of maintaining the consistency of
two models. One of the most popular approaches in MDE is
the OMG’s QVT standard [9], and in particular the QVT-R
language, that proposes describing a bidirectional transfor-
mation as a declarative relation between two meta-models.
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Figure 1: Configuration (CF) and feature model (FM).

The standard prescribes two modes to interpret a QVT-
R specification: checkonly mode tests the consistency be-
tween particular models and enforce mode runs a transfor-
mation in a particular direction to repair inconsistent mod-
els. Thus, a QVT-R transformation between two meta-
models can be understood in the abstract framework of
constraint maintainers [8]: a specification denotes a con-
sistency relation R ⊆ A × B , from which a forward trans-

formation
−→
R : A × B → B and a backward transformation←−

R : A× B → A, that modify one of the elements to restore
consistency, are inferred. In this paper we will be dealing
with multiple target models, so these will instead be denoted

by
−→
R A :B → A and

−→
R B :A→ B , the subscript identifier de-

noting the direction of the transformation and the fact that
it retrieves information from the original target models.

Acceptance and development of effective tool support for
the QVT-R standard has been slow, possibly due to am-
biguities in its checking and enforcement semantics. For
the bidirectional scenario (maintaing consistency between
two models), most of the issues have been clarified in recent
work [10, 1] and implementations with precise semantics al-
ready exist, namely our own Echo tool [6]. Nonetheless, the
bidirectional scenario is not sufficient to tackle some appli-
cations. An arbitrary number of models may coexist in the
same model-driven environment, and their complex interre-
lationship may not be decomposable into a set of bidirec-
tional relationships to be maintained separately.

As an example, consider the problem of keeping the con-
sistency between a feature model and a set of valid configura-
tions. For the sake of simplicity, assume that feature models
FM consist of named features, that may or not be mandatory,
and configurations CF are simply a set of selected features;
the respective meta-models are depicted in Figure 1.

The relationship F ⊆ FM × CFk between a feature model
and k configurations can be decomposed into two parts F =
MF ∩ OF : relation MF ⊆ FM× CFk expresses that manda-
tory features match exactly the set of features appearing in
every CF; and relation OF ⊆ FM× CFk expresses that the FM
contains at least the union of all selected features. Note that
due to the intention of having features present in all CFs set
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as mandatory in the FM, relation MF cannot be decomposed
into k bidirectional relations between the FM and each CF.

This kind of multidirectional scenario is already informally
foreseen in the QVT-R standard, that admits an arbitrary
number of domains in a QVT-R relation. However, the pro-
posed checking semantics are too inflexible and only able to
represent a restricted subset of consistency relations. For in-
stance, none of the above relations can be specified using the
standard checking semantics. Moreover, the standard hints
at an enforcement semantics with very limited applicability.
Namely, from a consistency relation such as F , the standard
only prescribes the derivation of two transformations:

•
−→
F FM :CFk → FM, for propagating updates to the config-
urations back to the feature model;

•
−→
F i

CF : FM× CFk−1 → CF for any i ∈ 0..k, for propagat-
ing updates to the feature model and the remaining
configurations into a specific target configuration.

In the multidirectional scenario this is a very restrictive view
of the enforcement semantics, as the user may wish to restore
consistency in many ways depending on the context, leading
to different update propagation transformations. Consider,
e.g., the following interesting and alternative instantiations:

•
−→
F CFk : FM → CFk . This would allow updates to the
feature model to be propagated to more than one con-
figuration. For example, if a feature is changed to
mandatory it must be selected in all configurations;
this simple update could not be handled by the stan-
dard transformations, since full consistency could not
be restored by a single update translation.

•
−→
F i

FM×CFk−1 : CF → FM × CFk−1 for any i ∈ 0..k. This
would provide more flexibility in the propagation of
updates to a configuration, as all the remaining arti-
facts are allowed to change. For example, if name of a
feature is changed, the natural way to recover consis-
tency is to change the name of that feature in all the
remaining configurations and in the feature model.

The main goal of this paper is to start shedding some light
on this currently unexplored multidirectional scenario. In
particular, we explore the applicability of QVT-R for spec-
ifying multidirectional model transformations and discuss
some semantic issues that arise in this setting. To over-
come its current limitations, we propose a simple extension
that enables the specification of interesting multidirectional
transformations, and discuss how to infer different kinds of
consistency-restoring transformations from the same multi-
directional specification. Finally, we show how Echo [7], a
tool supporting QVT-R bidirectional transformations, could
be easily adapted to accommodate such extensions.

2. QVT-R CHECKING SEMANTICS
Typical model transformation languages (like QVT-R [9]

and ATL [5]) provide mechanisms that allow reasoning about
transformations in a structured way, rather than simply
specifying arbitrary constraints over the models in some gen-
eral constraint language (like OCL). As evidence, both these
languages rely on domain patterns, controlling the elements
over which a transformation is applied, while QVT-R sup-
ports additional pre- and post-conditions. A QVT-R pro-
gram is defined as a set of relations in the following syntax.

[top] relation R {
[variable declarations]
domain m1 a1 : A1 { π1 }
. . .
domain mn an : An { πn }
[when { ψ }] [where { φ }] }

In this notation, πi denotes a domain pattern over an ele-
ment ai of model mi (for i ∈ 1..n), and ψ and φ are arbi-
trary pre- and post-conditions. According to the standard,
testing the consistency specified by top relations consists of
running n directional tests (denoted by the subscript meta-
model identifier), each validating one of the models, as:

R (m1 : M1, ...,mn : Mn) ≡ ∧i∈1..n RMi (m1, ...,mn)

For each of these RMi relations, the idea is that if ψ holds,
then for all aj elements such that πj holds, for j 6= i, there
must exist an element ai such that πi and φ hold. For a
non-top relation, its constraints must hold only when called
by other relations. In the bidirectional case, we end up with:

RM1 (m1 : M1,m2 : M2) ≡
∀ xs | ψM1 ∧ πM2 ⇒ (∃ ys | πM1 ∧ φM1)
where xs = fv(ψ ∧ πM2), ys = (fv(πM1 ∧ φ))− xs

RM2 (m1 : M1,m2 : M2) ≡
∀ xs | ψM2 ∧ πM1 ⇒ (∃ ys | πM2 ∧ φM2)
where xs = fv(ψ ∧ πM1), ys = (fv(πM2 ∧ φ))− xs

This checking semantics has a close correspondence to the
enforcement semantics: roughly, we just need to replace ex-
istential quantifiers for generation procedures [9]. Relations
may call other relations in their pre- and post-conditions,
which are also run in the appropriate direction (hence the
identifier on ψ and φ denoting the required direction).

2.1 Issues with the Multidirectional Scenario
Back to our running example from Section 1, consider

that we have a pair of configurations (k = 2). How can the
MF consistency relation be specified in QVT-R? As a first
attempt, let us consider the following specification.

top relation MF { n : String;
domain cf1 s1 : Feature { name = n }
domain cf2 s2 : Feature { name = n }
domain fm f : Feature { name = n,

mandatory = true } }

The free variable n relates selected features in each configu-
ration with mandatory features in the feature model, result-
ing the consistency relation:

MF (cf 1 : CF1, cf 2 : CF2, fm : FM) ≡
MF FM (cf 1, cf 2, fm) ∧
MF CF1 (cf 1, cf 2, fm) ∧MF CF2 (cf 1, cf 2, fm)

Each of these directional tests is then concretized as:

MF FM (cf 1 : CF, cf 2 : CF, fm : FM) ≡
∀ n : String, s1 : Featurecf 1 , s2 : Featurecf 2 |

n = s1.name ∧ n = s2.name⇒
(∃ f : Featurefm | n = f .name ∧ f ∈ mandatory)

MF CF1 (cf 1 : CF, cf 2 : CF, fm : FM) ≡
∀ n : String, f : Featurefm , s2 : Featurecf 2 |

n = s1.name ∧ n = f .name ∧ f ∈ mandatory⇒
(∃ s1 : Featurecf 1 | n = s1.name)

MF CF2 (cf 1 : CF, cf 2 : CF, fm : FM) ≡ ...



But let us concretely analyze the meaning of these pred-
icates. MF FM expresses part of the intended behavior — if
the two configurations have the same selected feature then
such feature is mandatory. It can be rephrased as:

MF FM (cf 1 : CF, cf 2 : CF, fm : FM) ≡
Featurecf 1 .name ∩ Featurecf 2 .name ⊆

(Featurefm ∩ mandatory).name

However, the reverse implication

MF CF1×CF2 (cf 1 : CF, cf 2 : CF, fm : FM) ≡
(Featurefm ∩ mandatory).name ⊆
Featurecf 1 .name ∩ Featurecf 2 .name

is not entailed by MF CF1 and MF CF2 . Looking at MF CF1 , the
selection of the s1 feature depends both on f and s2, thus, if
there are no selected features in cf2, MF CF1 will be trivially
true due to the empty range in the universal quantification.
This problem persists whatever the domain patterns (and
pre- or post-conditions), and the intended specification for
MF cannot be realized by any QVT-R relation (with the
standard semantics) between features in the three models.

This problem could be easily solved if we could control
the extent of the universal quantifications in the semantics
of MF CF1 and MF CF2 , namely to range only over the feature
model and ignore the remaining configurations.

MF CF1 (cf 1 : CF, cf 2 : CF, fm : FM) ≡
∀ n : String, f : Featurefm |

n = f .name ∧ f ∈ mandatory⇒
(∃ s1 : Featurecf 1 | n = s1.name)

MF CF2 (cf 1 : CF, cf 2 : CF, fm : FM) ≡
∀ n : String, f : Featurefm |

n = f .name ∧ f ∈ mandatory⇒
(∃ s2 : Featurecf 2 | n = s2.name)

The conjunction of these predicates entails the missing part
of the desired MF specification, and hints at a possible ex-
tension to the standard checking semantics that largely im-
proves its expressiveness, as described in the next section.

Although our example could alternatively be interpreted
as a bidirectional transformation between a feature model FM
and a tuple of configurations CFk , in general the n models
may be of different nature. Moreover, the standard checking
semantics could not be reproduced under such view.

2.2 Extending the Standard Semantics
As the previous section makes clear, standard QVT-R re-

lations are not suitable for expressing many transformations
of interest, namely those where relationships are not sym-
metric. In fact, this is already a problem in the bidirectional
setting (for example, how to express a plain subset relation-
ship?), but is aggravated in the multidirectional setting due
to the explosion of possible dependencies between domains.
In this paper, we propose precisely to extend QVT-R with
a language of dependencies between domains in order to ex-
press the desired directionality of the checking semantics.

Let dom R denote the set of meta-model identifiers M1,
...,Mn in a relation R ⊆ M1 × ... ×Mn . A checking depen-
dency S → T for R, where S ⊆ dom R is a set of identifiers
and T ∈ dom R a single identifier (with T 6∈ S), states that
the model conforming to T depends on all the models con-
forming to the meta-models in S . Formally, the semantics
of a rule R according to a dependency S → T , denoted by
RS→T , prescribes that R should be checked by quantifying

universally over all the domains in S and, when the respec-
tive domain patterns and pre-condition hold, demanding an
element satisfying the respective domain pattern and post-
condition to exist in the T domain. The set of checking
dependencies attached to a relation R will be denoted by R.
The semantics of a top relation R is now the conjunction of
all directional checks ∧d∈R Rd (m1, ...,mn).

For example, to obtain the desired specification of the
MF relation, it suffices to attach to the above QVT-R spec-
ification the dependencies MF ≡ {CF1 CF2 → FM, FM →
CF1, FM→ CF2}. This extension is conservative, in the sense
that the standard semantics can still be specified by setting:

R ≡
⋃

i∈{0..n } (dom R \ Mi → Mi)

The OF relation, stating that the union of selected fea-
tures should be included in the set of all available features

OF FM (cf 1 : CF, cf 2 : CF, fm : FM) ≡
Featurecf 1 .name ∪ Featurecf 2 .name ⊆ Featurefm .name

can now be represented by the QVT-R relation

top relation OF { n : String;
domain cf1 s1 : Feature { name = n }
domain cf2 s2 : Feature { name = n }
domain fm f : Feature { name = n } }

associated with the checking dependencies OF ≡ {CF1 →
FM, CF2 → FM}. Of course, this extension also improves the
expressiveness in the bidirectional setting, allowing for ex-
ample to specify a subset constraint between two domains
by just attaching one dependency between them. Note that,
at this point, we are just disregarding the dependencies im-
plied by the QVT-R standard. Expressing our dependency
would require some sort of extended QVT-R syntax.

Although at first sight this extension may seem too con-
servative, the fact is that from these simple dependencies
more complex ones can be built. In particular, multiple
model dependencies can be attained through the entailment
{M1 → M2,M1 → M3} ` {M1 → M2 M3} (thus resulting
in the expected MF CF1×CF2) while dependencies over unions
of models can be attained through {M1 → M3,M2 → M3} `
{M1 | M2 → M3} (from which OF FM arises).

2.3 Relation Invocations
As in the bidirectional scenario, multidirectional relation

calls must preserve the direction of the caller. However, the
QVT-R syntax does not guarantee that every relation in a
specification can be run in the same direction, e.g., nothing
prevents a relation R ⊆ CFk ×FM running in the FM direction
from calling another relation S ⊆ CFk , which has no FM
direction. The standard is omissive about these situations.
The newly introduced checking dependencies must also be
taken into consideration, e.g., should a relation R ≡ {M1 →
M2} be allowed to call another relation S ≡ {M2 → M1}?
We think the answer should be no, and this situation should
be flagged as a typing error at static time.

Notwithstanding, it is worth noting that the dependencies
of R and S need not be perfect matches. In fact, a relation
R ≡ D may be called in the direction Rd by another relation
S ≡ { ...d ...} if D ` d , i.e., D entails d . In our restricted
language this will allow, for instance, the call RM1→M3 when
R ≡ {M1 → M2,M2 → M3}, since {M1 → M2,M2 →
M3} ` M1 → M3. Since our dependencies are equivalent to
Horn clauses (disjunctions with a single positive literal) this
“type checking” can be done in linear time.



3. QVT-R ENFORCEMENT SEMANTICS
In [6], we proposed a technique for bidirectional QVT-

R model transformation following the least-change princi-
ple [8], which was implemented in the bidirectional trans-
formation tool Echo [7]. Given a binary consistency relation
R ⊆ M1×M2 and a model distance metric ∆M1 :M1×M1 →
N, if m1 and m2 are two inconsistent models, the new model

m′1 produced by transformation
−→
R M1 is a consistent model

that is as close as possible to the original one, according
to the given metric. This results in a clear and predictable

enforcement semantics. Note that although
−→
R M1 is a trans-

formation from M2 to M1, the original model m1 is also
taken into consideration in order to achieve minimality. The
technique embeds the QVT-R checking semantics in Alloy
specifications [4], then calling its model finder in an iterative
process of searching for all consistent models at increasing
distance from the original m1 (or alternatively, using opti-
mizing solvers, such as PMax-Sat, as proposed in a recent
extension [2]). The concretization of the ∆ metric is out-
side the scope of this paper, and the reader is redirected to
the original paper. This transformation technique requires
only the definition of a consistency relation and a suitable
distance metric for the target domain, thus extending it for
the multidirectional scenario requires only the definition of
suitable distances for the selected output.

Let us use the sample transformations from Section 1 to
explore the transformation space. Those with a single out-
put model can be trivially applied. For instance, assuming

a model distance ∆FM,
−→
F FM : CFk → FM would produce a

feature model fm ′ consistent with the input configurations
(MF (cf 1, ..., cf k , fm

′)) and closest to the original feature

model (minimizing ∆FM (fm, fm ′)). Similarly for
−→
F i

CF. As for
the tuple returning transformations, a naive way to achieve
the combined distance of the target models is to add up the
distance between every model, e.g.,

∆CFk ((cf 1, ..., cf k ), (cf ′1, ..., cf ′k )) =
∆CF (cf 1, cf ′1) + ...+ ∆CF (cf k , cf ′k )

for the transformation
−→
F CFk : FM → CFk that updates all

configurations. Of course, this means that all changes in all
the models have the same weight, what may not be desirable

(e.g., in
−→
F i

FM×CF :CF→ FM×CFk−1 changes to configurations
could be prioritized over those to feature models). We leave
that customization for future work.

When applying a transformation, the user must be aware
that not all update directions are able to restore the con-
sistency of the system. Consider, for instance, that a new
mandatory feature is introduced in the feature model. Then−→
F i

CF, which updates a single model, will clearly not be able
to restore consistency of the model-driven environment. In-

stead, the user should apply
−→
F CFk and update all CFs.

4. FUTURE WORK
To the best of our knowledge, there exists no work dedi-

cated to multidirectional transformations in QVT-R (or in
any other model transformation language). Therefore, the
natural direction for this work is to collect reasonable case
studies and to study syntactic means to describe multidirec-
tional transformations in order to validate our approach.

We have shown that the checking semantics proposed in

the QVT-R standard is not suitable for specifying even sim-
ple examples of multidirectional transformations. We intend
to explore the expressive power of our multidirectional se-
mantics for writing more realistic examples of feature model
synchronization and co-evolution.

In the present paper, we have purposely left out subjective
considerations about the most adequate syntactic extensions
to the QVT-R language for expressing our proposed check-
ing dependencies, and have focused primarily on the multi-
directional semantics. We are currently considering several
syntactic extensions to allow the specification of the check-
ing dependencies in QVT-R.

Our Echo [7] model repair tool is deployed as an Eclipse
plug-in that implements the bidirectional least-change tech-
nique from [6]. We plan to release a multidirectional version
that naturally extends the existing one: users write multidi-
rectional relations between models and, when inconsistencies
are found, select which models are to be updated, establish-
ing the shape of the consistency-repairing transformation.
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